1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_RangeAnalysis_h
#define jit_RangeAnalysis_h
#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/IonAnalysis.h"
#include "jit/MIR.h"
// windows.h defines those, which messes with the definitions below.
#undef min
#undef max
namespace js {
namespace jit {
class MBasicBlock;
class MIRGraph;
// An upper bound computed on the number of backedges a loop will take.
// This count only includes backedges taken while running Ion code: for OSR
// loops, this will exclude iterations that executed in the interpreter or in
// baseline compiled code.
struct LoopIterationBound : public TempObject
{
// Loop for which this bound applies.
MBasicBlock* header;
// Test from which this bound was derived; after executing exactly 'bound'
// times this test will exit the loop. Code in the loop body which this
// test dominates (will include the backedge) will execute at most 'bound'
// times. Other code in the loop will execute at most '1 + Max(bound, 0)'
// times.
MTest* test;
// Symbolic bound computed for the number of backedge executions. The terms
// in this bound are all loop invariant.
LinearSum boundSum;
// Linear sum for the number of iterations already executed, at the start
// of the loop header. This will use loop invariant terms and header phis.
LinearSum currentSum;
LoopIterationBound(MBasicBlock* header, MTest* test,
const LinearSum& boundSum, const LinearSum& currentSum)
: header(header), test(test),
boundSum(boundSum), currentSum(currentSum)
{
}
};
typedef Vector<LoopIterationBound*, 0, SystemAllocPolicy> LoopIterationBoundVector;
// A symbolic upper or lower bound computed for a term.
struct SymbolicBound : public TempObject
{
private:
SymbolicBound(LoopIterationBound* loop, const LinearSum& sum)
: loop(loop), sum(sum)
{
}
public:
// Any loop iteration bound from which this was derived.
//
// If non-nullptr, then 'sum' is only valid within the loop body, at
// points dominated by the loop bound's test (see LoopIterationBound).
//
// If nullptr, then 'sum' is always valid.
LoopIterationBound* loop;
static SymbolicBound*
New(TempAllocator& alloc, LoopIterationBound* loop, const LinearSum& sum) {
return new(alloc) SymbolicBound(loop, sum);
}
// Computed symbolic bound, see above.
LinearSum sum;
void dump(GenericPrinter& out) const;
void dump() const;
};
class RangeAnalysis
{
protected:
bool blockDominates(MBasicBlock* b, MBasicBlock* b2);
void replaceDominatedUsesWith(MDefinition* orig, MDefinition* dom,
MBasicBlock* block);
protected:
MIRGenerator* mir;
MIRGraph& graph_;
Vector<MBinaryBitwiseInstruction*, 16, SystemAllocPolicy> bitops;
TempAllocator& alloc() const;
public:
RangeAnalysis(MIRGenerator* mir, MIRGraph& graph) :
mir(mir), graph_(graph) {}
MOZ_MUST_USE bool addBetaNodes();
MOZ_MUST_USE bool analyze();
MOZ_MUST_USE bool addRangeAssertions();
MOZ_MUST_USE bool removeBetaNodes();
MOZ_MUST_USE bool prepareForUCE(bool* shouldRemoveDeadCode);
MOZ_MUST_USE bool tryRemovingGuards();
MOZ_MUST_USE bool truncate();
MOZ_MUST_USE bool removeUnnecessaryBitops();
// Any iteration bounds discovered for loops in the graph.
LoopIterationBoundVector loopIterationBounds;
private:
MOZ_MUST_USE bool analyzeLoop(MBasicBlock* header);
LoopIterationBound* analyzeLoopIterationCount(MBasicBlock* header,
MTest* test, BranchDirection direction);
void analyzeLoopPhi(MBasicBlock* header, LoopIterationBound* loopBound, MPhi* phi);
MOZ_MUST_USE bool tryHoistBoundsCheck(MBasicBlock* header, MBoundsCheck* ins);
};
class Range : public TempObject {
public:
// Int32 are signed. INT32_MAX is pow(2,31)-1 and INT32_MIN is -pow(2,31),
// so the greatest exponent we need is 31.
static const uint16_t MaxInt32Exponent = 31;
// UInt32 are unsigned. UINT32_MAX is pow(2,32)-1, so it's the greatest
// value that has an exponent of 31.
static const uint16_t MaxUInt32Exponent = 31;
// Maximal exponenent under which we have no precission loss on double
// operations. Double has 52 bits of mantissa, so 2^52+1 cannot be
// represented without loss.
static const uint16_t MaxTruncatableExponent = mozilla::FloatingPoint<double>::kExponentShift;
// Maximum exponent for finite values.
static const uint16_t MaxFiniteExponent = mozilla::FloatingPoint<double>::kExponentBias;
// An special exponent value representing all non-NaN values. This
// includes finite values and the infinities.
static const uint16_t IncludesInfinity = MaxFiniteExponent + 1;
// An special exponent value representing all possible double-precision
// values. This includes finite values, the infinities, and NaNs.
static const uint16_t IncludesInfinityAndNaN = UINT16_MAX;
// This range class uses int32_t ranges, but has several interfaces which
// use int64_t, which either holds an int32_t value, or one of the following
// special values which mean a value which is beyond the int32 range,
// potentially including infinity or NaN. These special values are
// guaranteed to compare greater, and less than, respectively, any int32_t
// value.
static const int64_t NoInt32UpperBound = int64_t(JSVAL_INT_MAX) + 1;
static const int64_t NoInt32LowerBound = int64_t(JSVAL_INT_MIN) - 1;
enum FractionalPartFlag {
ExcludesFractionalParts = false,
IncludesFractionalParts = true
};
enum NegativeZeroFlag {
ExcludesNegativeZero = false,
IncludesNegativeZero = true
};
private:
// Absolute ranges.
//
// We represent ranges where the endpoints can be in the set:
// {-infty} U [INT_MIN, INT_MAX] U {infty}. A bound of +/-
// infty means that the value may have overflowed in that
// direction. When computing the range of an integer
// instruction, the ranges of the operands can be clamped to
// [INT_MIN, INT_MAX], since if they had overflowed they would
// no longer be integers. This is important for optimizations
// and somewhat subtle.
//
// N.B.: All of the operations that compute new ranges based
// on existing ranges will ignore the hasInt32*Bound_ flags of the
// input ranges; that is, they implicitly clamp the ranges of
// the inputs to [INT_MIN, INT_MAX]. Therefore, while our range might
// be unbounded (and could overflow), when using this information to
// propagate through other ranges, we disregard this fact; if that code
// executes, then the overflow did not occur, so we may safely assume
// that the range is [INT_MIN, INT_MAX] instead.
//
// To facilitate this trick, we maintain the invariants that:
// 1) hasInt32LowerBound_ == false implies lower_ == JSVAL_INT_MIN
// 2) hasInt32UpperBound_ == false implies upper_ == JSVAL_INT_MAX
//
// As a second and less precise range analysis, we represent the maximal
// exponent taken by a value. The exponent is calculated by taking the
// absolute value and looking at the position of the highest bit. All
// exponent computation have to be over-estimations of the actual result. On
// the Int32 this over approximation is rectified.
int32_t lower_;
int32_t upper_;
bool hasInt32LowerBound_;
bool hasInt32UpperBound_;
FractionalPartFlag canHaveFractionalPart_ : 1;
NegativeZeroFlag canBeNegativeZero_ : 1;
uint16_t max_exponent_;
// Any symbolic lower or upper bound computed for this term.
const SymbolicBound* symbolicLower_;
const SymbolicBound* symbolicUpper_;
// This function simply makes several MOZ_ASSERTs to verify the internal
// consistency of this range.
void assertInvariants() const {
// Basic sanity :).
MOZ_ASSERT(lower_ <= upper_);
// When hasInt32LowerBound_ or hasInt32UpperBound_ are false, we set
// lower_ and upper_ to these specific values as it simplifies the
// implementation in some places.
MOZ_ASSERT_IF(!hasInt32LowerBound_, lower_ == JSVAL_INT_MIN);
MOZ_ASSERT_IF(!hasInt32UpperBound_, upper_ == JSVAL_INT_MAX);
// max_exponent_ must be one of three possible things.
MOZ_ASSERT(max_exponent_ <= MaxFiniteExponent ||
max_exponent_ == IncludesInfinity ||
max_exponent_ == IncludesInfinityAndNaN);
// Forbid the max_exponent_ field from implying better bounds for
// lower_/upper_ fields. We have to add 1 to the max_exponent_ when
// canHaveFractionalPart_ is true in order to accomodate
// fractional offsets. For example, 2147483647.9 is greater than
// INT32_MAX, so a range containing that value will have
// hasInt32UpperBound_ set to false, however that value also has
// exponent 30, which is strictly less than MaxInt32Exponent. For
// another example, 1.9 has an exponent of 0 but requires upper_ to be
// at least 2, which has exponent 1.
mozilla::DebugOnly<uint32_t> adjustedExponent = max_exponent_ +
(canHaveFractionalPart_ ? 1 : 0);
MOZ_ASSERT_IF(!hasInt32LowerBound_ || !hasInt32UpperBound_,
adjustedExponent >= MaxInt32Exponent);
MOZ_ASSERT(adjustedExponent >= mozilla::FloorLog2(mozilla::Abs(upper_)));
MOZ_ASSERT(adjustedExponent >= mozilla::FloorLog2(mozilla::Abs(lower_)));
// The following are essentially static assertions, but FloorLog2 isn't
// trivially suitable for constexpr :(.
MOZ_ASSERT(mozilla::FloorLog2(JSVAL_INT_MIN) == MaxInt32Exponent);
MOZ_ASSERT(mozilla::FloorLog2(JSVAL_INT_MAX) == 30);
MOZ_ASSERT(mozilla::FloorLog2(UINT32_MAX) == MaxUInt32Exponent);
MOZ_ASSERT(mozilla::FloorLog2(0) == 0);
}
// Set the lower_ and hasInt32LowerBound_ values.
void setLowerInit(int64_t x) {
if (x > JSVAL_INT_MAX) {
lower_ = JSVAL_INT_MAX;
hasInt32LowerBound_ = true;
} else if (x < JSVAL_INT_MIN) {
lower_ = JSVAL_INT_MIN;
hasInt32LowerBound_ = false;
} else {
lower_ = int32_t(x);
hasInt32LowerBound_ = true;
}
}
// Set the upper_ and hasInt32UpperBound_ values.
void setUpperInit(int64_t x) {
if (x > JSVAL_INT_MAX) {
upper_ = JSVAL_INT_MAX;
hasInt32UpperBound_ = false;
} else if (x < JSVAL_INT_MIN) {
upper_ = JSVAL_INT_MIN;
hasInt32UpperBound_ = true;
} else {
upper_ = int32_t(x);
hasInt32UpperBound_ = true;
}
}
// Compute the least exponent value that would be compatible with the
// values of lower() and upper().
//
// Note:
// exponent of JSVAL_INT_MIN == 31
// exponent of JSVAL_INT_MAX == 30
uint16_t exponentImpliedByInt32Bounds() const {
// The number of bits needed to encode |max| is the power of 2 plus one.
uint32_t max = Max(mozilla::Abs(lower()), mozilla::Abs(upper()));
uint16_t result = mozilla::FloorLog2(max);
MOZ_ASSERT(result == (max == 0 ? 0 : mozilla::ExponentComponent(double(max))));
return result;
}
// When converting a range which contains fractional values to a range
// containing only integers, the old max_exponent_ value may imply a better
// lower and/or upper bound than was previously available, because they no
// longer need to be conservative about fractional offsets and the ends of
// the range.
//
// Given an exponent value and pointers to the lower and upper bound values,
// this function refines the lower and upper bound values to the tighest
// bound for integer values implied by the exponent.
static void refineInt32BoundsByExponent(uint16_t e,
int32_t* l, bool* lb,
int32_t* h, bool* hb)
{
if (e < MaxInt32Exponent) {
// pow(2, max_exponent_+1)-1 to compute a maximum absolute value.
int32_t limit = (uint32_t(1) << (e + 1)) - 1;
*h = Min(*h, limit);
*l = Max(*l, -limit);
*hb = true;
*lb = true;
}
}
// If the value of any of the fields implies a stronger possible value for
// any other field, update that field to the stronger value. The range must
// be completely valid before and it is guaranteed to be kept valid.
void optimize() {
assertInvariants();
if (hasInt32Bounds()) {
// Examine lower() and upper(), and if they imply a better exponent
// bound than max_exponent_, set that value as the new
// max_exponent_.
uint16_t newExponent = exponentImpliedByInt32Bounds();
if (newExponent < max_exponent_) {
max_exponent_ = newExponent;
assertInvariants();
}
// If we have a completely precise range, the value is an integer,
// since we can only represent integers.
if (canHaveFractionalPart_ && lower_ == upper_) {
canHaveFractionalPart_ = ExcludesFractionalParts;
assertInvariants();
}
}
// If the range doesn't include zero, it doesn't include negative zero.
if (canBeNegativeZero_ && !canBeZero()) {
canBeNegativeZero_ = ExcludesNegativeZero;
assertInvariants();
}
}
// Set the range fields to the given raw values.
void rawInitialize(int32_t l, bool lb, int32_t h, bool hb,
FractionalPartFlag canHaveFractionalPart,
NegativeZeroFlag canBeNegativeZero,
uint16_t e)
{
lower_ = l;
upper_ = h;
hasInt32LowerBound_ = lb;
hasInt32UpperBound_ = hb;
canHaveFractionalPart_ = canHaveFractionalPart;
canBeNegativeZero_ = canBeNegativeZero;
max_exponent_ = e;
optimize();
}
// Construct a range from the given raw values.
Range(int32_t l, bool lb, int32_t h, bool hb,
FractionalPartFlag canHaveFractionalPart,
NegativeZeroFlag canBeNegativeZero,
uint16_t e)
: symbolicLower_(nullptr),
symbolicUpper_(nullptr)
{
rawInitialize(l, lb, h, hb, canHaveFractionalPart, canBeNegativeZero, e);
}
public:
Range()
: symbolicLower_(nullptr),
symbolicUpper_(nullptr)
{
setUnknown();
}
Range(int64_t l, int64_t h,
FractionalPartFlag canHaveFractionalPart,
NegativeZeroFlag canBeNegativeZero,
uint16_t e)
: symbolicLower_(nullptr),
symbolicUpper_(nullptr)
{
set(l, h, canHaveFractionalPart, canBeNegativeZero, e);
}
Range(const Range& other)
: lower_(other.lower_),
upper_(other.upper_),
hasInt32LowerBound_(other.hasInt32LowerBound_),
hasInt32UpperBound_(other.hasInt32UpperBound_),
canHaveFractionalPart_(other.canHaveFractionalPart_),
canBeNegativeZero_(other.canBeNegativeZero_),
max_exponent_(other.max_exponent_),
symbolicLower_(nullptr),
symbolicUpper_(nullptr)
{
assertInvariants();
}
// Construct a range from the given MDefinition. This differs from the
// MDefinition's range() method in that it describes the range of values
// *after* any bailout checks.
explicit Range(const MDefinition* def);
static Range* NewInt32Range(TempAllocator& alloc, int32_t l, int32_t h) {
return new(alloc) Range(l, h, ExcludesFractionalParts, ExcludesNegativeZero, MaxInt32Exponent);
}
// Construct an int32 range containing just i. This is just a convenience
// wrapper around NewInt32Range.
static Range* NewInt32SingletonRange(TempAllocator& alloc, int32_t i) {
return NewInt32Range(alloc, i, i);
}
static Range* NewUInt32Range(TempAllocator& alloc, uint32_t l, uint32_t h) {
// For now, just pass them to the constructor as int64_t values.
// They'll become unbounded if they're not in the int32_t range.
return new(alloc) Range(l, h, ExcludesFractionalParts, ExcludesNegativeZero, MaxUInt32Exponent);
}
// Construct a range containing values >= l and <= h. Note that this
// function treats negative zero as equal to zero, as >= and <= do. If the
// range includes zero, it is assumed to include negative zero too.
static Range* NewDoubleRange(TempAllocator& alloc, double l, double h) {
if (mozilla::IsNaN(l) && mozilla::IsNaN(h))
return nullptr;
Range* r = new(alloc) Range();
r->setDouble(l, h);
return r;
}
// Construct the strictest possible range containing d, or null if d is NaN.
// This function treats negative zero as distinct from zero, since this
// makes the strictest possible range containin zero a range which
// contains one value rather than two.
static Range* NewDoubleSingletonRange(TempAllocator& alloc, double d) {
if (mozilla::IsNaN(d))
return nullptr;
Range* r = new(alloc) Range();
r->setDoubleSingleton(d);
return r;
}
void dump(GenericPrinter& out) const;
void dump() const;
MOZ_MUST_USE bool update(const Range* other);
// Unlike the other operations, unionWith is an in-place
// modification. This is to avoid a bunch of useless extra
// copying when chaining together unions when handling Phi
// nodes.
void unionWith(const Range* other);
static Range* intersect(TempAllocator& alloc, const Range* lhs, const Range* rhs,
bool* emptyRange);
static Range* add(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* sub(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* mul(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* and_(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* or_(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* xor_(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* not_(TempAllocator& alloc, const Range* op);
static Range* lsh(TempAllocator& alloc, const Range* lhs, int32_t c);
static Range* rsh(TempAllocator& alloc, const Range* lhs, int32_t c);
static Range* ursh(TempAllocator& alloc, const Range* lhs, int32_t c);
static Range* lsh(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* rsh(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* ursh(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* abs(TempAllocator& alloc, const Range* op);
static Range* min(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* max(TempAllocator& alloc, const Range* lhs, const Range* rhs);
static Range* floor(TempAllocator& alloc, const Range* op);
static Range* ceil(TempAllocator& alloc, const Range* op);
static Range* sign(TempAllocator& alloc, const Range* op);
static Range* NaNToZero(TempAllocator& alloc, const Range* op);
static MOZ_MUST_USE bool negativeZeroMul(const Range* lhs, const Range* rhs);
bool isUnknownInt32() const {
return isInt32() && lower() == INT32_MIN && upper() == INT32_MAX;
}
bool isUnknown() const {
return !hasInt32LowerBound_ &&
!hasInt32UpperBound_ &&
canHaveFractionalPart_ &&
canBeNegativeZero_ &&
max_exponent_ == IncludesInfinityAndNaN;
}
bool hasInt32LowerBound() const {
return hasInt32LowerBound_;
}
bool hasInt32UpperBound() const {
return hasInt32UpperBound_;
}
// Test whether the value is known to be within [INT32_MIN,INT32_MAX].
// Note that this does not necessarily mean the value is an integer.
bool hasInt32Bounds() const {
return hasInt32LowerBound() && hasInt32UpperBound();
}
// Test whether the value is known to be representable as an int32.
bool isInt32() const {
return hasInt32Bounds() &&
!canHaveFractionalPart_ &&
!canBeNegativeZero_;
}
// Test whether the given value is known to be either 0 or 1.
bool isBoolean() const {
return lower() >= 0 && upper() <= 1 &&
!canHaveFractionalPart_ &&
!canBeNegativeZero_;
}
bool canHaveRoundingErrors() const {
return canHaveFractionalPart_ ||
canBeNegativeZero_ ||
max_exponent_ >= MaxTruncatableExponent;
}
// Test if an integer x belongs to the range.
bool contains(int32_t x) const {
return x >= lower_ && x <= upper_;
}
// Test whether the range contains zero (of either sign).
bool canBeZero() const {
return contains(0);
}
// Test whether the range contains NaN values.
bool canBeNaN() const {
return max_exponent_ == IncludesInfinityAndNaN;
}
// Test whether the range contains infinities or NaN values.
bool canBeInfiniteOrNaN() const {
return max_exponent_ >= IncludesInfinity;
}
FractionalPartFlag canHaveFractionalPart() const {
return canHaveFractionalPart_;
}
NegativeZeroFlag canBeNegativeZero() const {
return canBeNegativeZero_;
}
uint16_t exponent() const {
MOZ_ASSERT(!canBeInfiniteOrNaN());
return max_exponent_;
}
uint16_t numBits() const {
return exponent() + 1; // 2^0 -> 1
}
// Return the lower bound. Asserts that the value has an int32 bound.
int32_t lower() const {
MOZ_ASSERT(hasInt32LowerBound());
return lower_;
}
// Return the upper bound. Asserts that the value has an int32 bound.
int32_t upper() const {
MOZ_ASSERT(hasInt32UpperBound());
return upper_;
}
// Test whether all values in this range can are finite and negative.
bool isFiniteNegative() const {
return upper_ < 0 && !canBeInfiniteOrNaN();
}
// Test whether all values in this range can are finite and non-negative.
bool isFiniteNonNegative() const {
return lower_ >= 0 && !canBeInfiniteOrNaN();
}
// Test whether a value in this range can possibly be a finite
// negative value. Note that "negative zero" is not considered negative.
bool canBeFiniteNegative() const {
return lower_ < 0;
}
// Test whether a value in this range can possibly be a finite
// non-negative value.
bool canBeFiniteNonNegative() const {
return upper_ >= 0;
}
// Test whether a value in this range can have the sign bit set (not
// counting NaN, where the sign bit is meaningless).
bool canHaveSignBitSet() const {
return !hasInt32LowerBound() || canBeFiniteNegative() || canBeNegativeZero();
}
// Set this range to have a lower bound not less than x.
void refineLower(int32_t x) {
assertInvariants();
hasInt32LowerBound_ = true;
lower_ = Max(lower_, x);
optimize();
}
// Set this range to have an upper bound not greater than x.
void refineUpper(int32_t x) {
assertInvariants();
hasInt32UpperBound_ = true;
upper_ = Min(upper_, x);
optimize();
}
// Set this range to exclude negative zero.
void refineToExcludeNegativeZero() {
assertInvariants();
canBeNegativeZero_ = ExcludesNegativeZero;
optimize();
}
void setInt32(int32_t l, int32_t h) {
hasInt32LowerBound_ = true;
hasInt32UpperBound_ = true;
lower_ = l;
upper_ = h;
canHaveFractionalPart_ = ExcludesFractionalParts;
canBeNegativeZero_ = ExcludesNegativeZero;
max_exponent_ = exponentImpliedByInt32Bounds();
assertInvariants();
}
// Set this range to include values >= l and <= h. Note that this
// function treats negative zero as equal to zero, as >= and <= do. If the
// range includes zero, it is assumed to include negative zero too.
void setDouble(double l, double h);
// Set this range to the narrowest possible range containing d.
// This function treats negative zero as distinct from zero, since this
// makes the narrowest possible range containin zero a range which
// contains one value rather than two.
void setDoubleSingleton(double d);
void setUnknown() {
set(NoInt32LowerBound, NoInt32UpperBound,
IncludesFractionalParts,
IncludesNegativeZero,
IncludesInfinityAndNaN);
MOZ_ASSERT(isUnknown());
}
void set(int64_t l, int64_t h,
FractionalPartFlag canHaveFractionalPart,
NegativeZeroFlag canBeNegativeZero,
uint16_t e)
{
max_exponent_ = e;
canHaveFractionalPart_ = canHaveFractionalPart;
canBeNegativeZero_ = canBeNegativeZero;
setLowerInit(l);
setUpperInit(h);
optimize();
}
// Make the lower end of this range at least INT32_MIN, and make
// the upper end of this range at most INT32_MAX.
void clampToInt32();
// If this range exceeds int32_t range, at either or both ends, change
// it to int32_t range. Otherwise do nothing.
void wrapAroundToInt32();
// If this range exceeds [0, 32) range, at either or both ends, change
// it to the [0, 32) range. Otherwise do nothing.
void wrapAroundToShiftCount();
// If this range exceeds [0, 1] range, at either or both ends, change
// it to the [0, 1] range. Otherwise do nothing.
void wrapAroundToBoolean();
const SymbolicBound* symbolicLower() const {
return symbolicLower_;
}
const SymbolicBound* symbolicUpper() const {
return symbolicUpper_;
}
void setSymbolicLower(SymbolicBound* bound) {
symbolicLower_ = bound;
}
void setSymbolicUpper(SymbolicBound* bound) {
symbolicUpper_ = bound;
}
};
} // namespace jit
} // namespace js
#endif /* jit_RangeAnalysis_h */
|