1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/FoldLinearArithConstants.h"
#include "jit/IonAnalysis.h"
#include "jit/MIR.h"
#include "jit/MIRGenerator.h"
#include "jit/MIRGraph.h"
using namespace js;
using namespace jit;
namespace js {
namespace jit {
// Mark this node and its children as RecoveredOnBailout when they are not used.
// The marked nodes will be removed during DCE. Marking as RecoveredOnBailout is
// necessary because the Sink pass is ran before this pass.
static void
markNodesAsRecoveredOnBailout(MDefinition* def)
{
if (def->hasLiveDefUses() || !DeadIfUnused(def) || !def->canRecoverOnBailout())
return;
JitSpew(JitSpew_FLAC, "mark as recovered on bailout: %s%u", def->opName(), def->id());
def->setRecoveredOnBailoutUnchecked();
// Recursively mark nodes that do not have multiple uses. This loop is
// necessary because a node could be an unused right shift zero or an
// unused add, and both need to be marked as RecoveredOnBailout.
for (size_t i = 0; i < def->numOperands(); i++)
markNodesAsRecoveredOnBailout(def->getOperand(i));
}
// Fold AddIs with one variable and two or more constants into one AddI.
static void
AnalyzeAdd(TempAllocator& alloc, MAdd* add)
{
if (add->specialization() != MIRType::Int32 || add->isRecoveredOnBailout())
return;
if (!add->hasUses())
return;
JitSpew(JitSpew_FLAC, "analyze add: %s%u", add->opName(), add->id());
SimpleLinearSum sum = ExtractLinearSum(add);
if (sum.constant == 0 || !sum.term)
return;
// Determine which operand is the constant.
int idx = add->getOperand(0)->isConstant() ? 0 : 1 ;
if (add->getOperand(idx)->isConstant()) {
// Do not replace an add where the outcome is the same add instruction.
MOZ_ASSERT(add->getOperand(idx)->toConstant()->type() == MIRType::Int32);
if (sum.term == add->getOperand(1 - idx) ||
sum.constant == add->getOperand(idx)->toConstant()->toInt32())
{
return;
}
}
MInstruction* rhs = MConstant::New(alloc, Int32Value(sum.constant));
add->block()->insertBefore(add, rhs);
MAdd* addNew = MAdd::New(alloc, sum.term, rhs, MIRType::Int32);
add->replaceAllLiveUsesWith(addNew);
add->block()->insertBefore(add, addNew);
JitSpew(JitSpew_FLAC, "replaced with: %s%u", addNew->opName(), addNew->id());
JitSpew(JitSpew_FLAC, "and constant: %s%u (%d)", rhs->opName(), rhs->id(), sum.constant);
// Mark the stale nodes as RecoveredOnBailout since the Sink pass has
// been run before this pass. DCE will then remove the unused nodes.
markNodesAsRecoveredOnBailout(add);
}
bool
FoldLinearArithConstants(MIRGenerator* mir, MIRGraph& graph)
{
for (PostorderIterator block(graph.poBegin()); block != graph.poEnd(); block++) {
if (mir->shouldCancel("Fold Linear Arithmetic Constants (main loop)"))
return false;
for (MInstructionIterator i = block->begin(); i != block->end(); i++) {
if (!graph.alloc().ensureBallast())
return false;
if (mir->shouldCancel("Fold Linear Arithmetic Constants (inner loop)"))
return false;
if (i->isAdd())
AnalyzeAdd(graph.alloc(), i->toAdd());
}
}
return true;
}
} /* namespace jit */
} /* namespace js */
|