summaryrefslogtreecommitdiff
path: root/media/libjxl/src/lib/jxl/test_utils.h
blob: b1cc84e87b77ab1d379ae30518038738f361c593 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#ifndef LIB_JXL_TEST_UTILS_H_
#define LIB_JXL_TEST_UTILS_H_

// Macros and functions useful for tests.

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "jxl/codestream_header.h"
#include "jxl/encode.h"
#include "lib/jxl/aux_out_fwd.h"
#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/random.h"
#include "lib/jxl/codec_in_out.h"
#include "lib/jxl/color_encoding_internal.h"
#include "lib/jxl/common.h"  // JPEGXL_ENABLE_TRANSCODE_JPEG
#include "lib/jxl/dec_file.h"
#include "lib/jxl/dec_params.h"
#include "lib/jxl/enc_color_management.h"
#include "lib/jxl/enc_external_image.h"
#include "lib/jxl/enc_file.h"
#include "lib/jxl/enc_params.h"

#ifdef JXL_DISABLE_SLOW_TESTS
#define JXL_SLOW_TEST(X) DISABLED_##X
#else
#define JXL_SLOW_TEST(X) X
#endif  // JXL_DISABLE_SLOW_TESTS

#if JPEGXL_ENABLE_TRANSCODE_JPEG
#define JXL_TRANSCODE_JPEG_TEST(X) X
#else
#define JXL_TRANSCODE_JPEG_TEST(X) DISABLED_##X
#endif  // JPEGXL_ENABLE_TRANSCODE_JPEG

#ifdef THREAD_SANITIZER
#define JXL_TSAN_SLOW_TEST(X) DISABLED_##X
#else
#define JXL_TSAN_SLOW_TEST(X) X
#endif  // THREAD_SANITIZER

// googletest before 1.10 didn't define INSTANTIATE_TEST_SUITE_P() but instead
// used INSTANTIATE_TEST_CASE_P which is now deprecated.
#ifdef INSTANTIATE_TEST_SUITE_P
#define JXL_GTEST_INSTANTIATE_TEST_SUITE_P INSTANTIATE_TEST_SUITE_P
#else
#define JXL_GTEST_INSTANTIATE_TEST_SUITE_P INSTANTIATE_TEST_CASE_P
#endif

// Ensures that we don't make our test bounds too lax, effectively disabling the
// tests.
MATCHER_P(IsSlightlyBelow, max, "") { return max * 0.75 <= arg && arg <= max; }

namespace jxl {
namespace test {

void JxlBasicInfoSetFromPixelFormat(JxlBasicInfo* basic_info,
                                    const JxlPixelFormat* pixel_format) {
  JxlEncoderInitBasicInfo(basic_info);
  switch (pixel_format->data_type) {
    case JXL_TYPE_FLOAT:
      basic_info->bits_per_sample = 32;
      basic_info->exponent_bits_per_sample = 8;
      break;
    case JXL_TYPE_FLOAT16:
      basic_info->bits_per_sample = 16;
      basic_info->exponent_bits_per_sample = 5;
      break;
    case JXL_TYPE_UINT8:
      basic_info->bits_per_sample = 8;
      basic_info->exponent_bits_per_sample = 0;
      break;
    case JXL_TYPE_UINT16:
      basic_info->bits_per_sample = 16;
      basic_info->exponent_bits_per_sample = 0;
      break;
    default:
      JXL_ABORT("Unhandled JxlDataType");
  }
  if (pixel_format->num_channels == 2 || pixel_format->num_channels == 4) {
    basic_info->alpha_exponent_bits = basic_info->exponent_bits_per_sample;
    basic_info->alpha_bits = basic_info->bits_per_sample;
    basic_info->num_extra_channels = 1;
  } else {
    basic_info->alpha_exponent_bits = 0;
    basic_info->alpha_bits = 0;
  }
}

MATCHER_P(MatchesPrimariesAndTransferFunction, color_encoding, "") {
  return arg.primaries == color_encoding.primaries &&
         arg.tf.IsSame(color_encoding.tf);
}

MATCHER(MatchesPrimariesAndTransferFunction, "") {
  return testing::ExplainMatchResult(
      MatchesPrimariesAndTransferFunction(std::get<1>(arg)), std::get<0>(arg),
      result_listener);
}

// Returns compressed size [bytes].
size_t Roundtrip(const CodecInOut* io, const CompressParams& cparams,
                 const DecompressParams& dparams, ThreadPool* pool,
                 CodecInOut* JXL_RESTRICT io2, AuxOut* aux_out = nullptr) {
  PaddedBytes compressed;

  std::vector<ColorEncoding> original_metadata_encodings;
  std::vector<ColorEncoding> original_current_encodings;
  for (const ImageBundle& ib : io->frames) {
    // Remember original encoding, will be returned by decoder.
    original_metadata_encodings.push_back(ib.metadata()->color_encoding);
    // c_current should not change during encoding.
    original_current_encodings.push_back(ib.c_current());
  }

  std::unique_ptr<PassesEncoderState> enc_state =
      jxl::make_unique<PassesEncoderState>();
  EXPECT_TRUE(EncodeFile(cparams, io, enc_state.get(), &compressed, GetJxlCms(),
                         aux_out, pool));

  std::vector<ColorEncoding> metadata_encodings_1;
  for (const ImageBundle& ib1 : io->frames) {
    metadata_encodings_1.push_back(ib1.metadata()->color_encoding);
  }

  // Should still be in the same color space after encoding.
  EXPECT_THAT(metadata_encodings_1,
              testing::Pointwise(MatchesPrimariesAndTransferFunction(),
                                 original_metadata_encodings));

  EXPECT_TRUE(DecodeFile(dparams, compressed, io2, pool));

  std::vector<ColorEncoding> metadata_encodings_2;
  std::vector<ColorEncoding> current_encodings_2;
  for (const ImageBundle& ib2 : io2->frames) {
    metadata_encodings_2.push_back(ib2.metadata()->color_encoding);
    current_encodings_2.push_back(ib2.c_current());
  }

  EXPECT_THAT(io2->frames, testing::SizeIs(io->frames.size()));
  // We always produce the original color encoding if a color transform hook is
  // set.
  EXPECT_THAT(current_encodings_2,
              testing::Pointwise(MatchesPrimariesAndTransferFunction(),
                                 original_current_encodings));

  // Decoder returns the originals passed to the encoder.
  EXPECT_THAT(metadata_encodings_2,
              testing::Pointwise(MatchesPrimariesAndTransferFunction(),
                                 original_metadata_encodings));

  return compressed.size();
}

void CoalesceGIFAnimationWithAlpha(CodecInOut* io) {
  ImageBundle canvas = io->frames[0].Copy();
  for (size_t i = 1; i < io->frames.size(); i++) {
    const ImageBundle& frame = io->frames[i];
    ImageBundle rendered = canvas.Copy();
    for (size_t y = 0; y < frame.ysize(); y++) {
      float* row0 =
          rendered.color()->PlaneRow(0, frame.origin.y0 + y) + frame.origin.x0;
      float* row1 =
          rendered.color()->PlaneRow(1, frame.origin.y0 + y) + frame.origin.x0;
      float* row2 =
          rendered.color()->PlaneRow(2, frame.origin.y0 + y) + frame.origin.x0;
      float* rowa =
          rendered.alpha()->Row(frame.origin.y0 + y) + frame.origin.x0;
      const float* row0f = frame.color().PlaneRow(0, y);
      const float* row1f = frame.color().PlaneRow(1, y);
      const float* row2f = frame.color().PlaneRow(2, y);
      const float* rowaf = frame.alpha().Row(y);
      for (size_t x = 0; x < frame.xsize(); x++) {
        if (rowaf[x] != 0) {
          row0[x] = row0f[x];
          row1[x] = row1f[x];
          row2[x] = row2f[x];
          rowa[x] = rowaf[x];
        }
      }
    }
    if (frame.use_for_next_frame) {
      canvas = rendered.Copy();
    }
    io->frames[i] = std::move(rendered);
  }
}

// A POD descriptor of a ColorEncoding. Only used in tests as the return value
// of AllEncodings().
struct ColorEncodingDescriptor {
  ColorSpace color_space;
  WhitePoint white_point;
  Primaries primaries;
  TransferFunction tf;
  RenderingIntent rendering_intent;
};

static inline ColorEncoding ColorEncodingFromDescriptor(
    const ColorEncodingDescriptor& desc) {
  ColorEncoding c;
  c.SetColorSpace(desc.color_space);
  c.white_point = desc.white_point;
  c.primaries = desc.primaries;
  c.tf.SetTransferFunction(desc.tf);
  c.rendering_intent = desc.rendering_intent;
  return c;
}

// Define the operator<< for tests.
static inline ::std::ostream& operator<<(::std::ostream& os,
                                         const ColorEncodingDescriptor& c) {
  return os << "ColorEncoding/" << Description(ColorEncodingFromDescriptor(c));
}

// Returns ColorEncodingDescriptors, which are only used in tests. To obtain a
// ColorEncoding object call ColorEncodingFromDescriptor and then call
// ColorEncoding::CreateProfile() on that object to generate a profile.
std::vector<ColorEncodingDescriptor> AllEncodings() {
  std::vector<ColorEncodingDescriptor> all_encodings;
  all_encodings.reserve(300);
  ColorEncoding c;

  for (ColorSpace cs : Values<ColorSpace>()) {
    if (cs == ColorSpace::kUnknown || cs == ColorSpace::kXYB) continue;
    c.SetColorSpace(cs);

    for (WhitePoint wp : Values<WhitePoint>()) {
      if (wp == WhitePoint::kCustom) continue;
      if (c.ImplicitWhitePoint() && c.white_point != wp) continue;
      c.white_point = wp;

      for (Primaries primaries : Values<Primaries>()) {
        if (primaries == Primaries::kCustom) continue;
        if (!c.HasPrimaries()) continue;
        c.primaries = primaries;

        for (TransferFunction tf : Values<TransferFunction>()) {
          if (tf == TransferFunction::kUnknown) continue;
          if (c.tf.SetImplicit() &&
              (c.tf.IsGamma() || c.tf.GetTransferFunction() != tf)) {
            continue;
          }
          c.tf.SetTransferFunction(tf);

          for (RenderingIntent ri : Values<RenderingIntent>()) {
            ColorEncodingDescriptor cdesc;
            cdesc.color_space = cs;
            cdesc.white_point = wp;
            cdesc.primaries = primaries;
            cdesc.tf = tf;
            cdesc.rendering_intent = ri;
            all_encodings.push_back(cdesc);
          }
        }
      }
    }
  }

  return all_encodings;
}

// Returns a test image with some autogenerated pixel content, using 16 bits per
// channel, big endian order, 1 to 4 channels
// The seed parameter allows to create images with different pixel content.
std::vector<uint8_t> GetSomeTestImage(size_t xsize, size_t ysize,
                                      size_t num_channels, uint16_t seed) {
  // Cause more significant image difference for successive seeds.
  Rng generator(seed);

  // Returns random integer in interval [0, max_value)
  auto rng = [&generator](size_t max_value) -> size_t {
    return generator.UniformU(0, max_value);
  };

  // Dark background gradient color
  uint16_t r0 = rng(32768);
  uint16_t g0 = rng(32768);
  uint16_t b0 = rng(32768);
  uint16_t a0 = rng(32768);
  uint16_t r1 = rng(32768);
  uint16_t g1 = rng(32768);
  uint16_t b1 = rng(32768);
  uint16_t a1 = rng(32768);

  // Circle with different color
  size_t circle_x = rng(xsize);
  size_t circle_y = rng(ysize);
  size_t circle_r = rng(std::min(xsize, ysize));

  // Rectangle with random noise
  size_t rect_x0 = rng(xsize);
  size_t rect_y0 = rng(ysize);
  size_t rect_x1 = rng(xsize);
  size_t rect_y1 = rng(ysize);
  if (rect_x1 < rect_x0) std::swap(rect_x0, rect_y1);
  if (rect_y1 < rect_y0) std::swap(rect_y0, rect_y1);

  size_t num_pixels = xsize * ysize;
  // 16 bits per channel, big endian, 4 channels
  std::vector<uint8_t> pixels(num_pixels * num_channels * 2);
  // Create pixel content to test, actual content does not matter as long as it
  // can be compared after roundtrip.
  for (size_t y = 0; y < ysize; y++) {
    for (size_t x = 0; x < xsize; x++) {
      uint16_t r = r0 * (ysize - y - 1) / ysize + r1 * y / ysize;
      uint16_t g = g0 * (ysize - y - 1) / ysize + g1 * y / ysize;
      uint16_t b = b0 * (ysize - y - 1) / ysize + b1 * y / ysize;
      uint16_t a = a0 * (ysize - y - 1) / ysize + a1 * y / ysize;
      // put some shape in there for visual debugging
      if ((x - circle_x) * (x - circle_x) + (y - circle_y) * (y - circle_y) <
          circle_r * circle_r) {
        r = (65535 - x * y) ^ seed;
        g = (x << 8) + y + seed;
        b = (y << 8) + x * seed;
        a = 32768 + x * 256 - y;
      } else if (x > rect_x0 && x < rect_x1 && y > rect_y0 && y < rect_y1) {
        r = rng(65536);
        g = rng(65536);
        b = rng(65536);
        a = rng(65536);
      }
      size_t i = (y * xsize + x) * 2 * num_channels;
      pixels[i + 0] = (r >> 8);
      pixels[i + 1] = (r & 255);
      if (num_channels >= 2) {
        // This may store what is called 'g' in the alpha channel of a 2-channel
        // image, but that's ok since the content is arbitrary
        pixels[i + 2] = (g >> 8);
        pixels[i + 3] = (g & 255);
      }
      if (num_channels >= 3) {
        pixels[i + 4] = (b >> 8);
        pixels[i + 5] = (b & 255);
      }
      if (num_channels >= 4) {
        pixels[i + 6] = (a >> 8);
        pixels[i + 7] = (a & 255);
      }
    }
  }
  return pixels;
}

// Returns a CodecInOut based on the buf, xsize, ysize, and the assumption
// that the buffer was created using `GetSomeTestImage`.
jxl::CodecInOut SomeTestImageToCodecInOut(const std::vector<uint8_t>& buf,
                                          size_t num_channels, size_t xsize,
                                          size_t ysize) {
  jxl::CodecInOut io;
  io.SetSize(xsize, ysize);
  io.metadata.m.SetAlphaBits(16);
  io.metadata.m.color_encoding = jxl::ColorEncoding::SRGB(
      /*is_gray=*/num_channels == 1 || num_channels == 2);
  EXPECT_TRUE(ConvertFromExternal(
      jxl::Span<const uint8_t>(buf.data(), buf.size()), xsize, ysize,
      jxl::ColorEncoding::SRGB(/*is_gray=*/num_channels < 3), num_channels,
      /*alpha_is_premultiplied=*/false, /*bits_per_sample=*/16, JXL_BIG_ENDIAN,
      /*flipped_y=*/false, /*pool=*/nullptr,
      /*ib=*/&io.Main(), /*float_in=*/false, 0));
  return io;
}

bool Near(double expected, double value, double max_dist) {
  double dist = expected > value ? expected - value : value - expected;
  return dist <= max_dist;
}

// Loads a Big-Endian float
float LoadBEFloat(const uint8_t* p) {
  uint32_t u = LoadBE32(p);
  float result;
  memcpy(&result, &u, 4);
  return result;
}

// Loads a Little-Endian float
float LoadLEFloat(const uint8_t* p) {
  uint32_t u = LoadLE32(p);
  float result;
  memcpy(&result, &u, 4);
  return result;
}

// Based on highway scalar implementation, for testing
float LoadFloat16(uint16_t bits16) {
  const uint32_t sign = bits16 >> 15;
  const uint32_t biased_exp = (bits16 >> 10) & 0x1F;
  const uint32_t mantissa = bits16 & 0x3FF;

  // Subnormal or zero
  if (biased_exp == 0) {
    const float subnormal = (1.0f / 16384) * (mantissa * (1.0f / 1024));
    return sign ? -subnormal : subnormal;
  }

  // Normalized: convert the representation directly (faster than ldexp/tables).
  const uint32_t biased_exp32 = biased_exp + (127 - 15);
  const uint32_t mantissa32 = mantissa << (23 - 10);
  const uint32_t bits32 = (sign << 31) | (biased_exp32 << 23) | mantissa32;

  float result;
  memcpy(&result, &bits32, 4);
  return result;
}

float LoadLEFloat16(const uint8_t* p) {
  uint16_t bits16 = LoadLE16(p);
  return LoadFloat16(bits16);
}

float LoadBEFloat16(const uint8_t* p) {
  uint16_t bits16 = LoadBE16(p);
  return LoadFloat16(bits16);
}

size_t GetPrecision(JxlDataType data_type) {
  switch (data_type) {
    case JXL_TYPE_UINT8:
      return 8;
    case JXL_TYPE_UINT16:
      return 16;
    case JXL_TYPE_FLOAT:
      // Floating point mantissa precision
      return 24;
    case JXL_TYPE_FLOAT16:
      return 11;
    default:
      JXL_ABORT("Unhandled JxlDataType");
  }
}

size_t GetDataBits(JxlDataType data_type) {
  switch (data_type) {
    case JXL_TYPE_UINT8:
      return 8;
    case JXL_TYPE_UINT16:
      return 16;
    case JXL_TYPE_FLOAT:
      return 32;
    case JXL_TYPE_FLOAT16:
      return 16;
    default:
      JXL_ABORT("Unhandled JxlDataType");
  }
}

// Procedure to convert pixels to double precision, not efficient, but
// well-controlled for testing. It uses double, to be able to represent all
// precisions needed for the maximum data types the API supports: uint32_t
// integers, and, single precision float. The values are in range 0-1 for SDR.
std::vector<double> ConvertToRGBA32(const uint8_t* pixels, size_t xsize,
                                    size_t ysize,
                                    const JxlPixelFormat& format) {
  std::vector<double> result(xsize * ysize * 4);
  size_t num_channels = format.num_channels;
  bool gray = num_channels == 1 || num_channels == 2;
  bool alpha = num_channels == 2 || num_channels == 4;

  size_t stride =
      xsize * jxl::DivCeil(GetDataBits(format.data_type) * num_channels,
                           jxl::kBitsPerByte);
  if (format.align > 1) stride = jxl::RoundUpTo(stride, format.align);

  if (format.data_type == JXL_TYPE_UINT8) {
    double mul = 1.0 / 255.0;  // Multiplier to bring to 0-1.0 range
    for (size_t y = 0; y < ysize; ++y) {
      for (size_t x = 0; x < xsize; ++x) {
        size_t j = (y * xsize + x) * 4;
        size_t i = y * stride + x * num_channels;
        double r = pixels[i];
        double g = gray ? r : pixels[i + 1];
        double b = gray ? r : pixels[i + 2];
        double a = alpha ? pixels[i + num_channels - 1] : 255;
        result[j + 0] = r * mul;
        result[j + 1] = g * mul;
        result[j + 2] = b * mul;
        result[j + 3] = a * mul;
      }
    }
  } else if (format.data_type == JXL_TYPE_UINT16) {
    double mul = 1.0 / 65535.0;  // Multiplier to bring to 0-1.0 range
    for (size_t y = 0; y < ysize; ++y) {
      for (size_t x = 0; x < xsize; ++x) {
        size_t j = (y * xsize + x) * 4;
        size_t i = y * stride + x * num_channels * 2;
        double r, g, b, a;
        if (format.endianness == JXL_BIG_ENDIAN) {
          r = (pixels[i + 0] << 8) + pixels[i + 1];
          g = gray ? r : (pixels[i + 2] << 8) + pixels[i + 3];
          b = gray ? r : (pixels[i + 4] << 8) + pixels[i + 5];
          a = alpha ? (pixels[i + num_channels * 2 - 2] << 8) +
                          pixels[i + num_channels * 2 - 1]
                    : 65535;
        } else {
          r = (pixels[i + 1] << 8) + pixels[i + 0];
          g = gray ? r : (pixels[i + 3] << 8) + pixels[i + 2];
          b = gray ? r : (pixels[i + 5] << 8) + pixels[i + 4];
          a = alpha ? (pixels[i + num_channels * 2 - 1] << 8) +
                          pixels[i + num_channels * 2 - 2]
                    : 65535;
        }
        result[j + 0] = r * mul;
        result[j + 1] = g * mul;
        result[j + 2] = b * mul;
        result[j + 3] = a * mul;
      }
    }
  } else if (format.data_type == JXL_TYPE_FLOAT) {
    for (size_t y = 0; y < ysize; ++y) {
      for (size_t x = 0; x < xsize; ++x) {
        size_t j = (y * xsize + x) * 4;
        size_t i = y * stride + x * num_channels * 4;
        double r, g, b, a;
        if (format.endianness == JXL_BIG_ENDIAN) {
          r = LoadBEFloat(pixels + i);
          g = gray ? r : LoadBEFloat(pixels + i + 4);
          b = gray ? r : LoadBEFloat(pixels + i + 8);
          a = alpha ? LoadBEFloat(pixels + i + num_channels * 4 - 4) : 1.0;
        } else {
          r = LoadLEFloat(pixels + i);
          g = gray ? r : LoadLEFloat(pixels + i + 4);
          b = gray ? r : LoadLEFloat(pixels + i + 8);
          a = alpha ? LoadLEFloat(pixels + i + num_channels * 4 - 4) : 1.0;
        }
        result[j + 0] = r;
        result[j + 1] = g;
        result[j + 2] = b;
        result[j + 3] = a;
      }
    }
  } else if (format.data_type == JXL_TYPE_FLOAT16) {
    for (size_t y = 0; y < ysize; ++y) {
      for (size_t x = 0; x < xsize; ++x) {
        size_t j = (y * xsize + x) * 4;
        size_t i = y * stride + x * num_channels * 2;
        double r, g, b, a;
        if (format.endianness == JXL_BIG_ENDIAN) {
          r = LoadBEFloat16(pixels + i);
          g = gray ? r : LoadBEFloat16(pixels + i + 2);
          b = gray ? r : LoadBEFloat16(pixels + i + 4);
          a = alpha ? LoadBEFloat16(pixels + i + num_channels * 2 - 2) : 1.0;
        } else {
          r = LoadLEFloat16(pixels + i);
          g = gray ? r : LoadLEFloat16(pixels + i + 2);
          b = gray ? r : LoadLEFloat16(pixels + i + 4);
          a = alpha ? LoadLEFloat16(pixels + i + num_channels * 2 - 2) : 1.0;
        }
        result[j + 0] = r;
        result[j + 1] = g;
        result[j + 2] = b;
        result[j + 3] = a;
      }
    }
  } else {
    JXL_ASSERT(false);  // Unsupported type
  }
  return result;
}
// Returns amount of pixels which differ between the two pictures. Image b is
// the image after roundtrip after roundtrip, image a before roundtrip. There
// are more strict requirements for the alpha channel and grayscale values of
// the output image.
size_t ComparePixels(const uint8_t* a, const uint8_t* b, size_t xsize,
                     size_t ysize, const JxlPixelFormat& format_a,
                     const JxlPixelFormat& format_b,
                     double threshold_multiplier = 1.0) {
  // Convert both images to equal full precision for comparison.
  std::vector<double> a_full = ConvertToRGBA32(a, xsize, ysize, format_a);
  std::vector<double> b_full = ConvertToRGBA32(b, xsize, ysize, format_b);
  bool gray_a = format_a.num_channels < 3;
  bool gray_b = format_b.num_channels < 3;
  bool alpha_a = !(format_a.num_channels & 1);
  bool alpha_b = !(format_b.num_channels & 1);
  size_t bits_a = GetPrecision(format_a.data_type);
  size_t bits_b = GetPrecision(format_b.data_type);
  size_t bits = std::min(bits_a, bits_b);
  // How much distance is allowed in case of pixels with lower bit depths, given
  // that the double precision float images use range 0-1.0.
  // E.g. in case of 1-bit this is 0.5 since 0.499 must map to 0 and 0.501 must
  // map to 1.
  double precision = 0.5 * threshold_multiplier / ((1ull << bits) - 1ull);
  if (format_a.data_type == JXL_TYPE_FLOAT16 ||
      format_b.data_type == JXL_TYPE_FLOAT16) {
    // Lower the precision for float16, because it currently looks like the
    // scalar and wasm implementations of hwy have 1 less bit of precision
    // than the x86 implementations.
    // TODO(lode): Set the required precision back to 11 bits when possible.
    precision = 0.5 * threshold_multiplier / ((1ull << (bits - 1)) - 1ull);
  }
  size_t numdiff = 0;
  for (size_t y = 0; y < ysize; y++) {
    for (size_t x = 0; x < xsize; x++) {
      size_t i = (y * xsize + x) * 4;
      bool ok = true;
      if (gray_a || gray_b) {
        if (!Near(a_full[i + 0], b_full[i + 0], precision)) ok = false;
        // If the input was grayscale and the output not, then the output must
        // have all channels equal.
        if (gray_a && b_full[i + 0] != b_full[i + 1] &&
            b_full[i + 2] != b_full[i + 2]) {
          ok = false;
        }
      } else {
        if (!Near(a_full[i + 0], b_full[i + 0], precision) ||
            !Near(a_full[i + 1], b_full[i + 1], precision) ||
            !Near(a_full[i + 2], b_full[i + 2], precision)) {
          ok = false;
        }
      }
      if (alpha_a && alpha_b) {
        if (!Near(a_full[i + 3], b_full[i + 3], precision)) ok = false;
      } else {
        // If the input had no alpha channel, the output should be opaque
        // after roundtrip.
        if (alpha_b && !Near(1.0, b_full[i + 3], precision)) ok = false;
      }
      if (!ok) numdiff++;
    }
  }
  return numdiff;
}
}  // namespace test

bool operator==(const jxl::PaddedBytes& a, const jxl::PaddedBytes& b) {
  if (a.size() != b.size()) return false;
  if (memcmp(a.data(), b.data(), a.size()) != 0) return false;
  return true;
}

// Allow using EXPECT_EQ on jxl::PaddedBytes
bool operator!=(const jxl::PaddedBytes& a, const jxl::PaddedBytes& b) {
  return !(a == b);
}
}  // namespace jxl

#endif  // LIB_JXL_TEST_UTILS_H_