summaryrefslogtreecommitdiff
path: root/security/pkix/lib/pkixcheck.cpp
blob: be2d2837a1c8f146d931adb72be84f53386c4527 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This code is made available to you under your choice of the following sets
 * of licensing terms:
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */
/* Copyright 2013 Mozilla Contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "pkixcheck.h"

#include "pkixder.h"
#include "pkixutil.h"

namespace mozilla { namespace pkix {

// 4.1.1.2 signatureAlgorithm
// 4.1.2.3 signature

Result
CheckSignatureAlgorithm(TrustDomain& trustDomain,
                        EndEntityOrCA endEntityOrCA,
                        Time notBefore,
                        const der::SignedDataWithSignature& signedData,
                        Input signatureValue)
{
  // 4.1.1.2. signatureAlgorithm
  der::PublicKeyAlgorithm publicKeyAlg;
  DigestAlgorithm digestAlg;
  Reader signatureAlgorithmReader(signedData.algorithm);
  Result rv = der::SignatureAlgorithmIdentifierValue(signatureAlgorithmReader,
                                                     publicKeyAlg, digestAlg);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(signatureAlgorithmReader);
  if (rv != Success) {
    return rv;
  }

  // 4.1.2.3. Signature
  der::PublicKeyAlgorithm signedPublicKeyAlg;
  DigestAlgorithm signedDigestAlg;
  Reader signedSignatureAlgorithmReader(signatureValue);
  rv = der::SignatureAlgorithmIdentifierValue(signedSignatureAlgorithmReader,
                                              signedPublicKeyAlg,
                                              signedDigestAlg);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(signedSignatureAlgorithmReader);
  if (rv != Success) {
    return rv;
  }

  // "This field MUST contain the same algorithm identifier as the
  // signatureAlgorithm field in the sequence Certificate." However, it may
  // be encoded differently. In particular, one of the fields may have a NULL
  // parameter while the other one may omit the parameter field altogether, and
  // these are considered equivalent. Some certificates generation software
  // actually generates certificates like that, so we compare the parsed values
  // instead of comparing the encoded values byte-for-byte.
  //
  // Along the same lines, we accept two different OIDs for RSA-with-SHA1, and
  // we consider those OIDs to be equivalent here.
  if (publicKeyAlg != signedPublicKeyAlg || digestAlg != signedDigestAlg) {
    return Result::ERROR_SIGNATURE_ALGORITHM_MISMATCH;
  }

  // During the time of the deprecation of SHA-1 and the deprecation of RSA
  // keys of less than 2048 bits, we will encounter many certs signed using
  // SHA-1 and/or too-small RSA keys. With this in mind, we ask the trust
  // domain early on if it knows it will reject the signature purely based on
  // the digest algorithm and/or the RSA key size (if an RSA signature). This
  // is a good optimization because it completely avoids calling
  // trustDomain.FindIssuers (which may be slow) for such rejected certs, and
  // more generally it short-circuits any path building with them (which, of
  // course, is even slower).

  rv = trustDomain.CheckSignatureDigestAlgorithm(digestAlg, endEntityOrCA,
                                                 notBefore);
  if (rv != Success) {
    return rv;
  }

  switch (publicKeyAlg) {
    case der::PublicKeyAlgorithm::RSA_PKCS1:
    {
      // The RSA computation may give a result that requires fewer bytes to
      // encode than the public key (since it is modular arithmetic). However,
      // the last step of generating a PKCS#1.5 signature is the I2OSP
      // procedure, which pads any such shorter result with zeros so that it
      // is exactly the same length as the public key.
      unsigned int signatureSizeInBits = signedData.signature.GetLength() * 8u;
      return trustDomain.CheckRSAPublicKeyModulusSizeInBits(
               endEntityOrCA, signatureSizeInBits);
    }

    case der::PublicKeyAlgorithm::ECDSA:
      // In theory, we could implement a similar early-pruning optimization for
      // ECDSA curves. However, since there has been no similar deprecation for
      // for any curve that we support, the chances of us encountering a curve
      // during path building is too low to be worth bothering with.
      break;

    MOZILLA_PKIX_UNREACHABLE_DEFAULT_ENUM
  }

  return Success;
}

// 4.1.2.4 Issuer

Result
CheckIssuer(Input encodedIssuer)
{
  // "The issuer field MUST contain a non-empty distinguished name (DN)."
  Reader issuer(encodedIssuer);
  Input encodedRDNs;
  ExpectTagAndGetValue(issuer, der::SEQUENCE, encodedRDNs);
  Reader rdns(encodedRDNs);
  // Check that the issuer name contains at least one RDN
  // (Note: this does not check related grammar rules, such as there being one
  // or more AVAs in each RDN, or the values in AVAs not being empty strings)
  if (rdns.AtEnd()) {
    return Result::ERROR_EMPTY_ISSUER_NAME;
  }
  return Success;
}

// 4.1.2.5 Validity

Result
ParseValidity(Input encodedValidity,
              /*optional out*/ Time* notBeforeOut,
              /*optional out*/ Time* notAfterOut)
{
  Reader validity(encodedValidity);
  Time notBefore(Time::uninitialized);
  if (der::TimeChoice(validity, notBefore) != Success) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  Time notAfter(Time::uninitialized);
  if (der::TimeChoice(validity, notAfter) != Success) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  if (der::End(validity) != Success) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  if (notBefore > notAfter) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  if (notBeforeOut) {
    *notBeforeOut = notBefore;
  }
  if (notAfterOut) {
    *notAfterOut = notAfter;
  }

  return Success;
}

Result
CheckValidity(Time time, Time notBefore, Time notAfter)
{
  if (time < notBefore) {
    return Result::ERROR_NOT_YET_VALID_CERTIFICATE;
  }

  if (time > notAfter) {
    return Result::ERROR_EXPIRED_CERTIFICATE;
  }

  return Success;
}

// 4.1.2.7 Subject Public Key Info

Result
CheckSubjectPublicKeyInfoContents(Reader& input, TrustDomain& trustDomain,
                                  EndEntityOrCA endEntityOrCA)
{
  // Here, we validate the syntax and do very basic semantic validation of the
  // public key of the certificate. The intention here is to filter out the
  // types of bad inputs that are most likely to trigger non-mathematical
  // security vulnerabilities in the TrustDomain, like buffer overflows or the
  // use of unsafe elliptic curves.
  //
  // We don't check (all of) the mathematical properties of the public key here
  // because it is more efficient for the TrustDomain to do it during signature
  // verification and/or other use of the public key. In particular, we
  // delegate the arithmetic validation of the public key, as specified in
  // NIST SP800-56A section 5.6.2, to the TrustDomain, at least for now.

  Reader algorithm;
  Input subjectPublicKey;
  Result rv = der::ExpectTagAndGetValue(input, der::SEQUENCE, algorithm);
  if (rv != Success) {
    return rv;
  }
  rv = der::BitStringWithNoUnusedBits(input, subjectPublicKey);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(input);
  if (rv != Success) {
    return rv;
  }

  Reader subjectPublicKeyReader(subjectPublicKey);

  Reader algorithmOID;
  rv = der::ExpectTagAndGetValue(algorithm, der::OIDTag, algorithmOID);
  if (rv != Success) {
    return rv;
  }

  // RFC 3279 Section 2.3.1
  // python DottedOIDToCode.py rsaEncryption 1.2.840.113549.1.1.1
  static const uint8_t rsaEncryption[] = {
    0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01
  };

  // RFC 3279 Section 2.3.5 and RFC 5480 Section 2.1.1
  // python DottedOIDToCode.py id-ecPublicKey 1.2.840.10045.2.1
  static const uint8_t id_ecPublicKey[] = {
    0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01
  };

  if (algorithmOID.MatchRest(id_ecPublicKey)) {
    // An id-ecPublicKey AlgorithmIdentifier has a parameter that identifes
    // the curve being used. Although RFC 5480 specifies multiple forms, we
    // only supported the NamedCurve form, where the curve is identified by an
    // OID.

    Reader namedCurveOIDValue;
    rv = der::ExpectTagAndGetValue(algorithm, der::OIDTag,
                                   namedCurveOIDValue);
    if (rv != Success) {
      return rv;
    }

    // RFC 5480
    // python DottedOIDToCode.py secp256r1 1.2.840.10045.3.1.7
    static const uint8_t secp256r1[] = {
      0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
    };

    // RFC 5480
    // python DottedOIDToCode.py secp384r1 1.3.132.0.34
    static const uint8_t secp384r1[] = {
      0x2b, 0x81, 0x04, 0x00, 0x22
    };

    // RFC 5480
    // python DottedOIDToCode.py secp521r1 1.3.132.0.35
    static const uint8_t secp521r1[] = {
      0x2b, 0x81, 0x04, 0x00, 0x23
    };

    // Matching is attempted based on a rough estimate of the commonality of the
    // elliptic curve, to minimize the number of MatchRest calls.
    NamedCurve curve;
    unsigned int bits;
    if (namedCurveOIDValue.MatchRest(secp256r1)) {
      curve = NamedCurve::secp256r1;
      bits = 256;
    } else if (namedCurveOIDValue.MatchRest(secp384r1)) {
      curve = NamedCurve::secp384r1;
      bits = 384;
    } else if (namedCurveOIDValue.MatchRest(secp521r1)) {
      curve = NamedCurve::secp521r1;
      bits = 521;
    } else {
      return Result::ERROR_UNSUPPORTED_ELLIPTIC_CURVE;
    }

    rv = trustDomain.CheckECDSACurveIsAcceptable(endEntityOrCA, curve);
    if (rv != Success) {
      return rv;
    }

    // RFC 5480 Section 2.2 says that the first octet will be 0x04 to indicate
    // an uncompressed point, which is the only encoding we support.
    uint8_t compressedOrUncompressed;
    rv = subjectPublicKeyReader.Read(compressedOrUncompressed);
    if (rv != Success) {
      return rv;
    }
    if (compressedOrUncompressed != 0x04) {
      return Result::ERROR_UNSUPPORTED_EC_POINT_FORM;
    }

    // The point is encoded as two raw (not DER-encoded) integers, each padded
    // to the bit length (rounded up to the nearest byte).
    Input point;
    rv = subjectPublicKeyReader.SkipToEnd(point);
    if (rv != Success) {
      return rv;
    }
    if (point.GetLength() != ((bits + 7) / 8u) * 2u) {
      return Result::ERROR_BAD_DER;
    }

    // XXX: We defer the mathematical verification of the validity of the point
    // until signature verification. This means that if we never verify a
    // signature, we'll never fully check whether the public key is valid.
  } else if (algorithmOID.MatchRest(rsaEncryption)) {
    // RFC 3279 Section 2.3.1 says "The parameters field MUST have ASN.1 type
    // NULL for this algorithm identifier."
    rv = der::ExpectTagAndEmptyValue(algorithm, der::NULLTag);
    if (rv != Success) {
      return rv;
    }

    // RSAPublicKey :: = SEQUENCE{
    //    modulus            INTEGER,    --n
    //    publicExponent     INTEGER  }  --e
    rv = der::Nested(subjectPublicKeyReader, der::SEQUENCE,
                     [&trustDomain, endEntityOrCA](Reader& r) {
      Input modulus;
      Input::size_type modulusSignificantBytes;
      Result rv = der::PositiveInteger(r, modulus, &modulusSignificantBytes);
      if (rv != Success) {
        return rv;
      }
      // XXX: Should we do additional checks of the modulus?
      rv = trustDomain.CheckRSAPublicKeyModulusSizeInBits(
             endEntityOrCA, modulusSignificantBytes * 8u);
      if (rv != Success) {
        return rv;
      }

      // XXX: We don't allow the TrustDomain to validate the exponent.
      // XXX: We don't do our own sanity checking of the exponent.
      Input exponent;
      return der::PositiveInteger(r, exponent);
    });
    if (rv != Success) {
      return rv;
    }
  } else {
    return Result::ERROR_UNSUPPORTED_KEYALG;
  }

  rv = der::End(algorithm);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(subjectPublicKeyReader);
  if (rv != Success) {
    return rv;
  }

  return Success;
}

Result
CheckSubjectPublicKeyInfo(Input subjectPublicKeyInfo, TrustDomain& trustDomain,
                          EndEntityOrCA endEntityOrCA)
{
  Reader spkiReader(subjectPublicKeyInfo);
  Result rv = der::Nested(spkiReader, der::SEQUENCE, [&](Reader& r) {
    return CheckSubjectPublicKeyInfoContents(r, trustDomain, endEntityOrCA);
  });
  if (rv != Success) {
    return rv;
  }
  return der::End(spkiReader);
}

// 4.2.1.3. Key Usage (id-ce-keyUsage)

// As explained in the comment in CheckKeyUsage, bit 0 is the most significant
// bit and bit 7 is the least significant bit.
inline uint8_t KeyUsageToBitMask(KeyUsage keyUsage)
{
  assert(keyUsage != KeyUsage::noParticularKeyUsageRequired);
  return 0x80u >> static_cast<uint8_t>(keyUsage);
}

Result
CheckKeyUsage(EndEntityOrCA endEntityOrCA, const Input* encodedKeyUsage,
              KeyUsage requiredKeyUsageIfPresent)
{
  if (!encodedKeyUsage) {
    // TODO(bug 970196): Reject certificates that are being used to verify
    // certificate signatures unless the certificate is a trust anchor, to
    // reduce the chances of an end-entity certificate being abused as a CA
    // certificate.
    // if (endEntityOrCA == EndEntityOrCA::MustBeCA && !isTrustAnchor) {
    //   return Result::ERROR_INADEQUATE_KEY_USAGE;
    // }
    //
    // TODO: Users may configure arbitrary certificates as trust anchors, not
    // just roots. We should only allow a certificate without a key usage to be
    // used as a CA when it is self-issued and self-signed.
    return Success;
  }

  Reader input(*encodedKeyUsage);
  Reader value;
  if (der::ExpectTagAndGetValue(input, der::BIT_STRING, value) != Success) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  uint8_t numberOfPaddingBits;
  if (value.Read(numberOfPaddingBits) != Success) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }
  if (numberOfPaddingBits > 7) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  uint8_t bits;
  if (value.Read(bits) != Success) {
    // Reject empty bit masks.
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  // The most significant bit is numbered 0 (digitalSignature) and the least
  // significant bit is numbered 7 (encipherOnly), and the padding is in the
  // least significant bits of the last byte. The numbering of bits in a byte
  // is backwards from how we usually interpret them.
  //
  // For example, let's say bits is encoded in one byte with of value 0xB0 and
  // numberOfPaddingBits == 4. Then, bits is 10110000 in binary:
  //
  //      bit 0  bit 3
  //          |  |
  //          v  v
  //          10110000
  //              ^^^^
  //               |
  //               4 padding bits
  //
  // Since bits is the last byte, we have to consider the padding by ensuring
  // that the least significant 4 bits are all zero, since DER rules require
  // all padding bits to be zero. Then we have to look at the bit N bits to the
  // right of the most significant bit, where N is a value from the KeyUsage
  // enumeration.
  //
  // Let's say we're interested in the keyCertSign (5) bit. We'd need to look
  // at bit 5, which is zero, so keyCertSign is not asserted. (Since we check
  // that the padding is all zeros, it is OK to read from the padding bits.)
  //
  // Let's say we're interested in the digitalSignature (0) bit. We'd need to
  // look at the bit 0 (the most significant bit), which is set, so that means
  // digitalSignature is asserted. Similarly, keyEncipherment (2) and
  // dataEncipherment (3) are asserted.
  //
  // Note that since the KeyUsage enumeration is limited to values 0-7, we
  // only ever need to examine the first byte test for
  // requiredKeyUsageIfPresent.

  if (requiredKeyUsageIfPresent != KeyUsage::noParticularKeyUsageRequired) {
    // Check that the required key usage bit is set.
    if ((bits & KeyUsageToBitMask(requiredKeyUsageIfPresent)) == 0) {
      return Result::ERROR_INADEQUATE_KEY_USAGE;
    }
  }

  // RFC 5280 says "The keyCertSign bit is asserted when the subject public
  // key is used for verifying signatures on public key certificates. If the
  // keyCertSign bit is asserted, then the cA bit in the basic constraints
  // extension (Section 4.2.1.9) MUST also be asserted."
  // However, we allow end-entity certificates (i.e. certificates without
  // basicConstraints.cA set to TRUE) to claim keyCertSign for compatibility
  // reasons. This does not compromise security because we only allow
  // certificates with basicConstraints.cA set to TRUE to act as CAs.
  if (requiredKeyUsageIfPresent == KeyUsage::keyCertSign &&
      endEntityOrCA != EndEntityOrCA::MustBeCA) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  // The padding applies to the last byte, so skip to the last byte.
  while (!value.AtEnd()) {
    if (value.Read(bits) != Success) {
      return Result::ERROR_INADEQUATE_KEY_USAGE;
    }
  }

  // All of the padding bits must be zero, according to DER rules.
  uint8_t paddingMask = static_cast<uint8_t>((1 << numberOfPaddingBits) - 1);
  if ((bits & paddingMask) != 0) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  return Success;
}

// RFC5820 4.2.1.4. Certificate Policies

// "The user-initial-policy-set contains the special value any-policy if the
// user is not concerned about certificate policy."
//
// python DottedOIDToCode.py anyPolicy 2.5.29.32.0

static const uint8_t anyPolicy[] = {
  0x55, 0x1d, 0x20, 0x00
};

/*static*/ const CertPolicyId CertPolicyId::anyPolicy = {
  4, { 0x55, 0x1d, 0x20, 0x00 }
};

bool
CertPolicyId::IsAnyPolicy() const {
  if (this == &CertPolicyId::anyPolicy) {
    return true;
  }
  return numBytes == sizeof(::mozilla::pkix::anyPolicy) &&
         std::equal(bytes, bytes + numBytes, ::mozilla::pkix::anyPolicy);
}

// certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
Result
CheckCertificatePolicies(EndEntityOrCA endEntityOrCA,
                         const Input* encodedCertificatePolicies,
                         const Input* encodedInhibitAnyPolicy,
                         TrustLevel trustLevel,
                         const CertPolicyId& requiredPolicy)
{
  if (requiredPolicy.numBytes == 0 ||
      requiredPolicy.numBytes > sizeof requiredPolicy.bytes) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }

  bool requiredPolicyFound = requiredPolicy.IsAnyPolicy();
  if (requiredPolicyFound) {
    return Success;
  }

  // Bug 989051. Until we handle inhibitAnyPolicy we will fail close when
  // inhibitAnyPolicy extension is present and we are validating for a policy.
  if (!requiredPolicyFound && encodedInhibitAnyPolicy) {
    return Result::ERROR_POLICY_VALIDATION_FAILED;
  }

  // The root CA certificate may omit the policies that it has been
  // trusted for, so we cannot require the policies to be present in those
  // certificates. Instead, the determination of which roots are trusted for
  // which policies is made by the TrustDomain's GetCertTrust method.
  if (trustLevel == TrustLevel::TrustAnchor &&
      endEntityOrCA == EndEntityOrCA::MustBeCA) {
    requiredPolicyFound = true;
  }

  Input requiredPolicyDER;
  if (requiredPolicyDER.Init(requiredPolicy.bytes, requiredPolicy.numBytes)
        != Success) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }

  if (encodedCertificatePolicies) {
    Reader extension(*encodedCertificatePolicies);
    Reader certificatePolicies;
    Result rv = der::ExpectTagAndGetValue(extension, der::SEQUENCE,
                                          certificatePolicies);
    if (rv != Success) {
      return Result::ERROR_POLICY_VALIDATION_FAILED;
    }
    if (!extension.AtEnd()) {
      return Result::ERROR_POLICY_VALIDATION_FAILED;
    }

    do {
      // PolicyInformation ::= SEQUENCE {
      //         policyIdentifier   CertPolicyId,
      //         policyQualifiers   SEQUENCE SIZE (1..MAX) OF
      //                                 PolicyQualifierInfo OPTIONAL }
      Reader policyInformation;
      rv = der::ExpectTagAndGetValue(certificatePolicies, der::SEQUENCE,
                                     policyInformation);
      if (rv != Success) {
        return Result::ERROR_POLICY_VALIDATION_FAILED;
      }

      Reader policyIdentifier;
      rv = der::ExpectTagAndGetValue(policyInformation, der::OIDTag,
                                     policyIdentifier);
      if (rv != Success) {
        return rv;
      }

      if (policyIdentifier.MatchRest(requiredPolicyDER)) {
        requiredPolicyFound = true;
      } else if (endEntityOrCA == EndEntityOrCA::MustBeCA &&
                 policyIdentifier.MatchRest(anyPolicy)) {
        requiredPolicyFound = true;
      }

      // RFC 5280 Section 4.2.1.4 says "Optional qualifiers, which MAY be
      // present, are not expected to change the definition of the policy." Also,
      // it seems that Section 6, which defines validation, does not require any
      // matching of qualifiers. Thus, doing anything with the policy qualifiers
      // would be a waste of time and a source of potential incompatibilities, so
      // we just ignore them.
    } while (!requiredPolicyFound && !certificatePolicies.AtEnd());
  }

  if (!requiredPolicyFound) {
    return Result::ERROR_POLICY_VALIDATION_FAILED;
  }

  return Success;
}

static const long UNLIMITED_PATH_LEN = -1; // must be less than zero

//  BasicConstraints ::= SEQUENCE {
//          cA                      BOOLEAN DEFAULT FALSE,
//          pathLenConstraint       INTEGER (0..MAX) OPTIONAL }

// RFC5280 4.2.1.9. Basic Constraints (id-ce-basicConstraints)
Result
CheckBasicConstraints(EndEntityOrCA endEntityOrCA,
                      const Input* encodedBasicConstraints,
                      const der::Version version, TrustLevel trustLevel,
                      unsigned int subCACount)
{
  bool isCA = false;
  long pathLenConstraint = UNLIMITED_PATH_LEN;

  if (encodedBasicConstraints) {
    Reader input(*encodedBasicConstraints);
    Result rv = der::Nested(input, der::SEQUENCE,
                            [&isCA, &pathLenConstraint](Reader& r) {
      Result rv = der::OptionalBoolean(r, isCA);
      if (rv != Success) {
        return rv;
      }
      // TODO(bug 985025): If isCA is false, pathLenConstraint
      // MUST NOT be included (as per RFC 5280 section
      // 4.2.1.9), but for compatibility reasons, we don't
      // check this.
      return der::OptionalInteger(r, UNLIMITED_PATH_LEN, pathLenConstraint);
    });
    if (rv != Success) {
      return Result::ERROR_EXTENSION_VALUE_INVALID;
    }
    if (der::End(input) != Success) {
      return Result::ERROR_EXTENSION_VALUE_INVALID;
    }
  } else {
    // "If the basic constraints extension is not present in a version 3
    //  certificate, or the extension is present but the cA boolean is not
    //  asserted, then the certified public key MUST NOT be used to verify
    //  certificate signatures."
    //
    // For compatibility, we must accept v1 trust anchors without basic
    // constraints as CAs.
    //
    // There are devices with v1 certificates that are unlikely to be trust
    // anchors. In order to allow applications to treat this case differently
    // from other basic constraints violations (e.g. allowing certificate error
    // overrides for only this case), we return a different error code.
    //
    // TODO: add check for self-signedness?
    if (endEntityOrCA == EndEntityOrCA::MustBeCA && version == der::Version::v1) {
      if (trustLevel == TrustLevel::TrustAnchor) {
        isCA = true;
      } else {
        return Result::ERROR_V1_CERT_USED_AS_CA;
      }
    }
  }

  if (endEntityOrCA == EndEntityOrCA::MustBeEndEntity) {
    // CA certificates are not trusted as EE certs.

    if (isCA) {
      // Note that this check prevents a delegated OCSP response signing
      // certificate with the CA bit from successfully validating when we check
      // it from pkixocsp.cpp, which is a good thing.
      return Result::ERROR_CA_CERT_USED_AS_END_ENTITY;
    }

    return Success;
  }

  assert(endEntityOrCA == EndEntityOrCA::MustBeCA);

  // End-entity certificates are not allowed to act as CA certs.
  if (!isCA) {
    return Result::ERROR_CA_CERT_INVALID;
  }

  if (pathLenConstraint >= 0 &&
      static_cast<long>(subCACount) > pathLenConstraint) {
    return Result::ERROR_PATH_LEN_CONSTRAINT_INVALID;
  }

  return Success;
}

// 4.2.1.12. Extended Key Usage (id-ce-extKeyUsage)

static Result
MatchEKU(Reader& value, KeyPurposeId requiredEKU,
         EndEntityOrCA endEntityOrCA, TrustDomain& trustDomain,
         Time notBefore, /*in/out*/ bool& found,
         /*in/out*/ bool& foundOCSPSigning)
{
  // See Section 5.9 of "A Layman's Guide to a Subset of ASN.1, BER, and DER"
  // for a description of ASN.1 DER encoding of OIDs.

  // id-pkix  OBJECT IDENTIFIER  ::=
  //            { iso(1) identified-organization(3) dod(6) internet(1)
  //                    security(5) mechanisms(5) pkix(7) }
  // id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
  // id-kp-serverAuth      OBJECT IDENTIFIER ::= { id-kp 1 }
  // id-kp-clientAuth      OBJECT IDENTIFIER ::= { id-kp 2 }
  // id-kp-codeSigning     OBJECT IDENTIFIER ::= { id-kp 3 }
  // id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }
  // id-kp-OCSPSigning     OBJECT IDENTIFIER ::= { id-kp 9 }
  static const uint8_t server[] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 1 };
  static const uint8_t client[] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 2 };
  static const uint8_t code  [] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 3 };
  static const uint8_t email [] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 4 };
  static const uint8_t ocsp  [] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 9 };

  // id-Netscape        OBJECT IDENTIFIER ::= { 2 16 840 1 113730 }
  // id-Netscape-policy OBJECT IDENTIFIER ::= { id-Netscape 4 }
  // id-Netscape-stepUp OBJECT IDENTIFIER ::= { id-Netscape-policy 1 }
  static const uint8_t serverStepUp[] =
    { (40*2)+16, 128+6,72, 1, 128+6,128+120,66, 4, 1 };

  bool match = false;

  if (!found) {
    switch (requiredEKU) {
      case KeyPurposeId::id_kp_serverAuth: {
        if (value.MatchRest(server)) {
          match = true;
          break;
        }
        // Potentially treat CA certs with step-up OID as also having SSL server
        // type. Comodo has issued certificates that require this behavior that
        // don't expire until June 2020!
        if (endEntityOrCA == EndEntityOrCA::MustBeCA &&
            value.MatchRest(serverStepUp)) {
          Result rv = trustDomain.NetscapeStepUpMatchesServerAuth(notBefore,
                                                                  match);
          if (rv != Success) {
            return rv;
          }
        }
        break;
      }

      case KeyPurposeId::id_kp_clientAuth:
        match = value.MatchRest(client);
        break;

      case KeyPurposeId::id_kp_codeSigning:
        match = value.MatchRest(code);
        break;

      case KeyPurposeId::id_kp_emailProtection:
        match = value.MatchRest(email);
        break;

      case KeyPurposeId::id_kp_OCSPSigning:
        match = value.MatchRest(ocsp);
        break;

      case KeyPurposeId::anyExtendedKeyUsage:
        return NotReached("anyExtendedKeyUsage should start with found==true",
                          Result::FATAL_ERROR_LIBRARY_FAILURE);
    }
  }

  if (match) {
    found = true;
    if (requiredEKU == KeyPurposeId::id_kp_OCSPSigning) {
      foundOCSPSigning = true;
    }
  } else if (value.MatchRest(ocsp)) {
    foundOCSPSigning = true;
  }

  value.SkipToEnd(); // ignore unmatched OIDs.

  return Success;
}

Result
CheckExtendedKeyUsage(EndEntityOrCA endEntityOrCA,
                      const Input* encodedExtendedKeyUsage,
                      KeyPurposeId requiredEKU, TrustDomain& trustDomain,
                      Time notBefore)
{
  // XXX: We're using Result::ERROR_INADEQUATE_CERT_TYPE here so that callers
  // can distinguish EKU mismatch from KU mismatch from basic constraints
  // mismatch. We should probably add a new error code that is more clear for
  // this type of problem.

  bool foundOCSPSigning = false;

  if (encodedExtendedKeyUsage) {
    bool found = requiredEKU == KeyPurposeId::anyExtendedKeyUsage;

    Reader input(*encodedExtendedKeyUsage);
    Result rv = der::NestedOf(input, der::SEQUENCE, der::OIDTag,
                              der::EmptyAllowed::No, [&](Reader& r) {
      return MatchEKU(r, requiredEKU, endEntityOrCA, trustDomain, notBefore,
                      found, foundOCSPSigning);
    });
    if (rv != Success) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
    if (der::End(input) != Success) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }

    // If the EKU extension was included, then the required EKU must be in the
    // list.
    if (!found) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
  }

  // pkixocsp.cpp depends on the following additional checks.

  if (endEntityOrCA == EndEntityOrCA::MustBeEndEntity) {
    // When validating anything other than an delegated OCSP signing cert,
    // reject any cert that also claims to be an OCSP responder, because such
    // a cert does not make sense. For example, if an SSL certificate were to
    // assert id-kp-OCSPSigning then it could sign OCSP responses for itself,
    // if not for this check.
    // That said, we accept CA certificates with id-kp-OCSPSigning because
    // some CAs in Mozilla's CA program have issued such intermediate
    // certificates, and because some CAs have reported some Microsoft server
    // software wrongly requires CA certificates to have id-kp-OCSPSigning.
    // Allowing this exception does not cause any security issues because we
    // require delegated OCSP response signing certificates to be end-entity
    // certificates.
    if (foundOCSPSigning && requiredEKU != KeyPurposeId::id_kp_OCSPSigning) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
    // http://tools.ietf.org/html/rfc6960#section-4.2.2.2:
    // "OCSP signing delegation SHALL be designated by the inclusion of
    // id-kp-OCSPSigning in an extended key usage certificate extension
    // included in the OCSP response signer's certificate."
    //
    // id-kp-OCSPSigning is the only EKU that isn't implicitly assumed when the
    // EKU extension is missing from an end-entity certificate. However, any CA
    // certificate can issue a delegated OCSP response signing certificate, so
    // we can't require the EKU be explicitly included for CA certificates.
    if (!foundOCSPSigning && requiredEKU == KeyPurposeId::id_kp_OCSPSigning) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
  }

  return Success;
}

Result
CheckTLSFeatures(const BackCert& subject, BackCert& potentialIssuer)
{
  const Input* issuerTLSFeatures = potentialIssuer.GetRequiredTLSFeatures();
  if (!issuerTLSFeatures) {
    return Success;
  }

  const Input* subjectTLSFeatures = subject.GetRequiredTLSFeatures();
  if (issuerTLSFeatures->GetLength() == 0 ||
      !subjectTLSFeatures ||
      !InputsAreEqual(*issuerTLSFeatures, *subjectTLSFeatures)) {
    return Result::ERROR_REQUIRED_TLS_FEATURE_MISSING;
  }

  return Success;
}

Result
TLSFeaturesSatisfiedInternal(const Input* requiredTLSFeatures,
                             const Input* stapledOCSPResponse)
{
  if (!requiredTLSFeatures) {
    return Success;
  }

  // RFC 6066 10.2: ExtensionType status_request
  const static uint8_t status_request = 5;
  const static uint8_t status_request_bytes[] = { status_request };

  Reader input(*requiredTLSFeatures);
  return der::NestedOf(input, der::SEQUENCE, der::INTEGER,
                       der::EmptyAllowed::No, [&](Reader& r) {
    if (!r.MatchRest(status_request_bytes)) {
      return Result::ERROR_REQUIRED_TLS_FEATURE_MISSING;
    }

    if (!stapledOCSPResponse) {
      return Result::ERROR_REQUIRED_TLS_FEATURE_MISSING;
    }

    return Result::Success;
  });
}

Result
CheckTLSFeaturesAreSatisfied(Input& cert,
                             const Input* stapledOCSPResponse)
{
  BackCert backCert(cert, EndEntityOrCA::MustBeEndEntity, nullptr);
  Result rv = backCert.Init();
  if (rv != Success) {
    return rv;
  }

  return TLSFeaturesSatisfiedInternal(backCert.GetRequiredTLSFeatures(),
                                      stapledOCSPResponse);
}

Result
CheckIssuerIndependentProperties(TrustDomain& trustDomain,
                                 const BackCert& cert,
                                 Time time,
                                 KeyUsage requiredKeyUsageIfPresent,
                                 KeyPurposeId requiredEKUIfPresent,
                                 const CertPolicyId& requiredPolicy,
                                 unsigned int subCACount,
                                 /*out*/ TrustLevel& trustLevel)
{
  Result rv;

  const EndEntityOrCA endEntityOrCA = cert.endEntityOrCA;

  // Check the cert's trust first, because we want to minimize the amount of
  // processing we do on a distrusted cert, in case it is trying to exploit
  // some bug in our processing.
  rv = trustDomain.GetCertTrust(endEntityOrCA, requiredPolicy, cert.GetDER(),
                                trustLevel);
  if (rv != Success) {
    return rv;
  }

  // IMPORTANT: We parse the validity interval here, so that we can use the
  // notBefore and notAfter values in checks for things that might be deprecated
  // over time. However, we must not fail for semantic errors until the end of
  // this method, in order to preserve error ranking.
  Time notBefore(Time::uninitialized);
  Time notAfter(Time::uninitialized);
  rv = ParseValidity(cert.GetValidity(), &notBefore, &notAfter);
  if (rv != Success) {
    return rv;
  }

  if (trustLevel == TrustLevel::TrustAnchor &&
      endEntityOrCA == EndEntityOrCA::MustBeEndEntity &&
      requiredEKUIfPresent == KeyPurposeId::id_kp_OCSPSigning) {
    // OCSP signer certificates can never be trust anchors, especially
    // since we don't support designated OCSP responders. All of the checks
    // below that are dependent on trustLevel rely on this overriding of the
    // trust level for OCSP signers.
    trustLevel = TrustLevel::InheritsTrust;
  }

  switch (trustLevel) {
    case TrustLevel::InheritsTrust:
      rv = CheckSignatureAlgorithm(trustDomain, endEntityOrCA, notBefore,
                                   cert.GetSignedData(), cert.GetSignature());
      if (rv != Success) {
        return rv;
      }
      break;

    case TrustLevel::TrustAnchor:
      // We don't even bother checking signatureAlgorithm or signature for
      // syntactic validity for trust anchors, because we don't use those
      // fields for anything, and because the trust anchor might be signed
      // with a signature algorithm we don't actually support.
      break;

    case TrustLevel::ActivelyDistrusted:
      return Result::ERROR_UNTRUSTED_CERT;
  }

  // Check the SPKI early, because it is one of the most selective properties
  // of the certificate due to SHA-1 deprecation and the deprecation of
  // certificates with keys weaker than RSA 2048.
  rv = CheckSubjectPublicKeyInfo(cert.GetSubjectPublicKeyInfo(), trustDomain,
                                 endEntityOrCA);
  if (rv != Success) {
    return rv;
  }

  // 4.1.2.4. Issuer
  rv = CheckIssuer(cert.GetIssuer());
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.1. Authority Key Identifier is ignored (see bug 965136).

  // 4.2.1.2. Subject Key Identifier is ignored (see bug 965136).

  // 4.2.1.3. Key Usage
  rv = CheckKeyUsage(endEntityOrCA, cert.GetKeyUsage(),
                     requiredKeyUsageIfPresent);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.4. Certificate Policies
  rv = CheckCertificatePolicies(endEntityOrCA, cert.GetCertificatePolicies(),
                                cert.GetInhibitAnyPolicy(), trustLevel,
                                requiredPolicy);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.5. Policy Mappings are not supported; see the documentation about
  //          policy enforcement in pkix.h.

  // 4.2.1.6. Subject Alternative Name dealt with during name constraint
  //          checking and during name verification (CERT_VerifyCertName).

  // 4.2.1.7. Issuer Alternative Name is not something that needs checking.

  // 4.2.1.8. Subject Directory Attributes is not something that needs
  //          checking.

  // 4.2.1.9. Basic Constraints.
  rv = CheckBasicConstraints(endEntityOrCA, cert.GetBasicConstraints(),
                             cert.GetVersion(), trustLevel, subCACount);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.10. Name Constraints is dealt with in during path building.

  // 4.2.1.11. Policy Constraints are implicitly supported; see the
  //           documentation about policy enforcement in pkix.h.

  // 4.2.1.12. Extended Key Usage
  rv = CheckExtendedKeyUsage(endEntityOrCA, cert.GetExtKeyUsage(),
                             requiredEKUIfPresent, trustDomain, notBefore);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.13. CRL Distribution Points is not supported, though the
  //           TrustDomain's CheckRevocation method may parse it and process it
  //           on its own.

  // 4.2.1.14. Inhibit anyPolicy is implicitly supported; see the documentation
  //           about policy enforcement in pkix.h.

  // IMPORTANT: Even though we parse validity above, we wait until this point to
  // check it, so that error ranking works correctly.
  rv = CheckValidity(time, notBefore, notAfter);
  if (rv != Success) {
    return rv;
  }

  rv = trustDomain.CheckValidityIsAcceptable(notBefore, notAfter, endEntityOrCA,
                                             requiredEKUIfPresent);
  if (rv != Success) {
    return rv;
  }

  return Success;
}

} } // namespace mozilla::pkix