summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/arcfour.c
blob: e37b45843b0f12ff3cb4006ed3b31fb75ffef730 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/* arcfour.c - the arc four algorithm.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "prerr.h"
#include "secerr.h"

#include "prtypes.h"
#include "blapi.h"

/* Architecture-dependent defines */

#if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \
    defined(_WIN64)
/* Convert the byte-stream to a word-stream */
#define CONVERT_TO_WORDS
#endif

#if defined(AIX) || defined(OSF1) || defined(NSS_BEVAND_ARCFOUR)
/* Treat array variables as words, not bytes, on CPUs that take
 * much longer to write bytes than to write words, or when using
 * assembler code that required it.
 */
#define USE_WORD
#endif

#if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR)
typedef PRUint64 WORD;
#else
typedef PRUint32 WORD;
#endif
#define WORDSIZE sizeof(WORD)

#if defined(USE_WORD)
typedef WORD Stype;
#else
typedef PRUint8 Stype;
#endif

#define ARCFOUR_STATE_SIZE 256

#define MASK1BYTE (WORD)(0xff)

#define SWAP(a, b) \
    tmp = a;       \
    a = b;         \
    b = tmp;

/*
 * State information for stream cipher.
 */
struct RC4ContextStr {
#if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR)
    Stype i;
    Stype j;
    Stype S[ARCFOUR_STATE_SIZE];
#else
    Stype S[ARCFOUR_STATE_SIZE];
    Stype i;
    Stype j;
#endif
};

/*
 * array indices [0..255] to initialize cx->S array (faster than loop).
 */
static const Stype Kinit[256] = {
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
    0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
    0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
    0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
    0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
    0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
    0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
    0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
    0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
    0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
    0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
    0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
    0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
    0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
    0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
    0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
    0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
    0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
    0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
    0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
    0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
    0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
    0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
    0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
    0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
    0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
    0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
    0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
    0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
    0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};

RC4Context *
RC4_AllocateContext(void)
{
    return PORT_ZNew(RC4Context);
}

SECStatus
RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len,
                const unsigned char *unused1, int unused2,
                unsigned int unused3, unsigned int unused4)
{
    unsigned int i;
    PRUint8 j, tmp;
    PRUint8 K[256];
    PRUint8 *L;

    /* verify the key length. */
    PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE);
    if (len == 0 || len >= ARCFOUR_STATE_SIZE) {
        PORT_SetError(SEC_ERROR_BAD_KEY);
        return SECFailure;
    }
    if (cx == NULL) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    /* Initialize the state using array indices. */
    memcpy(cx->S, Kinit, sizeof cx->S);
    /* Fill in K repeatedly with values from key. */
    L = K;
    for (i = sizeof K; i > len; i -= len) {
        memcpy(L, key, len);
        L += len;
    }
    memcpy(L, key, i);
    /* Stir the state of the generator.  At this point it is assumed
     * that the key is the size of the state buffer.  If this is not
     * the case, the key bytes are repeated to fill the buffer.
     */
    j = 0;
#define ARCFOUR_STATE_STIR(ii) \
    j = j + cx->S[ii] + K[ii]; \
    SWAP(cx->S[ii], cx->S[j]);
    for (i = 0; i < ARCFOUR_STATE_SIZE; i++) {
        ARCFOUR_STATE_STIR(i);
    }
    cx->i = 0;
    cx->j = 0;
    return SECSuccess;
}

/*
 * Initialize a new generator.
 */
RC4Context *
RC4_CreateContext(const unsigned char *key, int len)
{
    RC4Context *cx = RC4_AllocateContext();
    if (cx) {
        SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0);
        if (rv != SECSuccess) {
            PORT_ZFree(cx, sizeof(*cx));
            cx = NULL;
        }
    }
    return cx;
}

void
RC4_DestroyContext(RC4Context *cx, PRBool freeit)
{
    if (freeit)
        PORT_ZFree(cx, sizeof(*cx));
}

#if defined(NSS_BEVAND_ARCFOUR)
extern void ARCFOUR(RC4Context *cx, WORD inputLen,
                    const unsigned char *input, unsigned char *output);
#else
/*
 * Generate the next byte in the stream.
 */
#define ARCFOUR_NEXT_BYTE() \
    tmpSi = cx->S[++tmpi];  \
    tmpj += tmpSi;          \
    tmpSj = cx->S[tmpj];    \
    cx->S[tmpi] = tmpSj;    \
    cx->S[tmpj] = tmpSi;    \
    t = tmpSi + tmpSj;

#ifdef CONVERT_TO_WORDS
/*
 * Straight ARCFOUR op.  No optimization.
 */
static SECStatus
rc4_no_opt(RC4Context *cx, unsigned char *output,
           unsigned int *outputLen, unsigned int maxOutputLen,
           const unsigned char *input, unsigned int inputLen)
{
    PRUint8 t;
    Stype tmpSi, tmpSj;
    register PRUint8 tmpi = cx->i;
    register PRUint8 tmpj = cx->j;
    unsigned int index;
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
    for (index = 0; index < inputLen; index++) {
        /* Generate next byte from stream. */
        ARCFOUR_NEXT_BYTE();
        /* output = next stream byte XOR next input byte */
        output[index] = cx->S[t] ^ input[index];
    }
    *outputLen = inputLen;
    cx->i = tmpi;
    cx->j = tmpj;
    return SECSuccess;
}

#else
/* !CONVERT_TO_WORDS */

/*
 * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces.
 */
static SECStatus
rc4_unrolled(RC4Context *cx, unsigned char *output,
             unsigned int *outputLen, unsigned int maxOutputLen,
             const unsigned char *input, unsigned int inputLen)
{
    PRUint8 t;
    Stype tmpSi, tmpSj;
    register PRUint8 tmpi = cx->i;
    register PRUint8 tmpj = cx->j;
    int index;
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
    for (index = inputLen / 8; index-- > 0; input += 8, output += 8) {
        ARCFOUR_NEXT_BYTE();
        output[0] = cx->S[t] ^ input[0];
        ARCFOUR_NEXT_BYTE();
        output[1] = cx->S[t] ^ input[1];
        ARCFOUR_NEXT_BYTE();
        output[2] = cx->S[t] ^ input[2];
        ARCFOUR_NEXT_BYTE();
        output[3] = cx->S[t] ^ input[3];
        ARCFOUR_NEXT_BYTE();
        output[4] = cx->S[t] ^ input[4];
        ARCFOUR_NEXT_BYTE();
        output[5] = cx->S[t] ^ input[5];
        ARCFOUR_NEXT_BYTE();
        output[6] = cx->S[t] ^ input[6];
        ARCFOUR_NEXT_BYTE();
        output[7] = cx->S[t] ^ input[7];
    }
    index = inputLen % 8;
    if (index) {
        input += index;
        output += index;
        switch (index) {
            case 7:
                ARCFOUR_NEXT_BYTE();
                output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */
            case 6:
                ARCFOUR_NEXT_BYTE();
                output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */
            case 5:
                ARCFOUR_NEXT_BYTE();
                output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */
            case 4:
                ARCFOUR_NEXT_BYTE();
                output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */
            case 3:
                ARCFOUR_NEXT_BYTE();
                output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */
            case 2:
                ARCFOUR_NEXT_BYTE();
                output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */
            case 1:
                ARCFOUR_NEXT_BYTE();
                output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */
            default:
                /* FALLTHRU */
                ; /* hp-ux build breaks without this */
        }
    }
    cx->i = tmpi;
    cx->j = tmpj;
    *outputLen = inputLen;
    return SECSuccess;
}
#endif

#ifdef IS_LITTLE_ENDIAN
#define ARCFOUR_NEXT4BYTES_L(n)               \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n);      \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 8);  \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 16); \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 24);
#else
#define ARCFOUR_NEXT4BYTES_B(n)               \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 24); \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 16); \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 8);  \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n);
#endif

#if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64)
/* 64-bit wordsize */
#ifdef IS_LITTLE_ENDIAN
#define ARCFOUR_NEXT_WORD()       \
    {                             \
        streamWord = 0;           \
        ARCFOUR_NEXT4BYTES_L(0);  \
        ARCFOUR_NEXT4BYTES_L(32); \
    }
#else
#define ARCFOUR_NEXT_WORD()       \
    {                             \
        streamWord = 0;           \
        ARCFOUR_NEXT4BYTES_B(32); \
        ARCFOUR_NEXT4BYTES_B(0);  \
    }
#endif
#else
/* 32-bit wordsize */
#ifdef IS_LITTLE_ENDIAN
#define ARCFOUR_NEXT_WORD()      \
    {                            \
        streamWord = 0;          \
        ARCFOUR_NEXT4BYTES_L(0); \
    }
#else
#define ARCFOUR_NEXT_WORD()      \
    {                            \
        streamWord = 0;          \
        ARCFOUR_NEXT4BYTES_B(0); \
    }
#endif
#endif

#ifdef IS_LITTLE_ENDIAN
#define RSH <<
#define LSH >>
#else
#define RSH >>
#define LSH <<
#endif

#ifdef IS_LITTLE_ENDIAN
#define LEFTMOST_BYTE_SHIFT 0
#define NEXT_BYTE_SHIFT(shift) shift + 8
#else
#define LEFTMOST_BYTE_SHIFT 8 * (WORDSIZE - 1)
#define NEXT_BYTE_SHIFT(shift) shift - 8
#endif

#ifdef CONVERT_TO_WORDS
static SECStatus
rc4_wordconv(RC4Context *cx, unsigned char *output,
             unsigned int *outputLen, unsigned int maxOutputLen,
             const unsigned char *input, unsigned int inputLen)
{
    PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t));
    unsigned int inOffset = (PRUword)input % WORDSIZE;
    unsigned int outOffset = (PRUword)output % WORDSIZE;
    register WORD streamWord;
    register const WORD *pInWord;
    register WORD *pOutWord;
    register WORD inWord, nextInWord;
    PRUint8 t;
    register Stype tmpSi, tmpSj;
    register PRUint8 tmpi = cx->i;
    register PRUint8 tmpj = cx->j;
    unsigned int bufShift, invBufShift;
    unsigned int i;
    const unsigned char *finalIn;
    unsigned char *finalOut;

    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
    if (inputLen < 2 * WORDSIZE) {
        /* Ignore word conversion, do byte-at-a-time */
        return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen);
    }
    *outputLen = inputLen;
    pInWord = (const WORD *)(input - inOffset);
    pOutWord = (WORD *)(output - outOffset);
    if (inOffset <= outOffset) {
        bufShift = 8 * (outOffset - inOffset);
        invBufShift = 8 * WORDSIZE - bufShift;
    } else {
        invBufShift = 8 * (inOffset - outOffset);
        bufShift = 8 * WORDSIZE - invBufShift;
    }
    /*****************************************************************/
    /* Step 1:                                                       */
    /* If the first output word is partial, consume the bytes in the */
    /* first partial output word by loading one or two words of      */
    /* input and shifting them accordingly.  Otherwise, just load    */
    /* in the first word of input.  At the end of this block, at     */
    /* least one partial word of input should ALWAYS be loaded.      */
    /*****************************************************************/
    if (outOffset) {
        unsigned int byteCount = WORDSIZE - outOffset;
        for (i = 0; i < byteCount; i++) {
            ARCFOUR_NEXT_BYTE();
            output[i] = cx->S[t] ^ input[i];
        }
        /* Consumed byteCount bytes of input */
        inputLen -= byteCount;
        pInWord++;

        /* move to next word of output */
        pOutWord++;

        /* If buffers are relatively misaligned, shift the bytes in inWord
         * to be aligned to the output buffer.
         */
        if (inOffset < outOffset) {
            /* The first input word (which may be partial) has more bytes
             * than needed.  Copy the remainder to inWord.
             */
            unsigned int shift = LEFTMOST_BYTE_SHIFT;
            inWord = 0;
            for (i = 0; i < outOffset - inOffset; i++) {
                inWord |= (WORD)input[byteCount + i] << shift;
                shift = NEXT_BYTE_SHIFT(shift);
            }
        } else if (inOffset > outOffset) {
            /* Consumed some bytes in the second input word.  Copy the
             * remainder to inWord.
             */
            inWord = *pInWord++;
            inWord = inWord LSH invBufShift;
        } else {
            inWord = 0;
        }
    } else {
        /* output is word-aligned */
        if (inOffset) {
            /* Input is not word-aligned.  The first word load of input
             * will not produce a full word of input bytes, so one word
             * must be pre-loaded.  The main loop below will load in the
             * next input word and shift some of its bytes into inWord
             * in order to create a full input word.  Note that the main
             * loop must execute at least once because the input must
             * be at least two words.
             */
            unsigned int shift = LEFTMOST_BYTE_SHIFT;
            inWord = 0;
            for (i = 0; i < WORDSIZE - inOffset; i++) {
                inWord |= (WORD)input[i] << shift;
                shift = NEXT_BYTE_SHIFT(shift);
            }
            pInWord++;
        } else {
            /* Input is word-aligned.  The first word load of input
             * will produce a full word of input bytes, so nothing
             * needs to be loaded here.
             */
            inWord = 0;
        }
    }
    /*****************************************************************/
    /* Step 2: main loop                                             */
    /* At this point the output buffer is word-aligned.  Any unused  */
    /* bytes from above will be in inWord (shifted correctly).  If   */
    /* the input buffer is unaligned relative to the output buffer,  */
    /* shifting has to be done.                                      */
    /*****************************************************************/
    if (bufShift) {
        /* preloadedByteCount is the number of input bytes pre-loaded
         * in inWord.
         */
        unsigned int preloadedByteCount = bufShift / 8;
        for (; inputLen >= preloadedByteCount + WORDSIZE;
             inputLen -= WORDSIZE) {
            nextInWord = *pInWord++;
            inWord |= nextInWord RSH bufShift;
            nextInWord = nextInWord LSH invBufShift;
            ARCFOUR_NEXT_WORD();
            *pOutWord++ = inWord ^ streamWord;
            inWord = nextInWord;
        }
        if (inputLen == 0) {
            /* Nothing left to do. */
            cx->i = tmpi;
            cx->j = tmpj;
            return SECSuccess;
        }
        finalIn = (const unsigned char *)pInWord - preloadedByteCount;
    } else {
        for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
            inWord = *pInWord++;
            ARCFOUR_NEXT_WORD();
            *pOutWord++ = inWord ^ streamWord;
        }
        if (inputLen == 0) {
            /* Nothing left to do. */
            cx->i = tmpi;
            cx->j = tmpj;
            return SECSuccess;
        }
        finalIn = (const unsigned char *)pInWord;
    }
    /*****************************************************************/
    /* Step 3:                                                       */
    /* Do the remaining partial word of input one byte at a time.    */
    /*****************************************************************/
    finalOut = (unsigned char *)pOutWord;
    for (i = 0; i < inputLen; i++) {
        ARCFOUR_NEXT_BYTE();
        finalOut[i] = cx->S[t] ^ finalIn[i];
    }
    cx->i = tmpi;
    cx->j = tmpj;
    return SECSuccess;
}
#endif
#endif /* NSS_BEVAND_ARCFOUR */

SECStatus
RC4_Encrypt(RC4Context *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
#if defined(NSS_BEVAND_ARCFOUR)
    ARCFOUR(cx, inputLen, input, output);
    *outputLen = inputLen;
    return SECSuccess;
#elif defined(CONVERT_TO_WORDS)
    /* Convert the byte-stream to a word-stream */
    return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
#else
    /* Operate on bytes, but unroll the main loop */
    return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
#endif
}

SECStatus
RC4_Decrypt(RC4Context *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
/* decrypt and encrypt are same operation. */
#if defined(NSS_BEVAND_ARCFOUR)
    ARCFOUR(cx, inputLen, input, output);
    *outputLen = inputLen;
    return SECSuccess;
#elif defined(CONVERT_TO_WORDS)
    /* Convert the byte-stream to a word-stream */
    return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
#else
    /* Operate on bytes, but unroll the main loop */
    return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
#endif
}

#undef CONVERT_TO_WORDS
#undef USE_WORD