summaryrefslogtreecommitdiff
path: root/js/src/wasm/WasmStubs.cpp
blob: d4e188a23ddbd623dd002bd0f54d7a848ecfe2e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 *
 * Copyright 2015 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "wasm/WasmStubs.h"

#include "mozilla/ArrayUtils.h"

#include "wasm/WasmCode.h"
#include "wasm/WasmIonCompile.h"

#include "jit/MacroAssembler-inl.h"

using namespace js;
using namespace js::jit;
using namespace js::wasm;

using mozilla::ArrayLength;

static void
AssertStackAlignment(MacroAssembler& masm, uint32_t alignment, uint32_t addBeforeAssert = 0)
{
    MOZ_ASSERT((sizeof(Frame) + masm.framePushed() + addBeforeAssert) % alignment == 0);
    masm.assertStackAlignment(alignment, addBeforeAssert);
}

static unsigned
StackDecrementForCall(MacroAssembler& masm, uint32_t alignment, unsigned bytesToPush)
{
    return StackDecrementForCall(alignment, sizeof(Frame) + masm.framePushed(), bytesToPush);
}

template <class VectorT>
static unsigned
StackArgBytes(const VectorT& args)
{
    ABIArgIter<VectorT> iter(args);
    while (!iter.done())
        iter++;
    return iter.stackBytesConsumedSoFar();
}

template <class VectorT>
static unsigned
StackDecrementForCall(MacroAssembler& masm, uint32_t alignment, const VectorT& args,
                      unsigned extraBytes = 0)
{
    return StackDecrementForCall(masm, alignment, StackArgBytes(args) + extraBytes);
}

#if defined(JS_CODEGEN_ARM)
// The ARM system ABI also includes d15 & s31 in the non volatile float registers.
// Also exclude lr (a.k.a. r14) as we preserve it manually)
static const LiveRegisterSet NonVolatileRegs =
    LiveRegisterSet(GeneralRegisterSet(Registers::NonVolatileMask&
                                       ~(uint32_t(1) << Registers::lr)),
                    FloatRegisterSet(FloatRegisters::NonVolatileMask
                                     | (1ULL << FloatRegisters::d15)
                                     | (1ULL << FloatRegisters::s31)));
#else
static const LiveRegisterSet NonVolatileRegs =
    LiveRegisterSet(GeneralRegisterSet(Registers::NonVolatileMask),
                    FloatRegisterSet(FloatRegisters::NonVolatileMask));
#endif

#if defined(JS_CODEGEN_MIPS32)
// Mips is using one more double slot due to stack alignment for double values.
// Look at MacroAssembler::PushRegsInMask(RegisterSet set)
static const unsigned FramePushedAfterSave = NonVolatileRegs.gprs().size() * sizeof(intptr_t) +
                                             NonVolatileRegs.fpus().getPushSizeInBytes() +
                                             sizeof(double);
#elif defined(JS_CODEGEN_NONE)
static const unsigned FramePushedAfterSave = 0;
#else
static const unsigned FramePushedAfterSave = NonVolatileRegs.gprs().size() * sizeof(intptr_t)
                                           + NonVolatileRegs.fpus().getPushSizeInBytes();
#endif
static const unsigned FramePushedForEntrySP = FramePushedAfterSave + sizeof(void*);

// Generate a stub that enters wasm from a C++ caller via the native ABI. The
// signature of the entry point is Module::ExportFuncPtr. The exported wasm
// function has an ABI derived from its specific signature, so this function
// must map from the ABI of ExportFuncPtr to the export's signature's ABI.
Offsets
wasm::GenerateEntry(MacroAssembler& masm, const FuncExport& fe)
{
    masm.haltingAlign(CodeAlignment);

    Offsets offsets;
    offsets.begin = masm.currentOffset();

    // Save the return address if it wasn't already saved by the call insn.
#if defined(JS_CODEGEN_ARM)
    masm.push(lr);
#elif defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
    masm.push(ra);
#endif

    // Save all caller non-volatile registers before we clobber them here and in
    // the asm.js callee (which does not preserve non-volatile registers).
    masm.setFramePushed(0);
    masm.PushRegsInMask(NonVolatileRegs);
    MOZ_ASSERT(masm.framePushed() == FramePushedAfterSave);

    // Put the 'argv' argument into a non-argument/return/TLS register so that
    // we can use 'argv' while we fill in the arguments for the asm.js callee.
    Register argv = ABINonArgReturnReg0;
    Register scratch = ABINonArgReturnReg1;

    // Read the arguments of wasm::ExportFuncPtr according to the native ABI.
    // The entry stub's frame is only 1 word, not the usual 2 for wasm::Frame.
    const unsigned argBase = sizeof(void*) + masm.framePushed();
    ABIArgGenerator abi;
    ABIArg arg;

    // arg 1: ExportArg*
    arg = abi.next(MIRType::Pointer);
    if (arg.kind() == ABIArg::GPR)
        masm.movePtr(arg.gpr(), argv);
    else
        masm.loadPtr(Address(masm.getStackPointer(), argBase + arg.offsetFromArgBase()), argv);

    // Arg 2: TlsData*
    arg = abi.next(MIRType::Pointer);
    if (arg.kind() == ABIArg::GPR)
        masm.movePtr(arg.gpr(), WasmTlsReg);
    else
        masm.loadPtr(Address(masm.getStackPointer(), argBase + arg.offsetFromArgBase()), WasmTlsReg);

    // Setup pinned registers that are assumed throughout wasm code.
    masm.loadWasmPinnedRegsFromTls();

    // Save 'argv' on the stack so that we can recover it after the call. Use
    // a second non-argument/return register as temporary scratch.
    masm.Push(argv);

    // Save the stack pointer in the WasmActivation right before dynamically
    // aligning the stack so that it may be recovered on return or throw.
    MOZ_ASSERT(masm.framePushed() == FramePushedForEntrySP);
    masm.loadWasmActivationFromTls(scratch);
    masm.storeStackPtr(Address(scratch, WasmActivation::offsetOfEntrySP()));

    // Dynamically align the stack since ABIStackAlignment is not necessarily
    // WasmStackAlignment. We'll use entrySP to recover the original stack
    // pointer on return.
    masm.andToStackPtr(Imm32(~(WasmStackAlignment - 1)));

    // Bump the stack for the call.
    masm.reserveStack(AlignBytes(StackArgBytes(fe.sig().args()), WasmStackAlignment));

    // Copy parameters out of argv and into the registers/stack-slots specified by
    // the system ABI.
    for (ABIArgValTypeIter iter(fe.sig().args()); !iter.done(); iter++) {
        unsigned argOffset = iter.index() * sizeof(ExportArg);
        Address src(argv, argOffset);
        MIRType type = iter.mirType();
        switch (iter->kind()) {
          case ABIArg::GPR:
            if (type == MIRType::Int32)
                masm.load32(src, iter->gpr());
            else if (type == MIRType::Int64)
                masm.load64(src, iter->gpr64());
            break;
#ifdef JS_CODEGEN_REGISTER_PAIR
          case ABIArg::GPR_PAIR:
            if (type == MIRType::Int64)
                masm.load64(src, iter->gpr64());
            else
                MOZ_CRASH("wasm uses hardfp for function calls.");
            break;
#endif
          case ABIArg::FPU: {
            static_assert(sizeof(ExportArg) >= jit::Simd128DataSize,
                          "ExportArg must be big enough to store SIMD values");
            switch (type) {
              case MIRType::Int8x16:
              case MIRType::Int16x8:
              case MIRType::Int32x4:
              case MIRType::Bool8x16:
              case MIRType::Bool16x8:
              case MIRType::Bool32x4:
                masm.loadUnalignedSimd128Int(src, iter->fpu());
                break;
              case MIRType::Float32x4:
                masm.loadUnalignedSimd128Float(src, iter->fpu());
                break;
              case MIRType::Double:
                masm.loadDouble(src, iter->fpu());
                break;
              case MIRType::Float32:
                masm.loadFloat32(src, iter->fpu());
                break;
              default:
                MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("unexpected FPU type");
                break;
            }
            break;
          }
          case ABIArg::Stack:
            switch (type) {
              case MIRType::Int32:
                masm.load32(src, scratch);
                masm.storePtr(scratch, Address(masm.getStackPointer(), iter->offsetFromArgBase()));
                break;
              case MIRType::Int64: {
                Register sp = masm.getStackPointer();
#if JS_BITS_PER_WORD == 32
                masm.load32(Address(src.base, src.offset + INT64LOW_OFFSET), scratch);
                masm.store32(scratch, Address(sp, iter->offsetFromArgBase() + INT64LOW_OFFSET));
                masm.load32(Address(src.base, src.offset + INT64HIGH_OFFSET), scratch);
                masm.store32(scratch, Address(sp, iter->offsetFromArgBase() + INT64HIGH_OFFSET));
#else
                Register64 scratch64(scratch);
                masm.load64(src, scratch64);
                masm.store64(scratch64, Address(sp, iter->offsetFromArgBase()));
#endif
                break;
              }
              case MIRType::Double:
                masm.loadDouble(src, ScratchDoubleReg);
                masm.storeDouble(ScratchDoubleReg,
                                 Address(masm.getStackPointer(), iter->offsetFromArgBase()));
                break;
              case MIRType::Float32:
                masm.loadFloat32(src, ScratchFloat32Reg);
                masm.storeFloat32(ScratchFloat32Reg,
                                  Address(masm.getStackPointer(), iter->offsetFromArgBase()));
                break;
              case MIRType::Int8x16:
              case MIRType::Int16x8:
              case MIRType::Int32x4:
              case MIRType::Bool8x16:
              case MIRType::Bool16x8:
              case MIRType::Bool32x4:
                masm.loadUnalignedSimd128Int(src, ScratchSimd128Reg);
                masm.storeAlignedSimd128Int(
                  ScratchSimd128Reg, Address(masm.getStackPointer(), iter->offsetFromArgBase()));
                break;
              case MIRType::Float32x4:
                masm.loadUnalignedSimd128Float(src, ScratchSimd128Reg);
                masm.storeAlignedSimd128Float(
                  ScratchSimd128Reg, Address(masm.getStackPointer(), iter->offsetFromArgBase()));
                break;
              default:
                MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("unexpected stack arg type");
            }
            break;
        }
    }

    // Call into the real function.
    masm.assertStackAlignment(WasmStackAlignment);
    masm.call(CallSiteDesc(CallSiteDesc::Func), fe.funcIndex());

    // Recover the stack pointer value before dynamic alignment.
    masm.loadWasmActivationFromTls(scratch);
    masm.loadStackPtr(Address(scratch, WasmActivation::offsetOfEntrySP()));
    masm.setFramePushed(FramePushedForEntrySP);

    // Recover the 'argv' pointer which was saved before aligning the stack.
    masm.Pop(argv);

    // Store the return value in argv[0]
    switch (fe.sig().ret()) {
      case ExprType::Void:
        break;
      case ExprType::I32:
        masm.store32(ReturnReg, Address(argv, 0));
        break;
      case ExprType::I64:
        masm.store64(ReturnReg64, Address(argv, 0));
        break;
      case ExprType::F32:
        if (!JitOptions.wasmTestMode)
            masm.canonicalizeFloat(ReturnFloat32Reg);
        masm.storeFloat32(ReturnFloat32Reg, Address(argv, 0));
        break;
      case ExprType::F64:
        if (!JitOptions.wasmTestMode)
            masm.canonicalizeDouble(ReturnDoubleReg);
        masm.storeDouble(ReturnDoubleReg, Address(argv, 0));
        break;
      case ExprType::I8x16:
      case ExprType::I16x8:
      case ExprType::I32x4:
      case ExprType::B8x16:
      case ExprType::B16x8:
      case ExprType::B32x4:
        // We don't have control on argv alignment, do an unaligned access.
        masm.storeUnalignedSimd128Int(ReturnSimd128Reg, Address(argv, 0));
        break;
      case ExprType::F32x4:
        // We don't have control on argv alignment, do an unaligned access.
        masm.storeUnalignedSimd128Float(ReturnSimd128Reg, Address(argv, 0));
        break;
      case ExprType::Limit:
        MOZ_CRASH("Limit");
    }

    // Restore clobbered non-volatile registers of the caller.
    masm.PopRegsInMask(NonVolatileRegs);
    MOZ_ASSERT(masm.framePushed() == 0);

    masm.move32(Imm32(true), ReturnReg);
    masm.ret();

    offsets.end = masm.currentOffset();
    return offsets;
}

static void
StackCopy(MacroAssembler& masm, MIRType type, Register scratch, Address src, Address dst)
{
    if (type == MIRType::Int32) {
        masm.load32(src, scratch);
        masm.store32(scratch, dst);
    } else if (type == MIRType::Int64) {
#if JS_BITS_PER_WORD == 32
        masm.load32(Address(src.base, src.offset + INT64LOW_OFFSET), scratch);
        masm.store32(scratch, Address(dst.base, dst.offset + INT64LOW_OFFSET));
        masm.load32(Address(src.base, src.offset + INT64HIGH_OFFSET), scratch);
        masm.store32(scratch, Address(dst.base, dst.offset + INT64HIGH_OFFSET));
#else
        Register64 scratch64(scratch);
        masm.load64(src, scratch64);
        masm.store64(scratch64, dst);
#endif
    } else if (type == MIRType::Float32) {
        masm.loadFloat32(src, ScratchFloat32Reg);
        masm.storeFloat32(ScratchFloat32Reg, dst);
    } else {
        MOZ_ASSERT(type == MIRType::Double);
        masm.loadDouble(src, ScratchDoubleReg);
        masm.storeDouble(ScratchDoubleReg, dst);
    }
}

typedef bool ToValue;

static void
FillArgumentArray(MacroAssembler& masm, const ValTypeVector& args, unsigned argOffset,
                  unsigned offsetToCallerStackArgs, Register scratch, ToValue toValue)
{
    for (ABIArgValTypeIter i(args); !i.done(); i++) {
        Address dst(masm.getStackPointer(), argOffset + i.index() * sizeof(Value));

        MIRType type = i.mirType();
        switch (i->kind()) {
          case ABIArg::GPR:
            if (type == MIRType::Int32) {
                if (toValue)
                    masm.storeValue(JSVAL_TYPE_INT32, i->gpr(), dst);
                else
                    masm.store32(i->gpr(), dst);
            } else if (type == MIRType::Int64) {
                // We can't box int64 into Values (yet).
                if (toValue)
                    masm.breakpoint();
                else
                    masm.store64(i->gpr64(), dst);
            } else {
                MOZ_CRASH("unexpected input type?");
            }
            break;
#ifdef JS_CODEGEN_REGISTER_PAIR
          case ABIArg::GPR_PAIR:
            if (type == MIRType::Int64)
                masm.store64(i->gpr64(), dst);
            else
                MOZ_CRASH("wasm uses hardfp for function calls.");
            break;
#endif
          case ABIArg::FPU: {
            MOZ_ASSERT(IsFloatingPointType(type));
            FloatRegister srcReg = i->fpu();
            if (type == MIRType::Double) {
                if (toValue) {
                    // Preserve the NaN pattern in the input.
                    masm.moveDouble(srcReg, ScratchDoubleReg);
                    srcReg = ScratchDoubleReg;
                    masm.canonicalizeDouble(srcReg);
                }
                masm.storeDouble(srcReg, dst);
            } else {
                MOZ_ASSERT(type == MIRType::Float32);
                if (toValue) {
                    // JS::Values can't store Float32, so convert to a Double.
                    masm.convertFloat32ToDouble(srcReg, ScratchDoubleReg);
                    masm.canonicalizeDouble(ScratchDoubleReg);
                    masm.storeDouble(ScratchDoubleReg, dst);
                } else {
                    // Preserve the NaN pattern in the input.
                    masm.moveFloat32(srcReg, ScratchFloat32Reg);
                    masm.canonicalizeFloat(ScratchFloat32Reg);
                    masm.storeFloat32(ScratchFloat32Reg, dst);
                }
            }
            break;
          }
          case ABIArg::Stack: {
            Address src(masm.getStackPointer(), offsetToCallerStackArgs + i->offsetFromArgBase());
            if (toValue) {
                if (type == MIRType::Int32) {
                    masm.load32(src, scratch);
                    masm.storeValue(JSVAL_TYPE_INT32, scratch, dst);
                } else if (type == MIRType::Int64) {
                    // We can't box int64 into Values (yet).
                    masm.breakpoint();
                } else {
                    MOZ_ASSERT(IsFloatingPointType(type));
                    if (type == MIRType::Float32) {
                        masm.loadFloat32(src, ScratchFloat32Reg);
                        masm.convertFloat32ToDouble(ScratchFloat32Reg, ScratchDoubleReg);
                    } else {
                        masm.loadDouble(src, ScratchDoubleReg);
                    }
                    masm.canonicalizeDouble(ScratchDoubleReg);
                    masm.storeDouble(ScratchDoubleReg, dst);
                }
            } else {
                StackCopy(masm, type, scratch, src, dst);
            }
            break;
          }
        }
    }
}

// Generate a wrapper function with the standard intra-wasm call ABI which simply
// calls an import. This wrapper function allows any import to be treated like a
// normal wasm function for the purposes of exports and table calls. In
// particular, the wrapper function provides:
//  - a table entry, so JS imports can be put into tables
//  - normal (non-)profiling entries, so that, if the import is re-exported,
//    an entry stub can be generated and called without any special cases
FuncOffsets
wasm::GenerateImportFunction(jit::MacroAssembler& masm, const FuncImport& fi, SigIdDesc sigId)
{
    masm.setFramePushed(0);

    unsigned tlsBytes = sizeof(void*);
    unsigned framePushed = StackDecrementForCall(masm, WasmStackAlignment, fi.sig().args(), tlsBytes);

    FuncOffsets offsets;
    GenerateFunctionPrologue(masm, framePushed, sigId, &offsets);

    // The argument register state is already setup by our caller. We just need
    // to be sure not to clobber it before the call.
    Register scratch = ABINonArgReg0;

    // Copy our frame's stack arguments to the callee frame's stack argument.
    unsigned offsetToCallerStackArgs = sizeof(Frame) + masm.framePushed();
    ABIArgValTypeIter i(fi.sig().args());
    for (; !i.done(); i++) {
        if (i->kind() != ABIArg::Stack)
            continue;

        Address src(masm.getStackPointer(), offsetToCallerStackArgs + i->offsetFromArgBase());
        Address dst(masm.getStackPointer(), i->offsetFromArgBase());
        StackCopy(masm, i.mirType(), scratch, src, dst);
    }

    // Save the TLS register so it can be restored later.
    uint32_t tlsStackOffset = i.stackBytesConsumedSoFar();
    masm.storePtr(WasmTlsReg, Address(masm.getStackPointer(), tlsStackOffset));

    // Call the import exit stub.
    CallSiteDesc desc(CallSiteDesc::Dynamic);
    masm.wasmCallImport(desc, CalleeDesc::import(fi.tlsDataOffset()));

    // Restore the TLS register and pinned regs, per wasm function ABI.
    masm.loadPtr(Address(masm.getStackPointer(), tlsStackOffset), WasmTlsReg);
    masm.loadWasmPinnedRegsFromTls();

    GenerateFunctionEpilogue(masm, framePushed, &offsets);

    masm.wasmEmitTrapOutOfLineCode();

    offsets.end = masm.currentOffset();
    return offsets;
}

// Generate a stub that is called via the internal ABI derived from the
// signature of the import and calls into an appropriate callImport C++
// function, having boxed all the ABI arguments into a homogeneous Value array.
ProfilingOffsets
wasm::GenerateImportInterpExit(MacroAssembler& masm, const FuncImport& fi, uint32_t funcImportIndex,
                               Label* throwLabel)
{
    masm.setFramePushed(0);

    // Argument types for Module::callImport_*:
    static const MIRType typeArray[] = { MIRType::Pointer,   // Instance*
                                         MIRType::Pointer,   // funcImportIndex
                                         MIRType::Int32,     // argc
                                         MIRType::Pointer }; // argv
    MIRTypeVector invokeArgTypes;
    MOZ_ALWAYS_TRUE(invokeArgTypes.append(typeArray, ArrayLength(typeArray)));

    // At the point of the call, the stack layout shall be (sp grows to the left):
    //   | stack args | padding | Value argv[] | padding | retaddr | caller stack args |
    // The padding between stack args and argv ensures that argv is aligned. The
    // padding between argv and retaddr ensures that sp is aligned.
    unsigned argOffset = AlignBytes(StackArgBytes(invokeArgTypes), sizeof(double));
    unsigned argBytes = Max<size_t>(1, fi.sig().args().length()) * sizeof(Value);
    unsigned framePushed = StackDecrementForCall(masm, ABIStackAlignment, argOffset + argBytes);

    ProfilingOffsets offsets;
    GenerateExitPrologue(masm, framePushed, ExitReason::ImportInterp, &offsets);

    // Fill the argument array.
    unsigned offsetToCallerStackArgs = sizeof(Frame) + masm.framePushed();
    Register scratch = ABINonArgReturnReg0;
    FillArgumentArray(masm, fi.sig().args(), argOffset, offsetToCallerStackArgs, scratch, ToValue(false));

    // Prepare the arguments for the call to Module::callImport_*.
    ABIArgMIRTypeIter i(invokeArgTypes);

    // argument 0: Instance*
    Address instancePtr(WasmTlsReg, offsetof(TlsData, instance));
    if (i->kind() == ABIArg::GPR) {
        masm.loadPtr(instancePtr, i->gpr());
    } else {
        masm.loadPtr(instancePtr, scratch);
        masm.storePtr(scratch, Address(masm.getStackPointer(), i->offsetFromArgBase()));
    }
    i++;

    // argument 1: funcImportIndex
    if (i->kind() == ABIArg::GPR)
        masm.mov(ImmWord(funcImportIndex), i->gpr());
    else
        masm.store32(Imm32(funcImportIndex), Address(masm.getStackPointer(), i->offsetFromArgBase()));
    i++;

    // argument 2: argc
    unsigned argc = fi.sig().args().length();
    if (i->kind() == ABIArg::GPR)
        masm.mov(ImmWord(argc), i->gpr());
    else
        masm.store32(Imm32(argc), Address(masm.getStackPointer(), i->offsetFromArgBase()));
    i++;

    // argument 3: argv
    Address argv(masm.getStackPointer(), argOffset);
    if (i->kind() == ABIArg::GPR) {
        masm.computeEffectiveAddress(argv, i->gpr());
    } else {
        masm.computeEffectiveAddress(argv, scratch);
        masm.storePtr(scratch, Address(masm.getStackPointer(), i->offsetFromArgBase()));
    }
    i++;
    MOZ_ASSERT(i.done());

    // Make the call, test whether it succeeded, and extract the return value.
    AssertStackAlignment(masm, ABIStackAlignment);
    switch (fi.sig().ret()) {
      case ExprType::Void:
        masm.call(SymbolicAddress::CallImport_Void);
        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
        break;
      case ExprType::I32:
        masm.call(SymbolicAddress::CallImport_I32);
        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
        masm.load32(argv, ReturnReg);
        break;
      case ExprType::I64:
        masm.call(SymbolicAddress::CallImport_I64);
        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
        masm.load64(argv, ReturnReg64);
        break;
      case ExprType::F32:
        masm.call(SymbolicAddress::CallImport_F64);
        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
        masm.loadDouble(argv, ReturnDoubleReg);
        masm.convertDoubleToFloat32(ReturnDoubleReg, ReturnFloat32Reg);
        break;
      case ExprType::F64:
        masm.call(SymbolicAddress::CallImport_F64);
        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
        masm.loadDouble(argv, ReturnDoubleReg);
        break;
      case ExprType::I8x16:
      case ExprType::I16x8:
      case ExprType::I32x4:
      case ExprType::F32x4:
      case ExprType::B8x16:
      case ExprType::B16x8:
      case ExprType::B32x4:
        MOZ_CRASH("SIMD types shouldn't be returned from a FFI");
      case ExprType::Limit:
        MOZ_CRASH("Limit");
    }

    // The native ABI preserves the TLS, heap and global registers since they
    // are non-volatile.
    MOZ_ASSERT(NonVolatileRegs.has(WasmTlsReg));
#if defined(JS_CODEGEN_X64) || \
    defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64) || \
    defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
    MOZ_ASSERT(NonVolatileRegs.has(HeapReg));
#endif
#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64) || \
    defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
    MOZ_ASSERT(NonVolatileRegs.has(GlobalReg));
#endif

    GenerateExitEpilogue(masm, framePushed, ExitReason::ImportInterp, &offsets);

    offsets.end = masm.currentOffset();
    return offsets;
}

static const unsigned SavedTlsReg = sizeof(void*);

// Generate a stub that is called via the internal ABI derived from the
// signature of the import and calls into a compatible JIT function,
// having boxed all the ABI arguments into the JIT stack frame layout.
ProfilingOffsets
wasm::GenerateImportJitExit(MacroAssembler& masm, const FuncImport& fi, Label* throwLabel)
{
    masm.setFramePushed(0);

    // JIT calls use the following stack layout (sp grows to the left):
    //   | retaddr | descriptor | callee | argc | this | arg1..N |
    // After the JIT frame, the global register (if present) is saved since the
    // JIT's ABI does not preserve non-volatile regs. Also, unlike most ABIs,
    // the JIT ABI requires that sp be JitStackAlignment-aligned *after* pushing
    // the return address.
    static_assert(WasmStackAlignment >= JitStackAlignment, "subsumes");
    unsigned sizeOfRetAddr = sizeof(void*);
    unsigned jitFrameBytes = 3 * sizeof(void*) + (1 + fi.sig().args().length()) * sizeof(Value);
    unsigned totalJitFrameBytes = sizeOfRetAddr + jitFrameBytes + SavedTlsReg;
    unsigned jitFramePushed = StackDecrementForCall(masm, JitStackAlignment, totalJitFrameBytes) -
                              sizeOfRetAddr;

    ProfilingOffsets offsets;
    GenerateExitPrologue(masm, jitFramePushed, ExitReason::ImportJit, &offsets);

    // 1. Descriptor
    size_t argOffset = 0;
    uint32_t descriptor = MakeFrameDescriptor(jitFramePushed, JitFrame_Entry,
                                              JitFrameLayout::Size());
    masm.storePtr(ImmWord(uintptr_t(descriptor)), Address(masm.getStackPointer(), argOffset));
    argOffset += sizeof(size_t);

    // 2. Callee
    Register callee = ABINonArgReturnReg0;   // live until call
    Register scratch = ABINonArgReturnReg1;  // repeatedly clobbered

    // 2.1. Get callee
    masm.loadWasmGlobalPtr(fi.tlsDataOffset() + offsetof(FuncImportTls, obj), callee);

    // 2.2. Save callee
    masm.storePtr(callee, Address(masm.getStackPointer(), argOffset));
    argOffset += sizeof(size_t);

    // 2.3. Load callee executable entry point
    masm.loadPtr(Address(callee, JSFunction::offsetOfNativeOrScript()), callee);
    masm.loadBaselineOrIonNoArgCheck(callee, callee, nullptr);

    // 3. Argc
    unsigned argc = fi.sig().args().length();
    masm.storePtr(ImmWord(uintptr_t(argc)), Address(masm.getStackPointer(), argOffset));
    argOffset += sizeof(size_t);

    // 4. |this| value
    masm.storeValue(UndefinedValue(), Address(masm.getStackPointer(), argOffset));
    argOffset += sizeof(Value);

    // 5. Fill the arguments
    unsigned offsetToCallerStackArgs = jitFramePushed + sizeof(Frame);
    FillArgumentArray(masm, fi.sig().args(), argOffset, offsetToCallerStackArgs, scratch, ToValue(true));
    argOffset += fi.sig().args().length() * sizeof(Value);
    MOZ_ASSERT(argOffset == jitFrameBytes);

    // 6. Jit code will clobber all registers, even non-volatiles. WasmTlsReg
    //    must be kept live for the benefit of the epilogue, so push it on the
    //    stack so that it can be restored before the epilogue.
    static_assert(SavedTlsReg == sizeof(void*), "stack frame accounting");
    masm.storePtr(WasmTlsReg, Address(masm.getStackPointer(), jitFrameBytes));

    {
        // Enable Activation.
        //
        // This sequence requires two registers, and needs to preserve the
        // 'callee' register, so there are three live registers.
        MOZ_ASSERT(callee == WasmIonExitRegCallee);
        Register cx = WasmIonExitRegE0;
        Register act = WasmIonExitRegE1;

        // JitActivation* act = cx->activation();
        masm.movePtr(SymbolicAddress::Context, cx);
        masm.loadPtr(Address(cx, JSContext::offsetOfActivation()), act);

        // act.active_ = true;
        masm.store8(Imm32(1), Address(act, JitActivation::offsetOfActiveUint8()));

        // cx->jitActivation = act;
        masm.storePtr(act, Address(cx, offsetof(JSContext, jitActivation)));

        // cx->profilingActivation_ = act;
        masm.storePtr(act, Address(cx, JSContext::offsetOfProfilingActivation()));
    }

    AssertStackAlignment(masm, JitStackAlignment, sizeOfRetAddr);
    masm.callJitNoProfiler(callee);
    AssertStackAlignment(masm, JitStackAlignment, sizeOfRetAddr);

    {
        // Disable Activation.
        //
        // This sequence needs three registers, and must preserve the JSReturnReg_Data and
        // JSReturnReg_Type, so there are five live registers.
        MOZ_ASSERT(JSReturnReg_Data == WasmIonExitRegReturnData);
        MOZ_ASSERT(JSReturnReg_Type == WasmIonExitRegReturnType);
        Register cx = WasmIonExitRegD0;
        Register act = WasmIonExitRegD1;
        Register tmp = WasmIonExitRegD2;

        // JitActivation* act = cx->activation();
        masm.movePtr(SymbolicAddress::Context, cx);
        masm.loadPtr(Address(cx, JSContext::offsetOfActivation()), act);

        // cx->jitTop = act->prevJitTop_;
        masm.loadPtr(Address(act, JitActivation::offsetOfPrevJitTop()), tmp);
        masm.storePtr(tmp, Address(cx, offsetof(JSContext, jitTop)));

        // cx->jitActivation = act->prevJitActivation_;
        masm.loadPtr(Address(act, JitActivation::offsetOfPrevJitActivation()), tmp);
        masm.storePtr(tmp, Address(cx, offsetof(JSContext, jitActivation)));

        // cx->profilingActivation = act->prevProfilingActivation_;
        masm.loadPtr(Address(act, Activation::offsetOfPrevProfiling()), tmp);
        masm.storePtr(tmp, Address(cx, JSContext::offsetOfProfilingActivation()));

        // act->active_ = false;
        masm.store8(Imm32(0), Address(act, JitActivation::offsetOfActiveUint8()));
    }

    // As explained above, the frame was aligned for the JIT ABI such that
    //   (sp + sizeof(void*)) % JitStackAlignment == 0
    // But now we possibly want to call one of several different C++ functions,
    // so subtract the sizeof(void*) so that sp is aligned for an ABI call.
    static_assert(ABIStackAlignment <= JitStackAlignment, "subsumes");
    masm.reserveStack(sizeOfRetAddr);
    unsigned nativeFramePushed = masm.framePushed();
    AssertStackAlignment(masm, ABIStackAlignment);

    masm.branchTestMagic(Assembler::Equal, JSReturnOperand, throwLabel);

    Label oolConvert;
    switch (fi.sig().ret()) {
      case ExprType::Void:
        break;
      case ExprType::I32:
        masm.convertValueToInt32(JSReturnOperand, ReturnDoubleReg, ReturnReg, &oolConvert,
                                 /* -0 check */ false);
        break;
      case ExprType::I64:
        // We don't expect int64 to be returned from Ion yet, because of a
        // guard in callImport.
        masm.breakpoint();
        break;
      case ExprType::F32:
        masm.convertValueToFloat(JSReturnOperand, ReturnFloat32Reg, &oolConvert);
        break;
      case ExprType::F64:
        masm.convertValueToDouble(JSReturnOperand, ReturnDoubleReg, &oolConvert);
        break;
      case ExprType::I8x16:
      case ExprType::I16x8:
      case ExprType::I32x4:
      case ExprType::F32x4:
      case ExprType::B8x16:
      case ExprType::B16x8:
      case ExprType::B32x4:
        MOZ_CRASH("SIMD types shouldn't be returned from an import");
      case ExprType::Limit:
        MOZ_CRASH("Limit");
    }

    Label done;
    masm.bind(&done);

    // Ion code does not respect the system ABI's callee-saved register
    // conventions so reload any assumed-non-volatile registers. Note that the
    // reserveStack(sizeOfRetAddr) above means that the stack pointer is at a
    // different offset than when WasmTlsReg was stored.
    masm.loadPtr(Address(masm.getStackPointer(), jitFrameBytes + sizeOfRetAddr), WasmTlsReg);

    GenerateExitEpilogue(masm, masm.framePushed(), ExitReason::ImportJit, &offsets);

    if (oolConvert.used()) {
        masm.bind(&oolConvert);
        masm.setFramePushed(nativeFramePushed);

        // Coercion calls use the following stack layout (sp grows to the left):
        //   | args | padding | Value argv[1] | padding | exit Frame |
        MIRTypeVector coerceArgTypes;
        JS_ALWAYS_TRUE(coerceArgTypes.append(MIRType::Pointer));
        unsigned offsetToCoerceArgv = AlignBytes(StackArgBytes(coerceArgTypes), sizeof(Value));
        MOZ_ASSERT(nativeFramePushed >= offsetToCoerceArgv + sizeof(Value));
        AssertStackAlignment(masm, ABIStackAlignment);

        // Store return value into argv[0]
        masm.storeValue(JSReturnOperand, Address(masm.getStackPointer(), offsetToCoerceArgv));

        // argument 0: argv
        ABIArgMIRTypeIter i(coerceArgTypes);
        Address argv(masm.getStackPointer(), offsetToCoerceArgv);
        if (i->kind() == ABIArg::GPR) {
            masm.computeEffectiveAddress(argv, i->gpr());
        } else {
            masm.computeEffectiveAddress(argv, scratch);
            masm.storePtr(scratch, Address(masm.getStackPointer(), i->offsetFromArgBase()));
        }
        i++;
        MOZ_ASSERT(i.done());

        // Call coercion function
        AssertStackAlignment(masm, ABIStackAlignment);
        switch (fi.sig().ret()) {
          case ExprType::I32:
            masm.call(SymbolicAddress::CoerceInPlace_ToInt32);
            masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
            masm.unboxInt32(Address(masm.getStackPointer(), offsetToCoerceArgv), ReturnReg);
            break;
          case ExprType::F64:
            masm.call(SymbolicAddress::CoerceInPlace_ToNumber);
            masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
            masm.loadDouble(Address(masm.getStackPointer(), offsetToCoerceArgv), ReturnDoubleReg);
            break;
          case ExprType::F32:
            masm.call(SymbolicAddress::CoerceInPlace_ToNumber);
            masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
            masm.loadDouble(Address(masm.getStackPointer(), offsetToCoerceArgv), ReturnDoubleReg);
            masm.convertDoubleToFloat32(ReturnDoubleReg, ReturnFloat32Reg);
            break;
          default:
            MOZ_CRASH("Unsupported convert type");
        }

        masm.jump(&done);
        masm.setFramePushed(0);
    }

    MOZ_ASSERT(masm.framePushed() == 0);

    offsets.end = masm.currentOffset();
    return offsets;
}

// Generate a stub that calls into ReportTrap with the right trap reason.
// This stub is called with ABIStackAlignment by a trap out-of-line path. A
// profiling prologue/epilogue is used so that stack unwinding picks up the
// current WasmActivation. Unwinding will begin at the caller of this trap exit.
ProfilingOffsets
wasm::GenerateTrapExit(MacroAssembler& masm, Trap trap, Label* throwLabel)
{
    masm.haltingAlign(CodeAlignment);

    masm.setFramePushed(0);

    MIRTypeVector args;
    MOZ_ALWAYS_TRUE(args.append(MIRType::Int32));

    uint32_t framePushed = StackDecrementForCall(masm, ABIStackAlignment, args);

    ProfilingOffsets offsets;
    GenerateExitPrologue(masm, framePushed, ExitReason::Trap, &offsets);

    ABIArgMIRTypeIter i(args);
    if (i->kind() == ABIArg::GPR)
        masm.move32(Imm32(int32_t(trap)), i->gpr());
    else
        masm.store32(Imm32(int32_t(trap)), Address(masm.getStackPointer(), i->offsetFromArgBase()));
    i++;
    MOZ_ASSERT(i.done());

    masm.assertStackAlignment(ABIStackAlignment);
    masm.call(SymbolicAddress::ReportTrap);

    masm.jump(throwLabel);

    GenerateExitEpilogue(masm, framePushed, ExitReason::Trap, &offsets);

    offsets.end = masm.currentOffset();
    return offsets;
}

// Generate a stub which is only used by the signal handlers to handle out of
// bounds access by experimental SIMD.js and Atomics and unaligned accesses on
// ARM. This stub is executed by direct PC transfer from the faulting memory
// access and thus the stack depth is unknown. Since WasmActivation::fp is not
// set before calling the error reporter, the current wasm activation will be
// lost. This stub should be removed when SIMD.js and Atomics are moved to wasm
// and given proper traps and when we use a non-faulting strategy for unaligned
// ARM access.
static Offsets
GenerateGenericMemoryAccessTrap(MacroAssembler& masm, SymbolicAddress reporter, Label* throwLabel)
{
    masm.haltingAlign(CodeAlignment);

    Offsets offsets;
    offsets.begin = masm.currentOffset();

    // sp can be anything at this point, so ensure it is aligned when calling
    // into C++.  We unconditionally jump to throw so don't worry about
    // restoring sp.
    masm.andToStackPtr(Imm32(~(ABIStackAlignment - 1)));
    if (ShadowStackSpace)
        masm.subFromStackPtr(Imm32(ShadowStackSpace));

    masm.call(reporter);
    masm.jump(throwLabel);

    offsets.end = masm.currentOffset();
    return offsets;
}

Offsets
wasm::GenerateOutOfBoundsExit(MacroAssembler& masm, Label* throwLabel)
{
    return GenerateGenericMemoryAccessTrap(masm, SymbolicAddress::ReportOutOfBounds, throwLabel);
}

Offsets
wasm::GenerateUnalignedExit(MacroAssembler& masm, Label* throwLabel)
{
    return GenerateGenericMemoryAccessTrap(masm, SymbolicAddress::ReportUnalignedAccess, throwLabel);
}

static const LiveRegisterSet AllRegsExceptSP(
    GeneralRegisterSet(Registers::AllMask & ~(uint32_t(1) << Registers::StackPointer)),
    FloatRegisterSet(FloatRegisters::AllMask));

// The async interrupt-callback exit is called from arbitrarily-interrupted wasm
// code. That means we must first save *all* registers and restore *all*
// registers (except the stack pointer) when we resume. The address to resume to
// (assuming that js::HandleExecutionInterrupt doesn't indicate that the
// execution should be aborted) is stored in WasmActivation::resumePC_.
// Unfortunately, loading this requires a scratch register which we don't have
// after restoring all registers. To hack around this, push the resumePC on the
// stack so that it can be popped directly into PC.
Offsets
wasm::GenerateInterruptExit(MacroAssembler& masm, Label* throwLabel)
{
    masm.haltingAlign(CodeAlignment);

    Offsets offsets;
    offsets.begin = masm.currentOffset();

#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
    // Be very careful here not to perturb the machine state before saving it
    // to the stack. In particular, add/sub instructions may set conditions in
    // the flags register.
    masm.push(Imm32(0));            // space for resumePC
    masm.pushFlags();               // after this we are safe to use sub
    masm.setFramePushed(0);         // set to zero so we can use masm.framePushed() below
    masm.PushRegsInMask(AllRegsExceptSP); // save all GP/FP registers (except SP)

    Register scratch = ABINonArgReturnReg0;

    // Store resumePC into the reserved space.
    masm.loadWasmActivationFromSymbolicAddress(scratch);
    masm.loadPtr(Address(scratch, WasmActivation::offsetOfResumePC()), scratch);
    masm.storePtr(scratch, Address(masm.getStackPointer(), masm.framePushed() + sizeof(void*)));

    // We know that StackPointer is word-aligned, but not necessarily
    // stack-aligned, so we need to align it dynamically.
    masm.moveStackPtrTo(ABINonVolatileReg);
    masm.andToStackPtr(Imm32(~(ABIStackAlignment - 1)));
    if (ShadowStackSpace)
        masm.subFromStackPtr(Imm32(ShadowStackSpace));

    masm.assertStackAlignment(ABIStackAlignment);
    masm.call(SymbolicAddress::HandleExecutionInterrupt);

    masm.branchIfFalseBool(ReturnReg, throwLabel);

    // Restore the StackPointer to its position before the call.
    masm.moveToStackPtr(ABINonVolatileReg);

    // Restore the machine state to before the interrupt.
    masm.PopRegsInMask(AllRegsExceptSP); // restore all GP/FP registers (except SP)
    masm.popFlags();              // after this, nothing that sets conditions
    masm.ret();                   // pop resumePC into PC
#elif defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
    // Reserve space to store resumePC and HeapReg.
    masm.subFromStackPtr(Imm32(2 * sizeof(intptr_t)));
    // set to zero so we can use masm.framePushed() below.
    masm.setFramePushed(0);
    static_assert(!SupportsSimd, "high lanes of SIMD registers need to be saved too.");
    // save all registers,except sp. After this stack is alligned.
    masm.PushRegsInMask(AllRegsExceptSP);

    // Save the stack pointer in a non-volatile register.
    masm.moveStackPtrTo(s0);
    // Align the stack.
    masm.ma_and(StackPointer, StackPointer, Imm32(~(ABIStackAlignment - 1)));

    // Store resumePC into the reserved space.
    masm.loadWasmActivationFromSymbolicAddress(IntArgReg0);
    masm.loadPtr(Address(IntArgReg0, WasmActivation::offsetOfResumePC()), IntArgReg1);
    masm.storePtr(IntArgReg1, Address(s0, masm.framePushed()));
    // Store HeapReg into the reserved space.
    masm.storePtr(HeapReg, Address(s0, masm.framePushed() + sizeof(intptr_t)));

# ifdef USES_O32_ABI
    // MIPS ABI requires rewserving stack for registes $a0 to $a3.
    masm.subFromStackPtr(Imm32(4 * sizeof(intptr_t)));
# endif

    masm.assertStackAlignment(ABIStackAlignment);
    masm.call(SymbolicAddress::HandleExecutionInterrupt);

# ifdef USES_O32_ABI
    masm.addToStackPtr(Imm32(4 * sizeof(intptr_t)));
# endif

    masm.branchIfFalseBool(ReturnReg, throwLabel);

    // This will restore stack to the address before the call.
    masm.moveToStackPtr(s0);
    masm.PopRegsInMask(AllRegsExceptSP);

    // Pop resumePC into PC. Clobber HeapReg to make the jump and restore it
    // during jump delay slot.
    masm.loadPtr(Address(StackPointer, 0), HeapReg);
    // Reclaim the reserve space.
    masm.addToStackPtr(Imm32(2 * sizeof(intptr_t)));
    masm.as_jr(HeapReg);
    masm.loadPtr(Address(StackPointer, -sizeof(intptr_t)), HeapReg);
#elif defined(JS_CODEGEN_ARM)
    masm.setFramePushed(0);         // set to zero so we can use masm.framePushed() below

    // Save all GPR, except the stack pointer.
    masm.PushRegsInMask(LiveRegisterSet(
                            GeneralRegisterSet(Registers::AllMask & ~(1<<Registers::sp)),
                            FloatRegisterSet(uint32_t(0))));

    // Save both the APSR and FPSCR in non-volatile registers.
    masm.as_mrs(r4);
    masm.as_vmrs(r5);
    // Save the stack pointer in a non-volatile register.
    masm.mov(sp,r6);
    // Align the stack.
    masm.as_bic(sp, sp, Imm8(7));

    // Store resumePC into the return PC stack slot.
    masm.loadWasmActivationFromSymbolicAddress(IntArgReg0);
    masm.loadPtr(Address(IntArgReg0, WasmActivation::offsetOfResumePC()), IntArgReg1);
    masm.storePtr(IntArgReg1, Address(r6, 14 * sizeof(uint32_t*)));

    // Save all FP registers
    static_assert(!SupportsSimd, "high lanes of SIMD registers need to be saved too.");
    masm.PushRegsInMask(LiveRegisterSet(GeneralRegisterSet(0),
                                        FloatRegisterSet(FloatRegisters::AllDoubleMask)));

    masm.assertStackAlignment(ABIStackAlignment);
    masm.call(SymbolicAddress::HandleExecutionInterrupt);

    masm.branchIfFalseBool(ReturnReg, throwLabel);

    // Restore the machine state to before the interrupt. this will set the pc!

    // Restore all FP registers
    masm.PopRegsInMask(LiveRegisterSet(GeneralRegisterSet(0),
                                       FloatRegisterSet(FloatRegisters::AllDoubleMask)));
    masm.mov(r6,sp);
    masm.as_vmsr(r5);
    masm.as_msr(r4);
    // Restore all GP registers
    masm.startDataTransferM(IsLoad, sp, IA, WriteBack);
    masm.transferReg(r0);
    masm.transferReg(r1);
    masm.transferReg(r2);
    masm.transferReg(r3);
    masm.transferReg(r4);
    masm.transferReg(r5);
    masm.transferReg(r6);
    masm.transferReg(r7);
    masm.transferReg(r8);
    masm.transferReg(r9);
    masm.transferReg(r10);
    masm.transferReg(r11);
    masm.transferReg(r12);
    masm.transferReg(lr);
    masm.finishDataTransfer();
    masm.ret();
#elif defined(JS_CODEGEN_ARM64)
    MOZ_CRASH();
#elif defined (JS_CODEGEN_NONE)
    MOZ_CRASH();
#else
# error "Unknown architecture!"
#endif

    offsets.end = masm.currentOffset();
    return offsets;
}

// Generate a stub that restores the stack pointer to what it was on entry to
// the wasm activation, sets the return register to 'false' and then executes a
// return which will return from this wasm activation to the caller. This stub
// should only be called after the caller has reported an error (or, in the case
// of the interrupt stub, intends to interrupt execution).
Offsets
wasm::GenerateThrowStub(MacroAssembler& masm, Label* throwLabel)
{
    masm.haltingAlign(CodeAlignment);

    masm.bind(throwLabel);

    Offsets offsets;
    offsets.begin = masm.currentOffset();

    // We are about to pop all frames in this WasmActivation. Set fp to null to
    // maintain the invariant that fp is either null or pointing to a valid
    // frame.
    Register scratch = ABINonArgReturnReg0;
    masm.loadWasmActivationFromSymbolicAddress(scratch);
    masm.storePtr(ImmWord(0), Address(scratch, WasmActivation::offsetOfFP()));

    masm.setFramePushed(FramePushedForEntrySP);
    masm.loadStackPtr(Address(scratch, WasmActivation::offsetOfEntrySP()));
    masm.Pop(scratch);
    masm.PopRegsInMask(NonVolatileRegs);
    MOZ_ASSERT(masm.framePushed() == 0);

    masm.mov(ImmWord(0), ReturnReg);
    masm.ret();

    offsets.end = masm.currentOffset();
    return offsets;
}