1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* A class used for intermediate representations of the -moz-transform property.
*/
#include "nsStyleTransformMatrix.h"
#include "nsCSSValue.h"
#include "nsLayoutUtils.h"
#include "nsPresContext.h"
#include "nsRuleNode.h"
#include "nsSVGUtils.h"
#include "nsCSSKeywords.h"
#include "mozilla/StyleAnimationValue.h"
#include "gfxMatrix.h"
#include "gfxQuaternion.h"
using namespace mozilla;
using namespace mozilla::gfx;
namespace nsStyleTransformMatrix {
/* Note on floating point precision: The transform matrix is an array
* of single precision 'float's, and so are most of the input values
* we get from the style system, but intermediate calculations
* involving angles need to be done in 'double'.
*/
// Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp
// to have the transform property try
// to transform content with continuations as one unified block instead of
// several smaller ones. This is currently disabled because it doesn't work
// correctly, since when the frames are initially being reflowed, their
// continuations all compute their bounding rects independently of each other
// and consequently get the wrong value.
//#define UNIFIED_CONTINUATIONS
void
TransformReferenceBox::EnsureDimensionsAreCached()
{
if (mIsCached) {
return;
}
MOZ_ASSERT(mFrame);
mIsCached = true;
if (mFrame->GetStateBits() & NS_FRAME_SVG_LAYOUT) {
if (!nsLayoutUtils::SVGTransformBoxEnabled()) {
mX = -mFrame->GetPosition().x;
mY = -mFrame->GetPosition().y;
Size contextSize = nsSVGUtils::GetContextSize(mFrame);
mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
} else
if (mFrame->StyleDisplay()->mTransformBox ==
NS_STYLE_TRANSFORM_BOX_FILL_BOX) {
// Percentages in transforms resolve against the SVG bbox, and the
// transform is relative to the top-left of the SVG bbox.
gfxRect bbox = nsSVGUtils::GetBBox(const_cast<nsIFrame*>(mFrame));
nsRect bboxInAppUnits =
nsLayoutUtils::RoundGfxRectToAppRect(bbox,
mFrame->PresContext()->AppUnitsPerCSSPixel());
// The mRect of an SVG nsIFrame is its user space bounds *including*
// stroke and markers, whereas bboxInAppUnits is its user space bounds
// including fill only. We need to note the offset of the reference box
// from the frame's mRect in mX/mY.
mX = bboxInAppUnits.x - mFrame->GetPosition().x;
mY = bboxInAppUnits.y - mFrame->GetPosition().y;
mWidth = bboxInAppUnits.width;
mHeight = bboxInAppUnits.height;
} else {
// The value 'border-box' is treated as 'view-box' for SVG content.
MOZ_ASSERT(mFrame->StyleDisplay()->mTransformBox ==
NS_STYLE_TRANSFORM_BOX_VIEW_BOX ||
mFrame->StyleDisplay()->mTransformBox ==
NS_STYLE_TRANSFORM_BOX_BORDER_BOX,
"Unexpected value for 'transform-box'");
// Percentages in transforms resolve against the width/height of the
// nearest viewport (or its viewBox if one is applied), and the
// transform is relative to {0,0} in current user space.
mX = -mFrame->GetPosition().x;
mY = -mFrame->GetPosition().y;
Size contextSize = nsSVGUtils::GetContextSize(mFrame);
mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
}
return;
}
// If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's
// bounding rectangle, translated to the origin. Otherwise, it is the
// smallest rectangle containing a frame and all of its continuations. For
// example, if there is a <span> element with several continuations split
// over several lines, this function will return the rectangle containing all
// of those continuations.
nsRect rect;
#ifndef UNIFIED_CONTINUATIONS
rect = mFrame->GetRect();
#else
// Iterate the continuation list, unioning together the bounding rects:
for (const nsIFrame *currFrame = mFrame->FirstContinuation();
currFrame != nullptr;
currFrame = currFrame->GetNextContinuation())
{
// Get the frame rect in local coordinates, then translate back to the
// original coordinates:
rect.UnionRect(result, nsRect(currFrame->GetOffsetTo(mFrame),
currFrame->GetSize()));
}
#endif
mX = 0;
mY = 0;
mWidth = rect.Width();
mHeight = rect.Height();
}
void
TransformReferenceBox::Init(const nsSize& aDimensions)
{
MOZ_ASSERT(!mFrame && !mIsCached);
mX = 0;
mY = 0;
mWidth = aDimensions.width;
mHeight = aDimensions.height;
mIsCached = true;
}
float
ProcessTranslatePart(const nsCSSValue& aValue,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox* aRefBox,
TransformReferenceBox::DimensionGetter aDimensionGetter)
{
nscoord offset = 0;
float percent = 0.0f;
if (aValue.GetUnit() == eCSSUnit_Percent) {
percent = aValue.GetPercentValue();
} else if (aValue.GetUnit() == eCSSUnit_Pixel ||
aValue.GetUnit() == eCSSUnit_Number) {
// Handle this here (even though nsRuleNode::CalcLength handles it
// fine) so that callers are allowed to pass a null style context
// and pres context to SetToTransformFunction if they know (as
// StyleAnimationValue does) that all lengths within the transform
// function have already been computed to pixels and percents.
//
// Raw numbers are treated as being pixels.
//
// Don't convert to aValue to AppUnits here to avoid precision issues.
return aValue.GetFloatValue();
} else if (aValue.IsCalcUnit()) {
nsRuleNode::ComputedCalc result =
nsRuleNode::SpecifiedCalcToComputedCalc(aValue, aContext, aPresContext,
aConditions);
percent = result.mPercent;
offset = result.mLength;
} else {
offset = nsRuleNode::CalcLength(aValue, aContext, aPresContext,
aConditions);
}
float translation = NSAppUnitsToFloatPixels(offset,
nsPresContext::AppUnitsPerCSSPixel());
// We want to avoid calling aDimensionGetter if there's no percentage to be
// resolved (for performance reasons - see TransformReferenceBox).
if (percent != 0.0f && aRefBox && !aRefBox->IsEmpty()) {
translation += percent *
NSAppUnitsToFloatPixels((aRefBox->*aDimensionGetter)(),
nsPresContext::AppUnitsPerCSSPixel());
}
return translation;
}
/**
* Helper functions to process all the transformation function types.
*
* These take a matrix parameter to accumulate the current matrix.
*/
/* Helper function to process a matrix entry. */
static void
ProcessMatrix(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox)
{
NS_PRECONDITION(aData->Count() == 7, "Invalid array!");
gfxMatrix result;
/* Take the first four elements out of the array as floats and store
* them.
*/
result._11 = aData->Item(1).GetFloatValue();
result._12 = aData->Item(2).GetFloatValue();
result._21 = aData->Item(3).GetFloatValue();
result._22 = aData->Item(4).GetFloatValue();
/* The last two elements have their length parts stored in aDelta
* and their percent parts stored in aX[0] and aY[1].
*/
result._31 = ProcessTranslatePart(aData->Item(5),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Width);
result._32 = ProcessTranslatePart(aData->Item(6),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Height);
aMatrix = result * aMatrix;
}
static void
ProcessMatrix3D(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox)
{
NS_PRECONDITION(aData->Count() == 17, "Invalid array!");
Matrix4x4 temp;
temp._11 = aData->Item(1).GetFloatValue();
temp._12 = aData->Item(2).GetFloatValue();
temp._13 = aData->Item(3).GetFloatValue();
temp._14 = aData->Item(4).GetFloatValue();
temp._21 = aData->Item(5).GetFloatValue();
temp._22 = aData->Item(6).GetFloatValue();
temp._23 = aData->Item(7).GetFloatValue();
temp._24 = aData->Item(8).GetFloatValue();
temp._31 = aData->Item(9).GetFloatValue();
temp._32 = aData->Item(10).GetFloatValue();
temp._33 = aData->Item(11).GetFloatValue();
temp._34 = aData->Item(12).GetFloatValue();
temp._44 = aData->Item(16).GetFloatValue();
temp._41 = ProcessTranslatePart(aData->Item(13),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Width);
temp._42 = ProcessTranslatePart(aData->Item(14),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Height);
temp._43 = ProcessTranslatePart(aData->Item(15),
aContext, aPresContext, aConditions,
nullptr);
aMatrix = temp * aMatrix;
}
/* Helper function to process two matrices that we need to interpolate between */
void
ProcessInterpolateMatrix(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox,
bool* aContains3dTransform)
{
NS_PRECONDITION(aData->Count() == 4, "Invalid array!");
Matrix4x4 matrix1, matrix2;
if (aData->Item(1).GetUnit() == eCSSUnit_List) {
matrix1 = nsStyleTransformMatrix::ReadTransforms(aData->Item(1).GetListValue(),
aContext, aPresContext,
aConditions,
aRefBox, nsPresContext::AppUnitsPerCSSPixel(),
aContains3dTransform);
}
if (aData->Item(2).GetUnit() == eCSSUnit_List) {
matrix2 = ReadTransforms(aData->Item(2).GetListValue(),
aContext, aPresContext,
aConditions,
aRefBox, nsPresContext::AppUnitsPerCSSPixel(),
aContains3dTransform);
}
double progress = aData->Item(3).GetPercentValue();
aMatrix =
StyleAnimationValue::InterpolateTransformMatrix(matrix1, matrix2, progress)
* aMatrix;
}
/* Helper function to process a translatex function. */
static void
ProcessTranslateX(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox)
{
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
Point3D temp;
temp.x = ProcessTranslatePart(aData->Item(1),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Width);
aMatrix.PreTranslate(temp);
}
/* Helper function to process a translatey function. */
static void
ProcessTranslateY(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox)
{
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
Point3D temp;
temp.y = ProcessTranslatePart(aData->Item(1),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Height);
aMatrix.PreTranslate(temp);
}
static void
ProcessTranslateZ(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions)
{
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
Point3D temp;
temp.z = ProcessTranslatePart(aData->Item(1), aContext,
aPresContext, aConditions,
nullptr);
aMatrix.PreTranslate(temp);
}
/* Helper function to process a translate function. */
static void
ProcessTranslate(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox)
{
NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Invalid array!");
Point3D temp;
temp.x = ProcessTranslatePart(aData->Item(1),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Width);
/* If we read in a Y component, set it appropriately */
if (aData->Count() == 3) {
temp.y = ProcessTranslatePart(aData->Item(2),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Height);
}
aMatrix.PreTranslate(temp);
}
static void
ProcessTranslate3D(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox)
{
NS_PRECONDITION(aData->Count() == 4, "Invalid array!");
Point3D temp;
temp.x = ProcessTranslatePart(aData->Item(1),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Width);
temp.y = ProcessTranslatePart(aData->Item(2),
aContext, aPresContext, aConditions,
&aRefBox, &TransformReferenceBox::Height);
temp.z = ProcessTranslatePart(aData->Item(3),
aContext, aPresContext, aConditions,
nullptr);
aMatrix.PreTranslate(temp);
}
/* Helper function to set up a scale matrix. */
static void
ProcessScaleHelper(Matrix4x4& aMatrix,
float aXScale,
float aYScale,
float aZScale)
{
aMatrix.PreScale(aXScale, aYScale, aZScale);
}
/* Process a scalex function. */
static void
ProcessScaleX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 2, "Bad array!");
ProcessScaleHelper(aMatrix, aData->Item(1).GetFloatValue(), 1.0f, 1.0f);
}
/* Process a scaley function. */
static void
ProcessScaleY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 2, "Bad array!");
ProcessScaleHelper(aMatrix, 1.0f, aData->Item(1).GetFloatValue(), 1.0f);
}
static void
ProcessScaleZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 2, "Bad array!");
ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aData->Item(1).GetFloatValue());
}
static void
ProcessScale3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 4, "Bad array!");
ProcessScaleHelper(aMatrix,
aData->Item(1).GetFloatValue(),
aData->Item(2).GetFloatValue(),
aData->Item(3).GetFloatValue());
}
/* Process a scale function. */
static void
ProcessScale(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
/* We either have one element or two. If we have one, it's for both X and Y.
* Otherwise it's one for each.
*/
const nsCSSValue& scaleX = aData->Item(1);
const nsCSSValue& scaleY = (aData->Count() == 2 ? scaleX :
aData->Item(2));
ProcessScaleHelper(aMatrix,
scaleX.GetFloatValue(),
scaleY.GetFloatValue(),
1.0f);
}
/* Helper function that, given a set of angles, constructs the appropriate
* skew matrix.
*/
static void
ProcessSkewHelper(Matrix4x4& aMatrix, double aXAngle, double aYAngle)
{
aMatrix.SkewXY(aXAngle, aYAngle);
}
/* Function that converts a skewx transform into a matrix. */
static void
ProcessSkewX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_ASSERTION(aData->Count() == 2, "Bad array!");
ProcessSkewHelper(aMatrix, aData->Item(1).GetAngleValueInRadians(), 0.0);
}
/* Function that converts a skewy transform into a matrix. */
static void
ProcessSkewY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_ASSERTION(aData->Count() == 2, "Bad array!");
ProcessSkewHelper(aMatrix, 0.0, aData->Item(1).GetAngleValueInRadians());
}
/* Function that converts a skew transform into a matrix. */
static void
ProcessSkew(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_ASSERTION(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
double xSkew = aData->Item(1).GetAngleValueInRadians();
double ySkew = (aData->Count() == 2
? 0.0 : aData->Item(2).GetAngleValueInRadians());
ProcessSkewHelper(aMatrix, xSkew, ySkew);
}
/* Function that converts a rotate transform into a matrix. */
static void
ProcessRotateZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
double theta = aData->Item(1).GetAngleValueInRadians();
aMatrix.RotateZ(theta);
}
static void
ProcessRotateX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
double theta = aData->Item(1).GetAngleValueInRadians();
aMatrix.RotateX(theta);
}
static void
ProcessRotateY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
double theta = aData->Item(1).GetAngleValueInRadians();
aMatrix.RotateY(theta);
}
static void
ProcessRotate3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
{
NS_PRECONDITION(aData->Count() == 5, "Invalid array!");
double theta = aData->Item(4).GetAngleValueInRadians();
float x = aData->Item(1).GetFloatValue();
float y = aData->Item(2).GetFloatValue();
float z = aData->Item(3).GetFloatValue();
Matrix4x4 temp;
temp.SetRotateAxisAngle(x, y, z, theta);
aMatrix = temp * aMatrix;
}
static void
ProcessPerspective(Matrix4x4& aMatrix,
const nsCSSValue::Array* aData,
nsStyleContext *aContext,
nsPresContext *aPresContext,
RuleNodeCacheConditions& aConditions)
{
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
float depth = ProcessTranslatePart(aData->Item(1), aContext,
aPresContext, aConditions, nullptr);
ApplyPerspectiveToMatrix(aMatrix, depth);
}
/**
* SetToTransformFunction is essentially a giant switch statement that fans
* out to many smaller helper functions.
*/
static void
MatrixForTransformFunction(Matrix4x4& aMatrix,
const nsCSSValue::Array * aData,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox,
bool* aContains3dTransform)
{
MOZ_ASSERT(aContains3dTransform);
NS_PRECONDITION(aData, "Why did you want to get data from a null array?");
// It's OK if aContext and aPresContext are null if the caller already
// knows that all length units have been converted to pixels (as
// StyleAnimationValue does).
/* Get the keyword for the transform. */
switch (TransformFunctionOf(aData)) {
case eCSSKeyword_translatex:
ProcessTranslateX(aMatrix, aData, aContext, aPresContext,
aConditions, aRefBox);
break;
case eCSSKeyword_translatey:
ProcessTranslateY(aMatrix, aData, aContext, aPresContext,
aConditions, aRefBox);
break;
case eCSSKeyword_translatez:
*aContains3dTransform = true;
ProcessTranslateZ(aMatrix, aData, aContext, aPresContext,
aConditions);
break;
case eCSSKeyword_translate:
ProcessTranslate(aMatrix, aData, aContext, aPresContext,
aConditions, aRefBox);
break;
case eCSSKeyword_translate3d:
*aContains3dTransform = true;
ProcessTranslate3D(aMatrix, aData, aContext, aPresContext,
aConditions, aRefBox);
break;
case eCSSKeyword_scalex:
ProcessScaleX(aMatrix, aData);
break;
case eCSSKeyword_scaley:
ProcessScaleY(aMatrix, aData);
break;
case eCSSKeyword_scalez:
*aContains3dTransform = true;
ProcessScaleZ(aMatrix, aData);
break;
case eCSSKeyword_scale:
ProcessScale(aMatrix, aData);
break;
case eCSSKeyword_scale3d:
*aContains3dTransform = true;
ProcessScale3D(aMatrix, aData);
break;
case eCSSKeyword_skewx:
ProcessSkewX(aMatrix, aData);
break;
case eCSSKeyword_skewy:
ProcessSkewY(aMatrix, aData);
break;
case eCSSKeyword_skew:
ProcessSkew(aMatrix, aData);
break;
case eCSSKeyword_rotatex:
*aContains3dTransform = true;
ProcessRotateX(aMatrix, aData);
break;
case eCSSKeyword_rotatey:
*aContains3dTransform = true;
ProcessRotateY(aMatrix, aData);
break;
case eCSSKeyword_rotatez:
*aContains3dTransform = true;
[[fallthrough]];
case eCSSKeyword_rotate:
ProcessRotateZ(aMatrix, aData);
break;
case eCSSKeyword_rotate3d:
*aContains3dTransform = true;
ProcessRotate3D(aMatrix, aData);
break;
case eCSSKeyword_matrix:
ProcessMatrix(aMatrix, aData, aContext, aPresContext,
aConditions, aRefBox);
break;
case eCSSKeyword_matrix3d:
*aContains3dTransform = true;
ProcessMatrix3D(aMatrix, aData, aContext, aPresContext,
aConditions, aRefBox);
break;
case eCSSKeyword_interpolatematrix:
ProcessInterpolateMatrix(aMatrix, aData, aContext, aPresContext,
aConditions, aRefBox,
aContains3dTransform);
break;
case eCSSKeyword_perspective:
*aContains3dTransform = true;
ProcessPerspective(aMatrix, aData, aContext, aPresContext,
aConditions);
break;
default:
NS_NOTREACHED("Unknown transform function!");
}
}
/**
* Return the transform function, as an nsCSSKeyword, for the given
* nsCSSValue::Array from a transform list.
*/
nsCSSKeyword
TransformFunctionOf(const nsCSSValue::Array* aData)
{
MOZ_ASSERT(aData->Item(0).GetUnit() == eCSSUnit_Enumerated);
return aData->Item(0).GetKeywordValue();
}
void
SetIdentityMatrix(nsCSSValue::Array* aMatrix)
{
MOZ_ASSERT(aMatrix, "aMatrix should be non-null");
nsCSSKeyword tfunc = TransformFunctionOf(aMatrix);
MOZ_ASSERT(tfunc == eCSSKeyword_matrix ||
tfunc == eCSSKeyword_matrix3d,
"Only accept matrix and matrix3d");
if (tfunc == eCSSKeyword_matrix) {
MOZ_ASSERT(aMatrix->Count() == 7, "Invalid matrix");
Matrix m;
for (size_t i = 0; i < 6; ++i) {
aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number);
}
return;
}
MOZ_ASSERT(aMatrix->Count() == 17, "Invalid matrix3d");
Matrix4x4 m;
for (size_t i = 0; i < 16; ++i) {
aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number);
}
}
Matrix4x4
ReadTransforms(const nsCSSValueList* aList,
nsStyleContext* aContext,
nsPresContext* aPresContext,
RuleNodeCacheConditions& aConditions,
TransformReferenceBox& aRefBox,
float aAppUnitsPerMatrixUnit,
bool* aContains3dTransform)
{
Matrix4x4 result;
for (const nsCSSValueList* curr = aList; curr != nullptr; curr = curr->mNext) {
const nsCSSValue &currElem = curr->mValue;
if (currElem.GetUnit() != eCSSUnit_Function) {
NS_ASSERTION(currElem.GetUnit() == eCSSUnit_None &&
!aList->mNext,
"stream should either be a list of functions or a "
"lone None");
continue;
}
NS_ASSERTION(currElem.GetArrayValue()->Count() >= 1,
"Incoming function is too short!");
/* Read in a single transform matrix. */
MatrixForTransformFunction(result, currElem.GetArrayValue(), aContext,
aPresContext, aConditions, aRefBox,
aContains3dTransform);
}
float scale = float(nsPresContext::AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
result.PreScale(1/scale, 1/scale, 1/scale);
result.PostScale(scale, scale, scale);
return result;
}
/*
* The relevant section of the transitions specification:
* http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
* defers all of the details to the 2-D and 3-D transforms specifications.
* For the 2-D transforms specification (all that's relevant for us, right
* now), the relevant section is:
* http://dev.w3.org/csswg/css3-2d-transforms/#animation
* This, in turn, refers to the unmatrix program in Graphics Gems,
* available from http://tog.acm.org/resources/GraphicsGems/ , and in
* particular as the file GraphicsGems/gemsii/unmatrix.c
* in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
*
* The unmatrix reference is for general 3-D transform matrices (any of the
* 16 components can have any value).
*
* For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
*
* [ A C E ]
* [ B D F ]
* [ 0 0 1 ]
*
* For that case, I believe the algorithm in unmatrix reduces to:
*
* (1) If A * D - B * C == 0, the matrix is singular. Fail.
*
* (2) Set translation components (Tx and Ty) to the translation parts of
* the matrix (E and F) and then ignore them for the rest of the time.
* (For us, E and F each actually consist of three constants: a
* length, a multiplier for the width, and a multiplier for the
* height. This actually requires its own decomposition, but I'll
* keep that separate.)
*
* (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B
* by it.
*
* (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times
* the XY shear. From D, subtract B times the XY shear.
*
* (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY
* shear (K) by it.
*
* (6) At this point, A * D - B * C is either 1 or -1. If it is -1,
* negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
* (Alternatively, we could negate the XY shear (K) and the Y scale
* (Sy).)
*
* (7) Let the rotation be R = atan2(B, A).
*
* Then the resulting decomposed transformation is:
*
* translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
*
* An interesting result of this is that all of the simple transform
* functions (i.e., all functions other than matrix()), in isolation,
* decompose back to themselves except for:
* 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
* to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
* alternate sign possibilities that would get fixed in step 6):
* In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ).
* Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ).
* In step 4, the XY shear is sin(φ).
* Thus, after step 4, C = -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ).
* Thus, in step 5, the Y scale is sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ).
* Thus, after step 5, C = -sin(φ), D = cos(φ), and the XY shear is tan(φ).
* Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
* In step 7, the rotation is thus φ.
*
* skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
* to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
* the alternate sign possibilities that would get fixed in step 6):
* In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ).
* Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ).
* In step 4, the XY shear is cos(φ)tan(θ) + sin(φ).
* Thus, after step 4,
* C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ)
* D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ)
* Thus, in step 5, the Y scale is sqrt(C² + D²) =
* sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
* 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
* (sin²(φ)cos²(φ) + cos⁴(φ))) =
* sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
* cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
* we avoid flipping in step 6).
* After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
* (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
* (dividing both numerator and denominator by cos(φ))
* (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
* (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
* Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
* In step 7, the rotation is thus φ.
*
* To check this result, we can multiply things back together:
*
* [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ]
* [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ]
*
* [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ]
* [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ]
*
* but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
* cos(φ)tan(θ + φ) - sin(φ)
* = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
* = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
* = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
* = tan(θ) (cos(φ) + sin(φ)tan(φ))
* = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
* = tan(θ) sec(φ)
* and
* sin(φ)tan(θ + φ) + cos(φ)
* = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
* = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
* = sec(φ) (sin²(φ) + cos²(φ))
* = sec(φ)
* so the above is:
* [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ]
* [ sin(φ) sec(φ) ] [ 0 cos(φ) ]
*
* [ 1 tan(θ) ]
* [ tan(φ) 1 ]
*/
/*
* Decompose2DMatrix implements the above decomposition algorithm.
*/
bool
Decompose2DMatrix(const Matrix& aMatrix,
Point3D& aScale,
ShearArray& aShear,
gfxQuaternion& aRotate,
Point3D& aTranslate)
{
float A = aMatrix._11,
B = aMatrix._12,
C = aMatrix._21,
D = aMatrix._22;
if (A * D == B * C) {
// singular matrix
return false;
}
float scaleX = sqrt(A * A + B * B);
A /= scaleX;
B /= scaleX;
float XYshear = A * C + B * D;
C -= A * XYshear;
D -= B * XYshear;
float scaleY = sqrt(C * C + D * D);
C /= scaleY;
D /= scaleY;
XYshear /= scaleY;
// A*D - B*C should now be 1 or -1
NS_ASSERTION(0.99 < Abs(A*D - B*C) && Abs(A*D - B*C) < 1.01,
"determinant should now be 1 or -1");
if (A * D < B * C) {
A = -A;
B = -B;
C = -C;
D = -D;
XYshear = -XYshear;
scaleX = -scaleX;
}
float rotate = atan2f(B, A);
aRotate = gfxQuaternion(0, 0, sin(rotate/2), cos(rotate/2));
aShear[ShearType::XYSHEAR] = XYshear;
aScale.x = scaleX;
aScale.y = scaleY;
aTranslate.x = aMatrix._31;
aTranslate.y = aMatrix._32;
return true;
}
/**
* Implementation of the unmatrix algorithm, specified by:
*
* http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix
*
* This, in turn, refers to the unmatrix program in Graphics Gems,
* available from http://tog.acm.org/resources/GraphicsGems/ , and in
* particular as the file GraphicsGems/gemsii/unmatrix.c
* in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
*/
bool
Decompose3DMatrix(const Matrix4x4& aMatrix,
Point3D& aScale,
ShearArray& aShear,
gfxQuaternion& aRotate,
Point3D& aTranslate,
Point4D& aPerspective)
{
Matrix4x4 local = aMatrix;
if (local[3][3] == 0) {
return false;
}
/* Normalize the matrix */
local.Normalize();
/**
* perspective is used to solve for perspective, but it also provides
* an easy way to test for singularity of the upper 3x3 component.
*/
Matrix4x4 perspective = local;
Point4D empty(0, 0, 0, 1);
perspective.SetTransposedVector(3, empty);
if (perspective.Determinant() == 0.0) {
return false;
}
/* First, isolate perspective. */
if (local[0][3] != 0 || local[1][3] != 0 ||
local[2][3] != 0) {
/* aPerspective is the right hand side of the equation. */
aPerspective = local.TransposedVector(3);
/**
* Solve the equation by inverting perspective and multiplying
* aPerspective by the inverse.
*/
perspective.Invert();
aPerspective = perspective.TransposeTransform4D(aPerspective);
/* Clear the perspective partition */
local.SetTransposedVector(3, empty);
} else {
aPerspective = Point4D(0, 0, 0, 1);
}
/* Next take care of translation */
for (int i = 0; i < 3; i++) {
aTranslate[i] = local[3][i];
local[3][i] = 0;
}
/* Now get scale and shear. */
/* Compute X scale factor and normalize first row. */
aScale.x = local[0].Length();
local[0] /= aScale.x;
/* Compute XY shear factor and make 2nd local orthogonal to 1st. */
aShear[ShearType::XYSHEAR] = local[0].DotProduct(local[1]);
local[1] -= local[0] * aShear[ShearType::XYSHEAR];
/* Now, compute Y scale and normalize 2nd local. */
aScale.y = local[1].Length();
local[1] /= aScale.y;
aShear[ShearType::XYSHEAR] /= aScale.y;
/* Compute XZ and YZ shears, make 3rd local orthogonal */
aShear[ShearType::XZSHEAR] = local[0].DotProduct(local[2]);
local[2] -= local[0] * aShear[ShearType::XZSHEAR];
aShear[ShearType::YZSHEAR] = local[1].DotProduct(local[2]);
local[2] -= local[1] * aShear[ShearType::YZSHEAR];
/* Next, get Z scale and normalize 3rd local. */
aScale.z = local[2].Length();
local[2] /= aScale.z;
aShear[ShearType::XZSHEAR] /= aScale.z;
aShear[ShearType::YZSHEAR] /= aScale.z;
/**
* At this point, the matrix (in locals) is orthonormal.
* Check for a coordinate system flip. If the determinant
* is -1, then negate the matrix and the scaling factors.
*/
if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) {
aScale *= -1;
for (int i = 0; i < 3; i++) {
local[i] *= -1;
}
}
/* Now, get the rotations out */
aRotate = gfxQuaternion(local);
return true;
}
Matrix
CSSValueArrayTo2DMatrix(nsCSSValue::Array* aArray)
{
MOZ_ASSERT(aArray &&
TransformFunctionOf(aArray) == eCSSKeyword_matrix &&
aArray->Count() == 7);
Matrix m(aArray->Item(1).GetFloatValue(),
aArray->Item(2).GetFloatValue(),
aArray->Item(3).GetFloatValue(),
aArray->Item(4).GetFloatValue(),
aArray->Item(5).GetFloatValue(),
aArray->Item(6).GetFloatValue());
return m;
}
Matrix4x4
CSSValueArrayTo3DMatrix(nsCSSValue::Array* aArray)
{
MOZ_ASSERT(aArray &&
TransformFunctionOf(aArray) == eCSSKeyword_matrix3d &&
aArray->Count() == 17);
gfx::Float array[16];
for (size_t i = 0; i < 16; ++i) {
array[i] = aArray->Item(i+1).GetFloatValue();
}
Matrix4x4 m(array);
return m;
}
} // namespace nsStyleTransformMatrix
|