1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "frontend/FoldConstants.h"
#include "mozilla/FloatingPoint.h"
#include "jslibmath.h"
#include "frontend/ParseNode.h"
#include "frontend/Parser.h"
#include "js/Conversions.h"
#include "jscntxtinlines.h"
#include "jsobjinlines.h"
using namespace js;
using namespace js::frontend;
using mozilla::IsNaN;
using mozilla::IsNegative;
using mozilla::NegativeInfinity;
using mozilla::PositiveInfinity;
using JS::GenericNaN;
using JS::ToInt32;
using JS::ToUint32;
static bool
ContainsHoistedDeclaration(ExclusiveContext* cx, ParseNode* node, bool* result);
static bool
ListContainsHoistedDeclaration(ExclusiveContext* cx, ListNode* list, bool* result)
{
for (ParseNode* node = list->pn_head; node; node = node->pn_next) {
if (!ContainsHoistedDeclaration(cx, node, result))
return false;
if (*result)
return true;
}
*result = false;
return true;
}
// Determines whether the given ParseNode contains any declarations whose
// visibility will extend outside the node itself -- that is, whether the
// ParseNode contains any var statements.
//
// THIS IS NOT A GENERAL-PURPOSE FUNCTION. It is only written to work in the
// specific context of deciding that |node|, as one arm of a PNK_IF controlled
// by a constant condition, contains a declaration that forbids |node| being
// completely eliminated as dead.
static bool
ContainsHoistedDeclaration(ExclusiveContext* cx, ParseNode* node, bool* result)
{
JS_CHECK_RECURSION(cx, return false);
restart:
// With a better-typed AST, we would have distinct parse node classes for
// expressions and for statements and would characterize expressions with
// ExpressionKind and statements with StatementKind. Perhaps someday. In
// the meantime we must characterize every ParseNodeKind, even the
// expression/sub-expression ones that, if we handle all statement kinds
// correctly, we'll never see.
switch (node->getKind()) {
// Base case.
case PNK_VAR:
*result = true;
return true;
// Non-global lexical declarations are block-scoped (ergo not hoistable).
case PNK_LET:
case PNK_CONST:
MOZ_ASSERT(node->isArity(PN_LIST));
*result = false;
return true;
// Similarly to the lexical declarations above, classes cannot add hoisted
// declarations
case PNK_CLASS:
MOZ_ASSERT(node->isArity(PN_TERNARY));
*result = false;
return true;
// Function declarations *can* be hoisted declarations. But in the
// magical world of the rewritten frontend, the declaration necessitated
// by a nested function statement, not at body level, doesn't require
// that we preserve an unreachable function declaration node against
// dead-code removal.
case PNK_FUNCTION:
MOZ_ASSERT(node->isArity(PN_CODE));
*result = false;
return true;
case PNK_MODULE:
*result = false;
return true;
// Statements with no sub-components at all.
case PNK_NOP: // induced by function f() {} function f() {}
case PNK_DEBUGGER:
MOZ_ASSERT(node->isArity(PN_NULLARY));
*result = false;
return true;
// Statements containing only an expression have no declarations.
case PNK_SEMI:
case PNK_THROW:
case PNK_RETURN:
MOZ_ASSERT(node->isArity(PN_UNARY));
*result = false;
return true;
// These two aren't statements in the spec, but we sometimes insert them
// in statement lists anyway.
case PNK_INITIALYIELD:
case PNK_YIELD_STAR:
case PNK_YIELD:
MOZ_ASSERT(node->isArity(PN_UNARY));
*result = false;
return true;
// Other statements with no sub-statement components.
case PNK_BREAK:
case PNK_CONTINUE:
case PNK_IMPORT:
case PNK_IMPORT_SPEC_LIST:
case PNK_IMPORT_SPEC:
case PNK_EXPORT_FROM:
case PNK_EXPORT_DEFAULT:
case PNK_EXPORT_SPEC_LIST:
case PNK_EXPORT_SPEC:
case PNK_EXPORT:
case PNK_EXPORT_BATCH_SPEC:
*result = false;
return true;
// Statements possibly containing hoistable declarations only in the left
// half, in ParseNode terms -- the loop body in AST terms.
case PNK_DOWHILE:
return ContainsHoistedDeclaration(cx, node->pn_left, result);
// Statements possibly containing hoistable declarations only in the
// right half, in ParseNode terms -- the loop body or nested statement
// (usually a block statement), in AST terms.
case PNK_WHILE:
case PNK_WITH:
return ContainsHoistedDeclaration(cx, node->pn_right, result);
case PNK_LABEL:
return ContainsHoistedDeclaration(cx, node->pn_expr, result);
// Statements with more complicated structures.
// if-statement nodes may have hoisted declarations in their consequent
// and alternative components.
case PNK_IF: {
MOZ_ASSERT(node->isArity(PN_TERNARY));
ParseNode* consequent = node->pn_kid2;
if (!ContainsHoistedDeclaration(cx, consequent, result))
return false;
if (*result)
return true;
if ((node = node->pn_kid3))
goto restart;
*result = false;
return true;
}
// Legacy array and generator comprehensions use PNK_IF to represent
// conditions specified in the comprehension tail: for example,
// [x for (x in obj) if (x)]. The consequent of such PNK_IF nodes is
// either PNK_YIELD in a PNK_SEMI statement (generator comprehensions) or
// PNK_ARRAYPUSH (array comprehensions) . The first case is consistent
// with normal if-statement structure with consequent/alternative as
// statements. The second case is abnormal and requires that we not
// banish PNK_ARRAYPUSH to the unreachable list, handling it explicitly.
//
// We could require that this one weird PNK_ARRAYPUSH case be packaged in
// a PNK_SEMI, for consistency. That requires careful bytecode emitter
// adjustment that seems unwarranted for a deprecated feature.
case PNK_ARRAYPUSH:
*result = false;
return true;
// try-statements have statements to execute, and one or both of a
// catch-list and a finally-block.
case PNK_TRY: {
MOZ_ASSERT(node->isArity(PN_TERNARY));
MOZ_ASSERT(node->pn_kid2 || node->pn_kid3,
"must have either catch(es) or finally");
ParseNode* tryBlock = node->pn_kid1;
if (!ContainsHoistedDeclaration(cx, tryBlock, result))
return false;
if (*result)
return true;
if (ParseNode* catchList = node->pn_kid2) {
for (ParseNode* lexicalScope = catchList->pn_head;
lexicalScope;
lexicalScope = lexicalScope->pn_next)
{
MOZ_ASSERT(lexicalScope->isKind(PNK_LEXICALSCOPE));
ParseNode* catchNode = lexicalScope->pn_expr;
MOZ_ASSERT(catchNode->isKind(PNK_CATCH));
ParseNode* catchStatements = catchNode->pn_kid3;
if (!ContainsHoistedDeclaration(cx, catchStatements, result))
return false;
if (*result)
return true;
}
}
if (ParseNode* finallyBlock = node->pn_kid3)
return ContainsHoistedDeclaration(cx, finallyBlock, result);
*result = false;
return true;
}
// A switch node's left half is an expression; only its right half (a
// list of cases/defaults, or a block node) could contain hoisted
// declarations.
case PNK_SWITCH:
MOZ_ASSERT(node->isArity(PN_BINARY));
return ContainsHoistedDeclaration(cx, node->pn_right, result);
case PNK_CASE:
return ContainsHoistedDeclaration(cx, node->as<CaseClause>().statementList(), result);
case PNK_FOR:
case PNK_COMPREHENSIONFOR: {
MOZ_ASSERT(node->isArity(PN_BINARY));
ParseNode* loopHead = node->pn_left;
MOZ_ASSERT(loopHead->isKind(PNK_FORHEAD) ||
loopHead->isKind(PNK_FORIN) ||
loopHead->isKind(PNK_FOROF));
if (loopHead->isKind(PNK_FORHEAD)) {
// for (init?; cond?; update?), with only init possibly containing
// a hoisted declaration. (Note: a lexical-declaration |init| is
// (at present) hoisted in SpiderMonkey parlance -- but such
// hoisting doesn't extend outside of this statement, so it is not
// hoisting in the sense meant by ContainsHoistedDeclaration.)
MOZ_ASSERT(loopHead->isArity(PN_TERNARY));
ParseNode* init = loopHead->pn_kid1;
if (init && init->isKind(PNK_VAR)) {
*result = true;
return true;
}
} else {
MOZ_ASSERT(loopHead->isKind(PNK_FORIN) || loopHead->isKind(PNK_FOROF));
// for each? (target in ...), where only target may introduce
// hoisted declarations.
//
// -- or --
//
// for (target of ...), where only target may introduce hoisted
// declarations.
//
// Either way, if |target| contains a declaration, it's |loopHead|'s
// first kid.
MOZ_ASSERT(loopHead->isArity(PN_TERNARY));
ParseNode* decl = loopHead->pn_kid1;
if (decl && decl->isKind(PNK_VAR)) {
*result = true;
return true;
}
}
ParseNode* loopBody = node->pn_right;
return ContainsHoistedDeclaration(cx, loopBody, result);
}
case PNK_LEXICALSCOPE: {
MOZ_ASSERT(node->isArity(PN_SCOPE));
ParseNode* expr = node->pn_expr;
if (expr->isKind(PNK_FOR) || expr->isKind(PNK_FUNCTION))
return ContainsHoistedDeclaration(cx, expr, result);
MOZ_ASSERT(expr->isKind(PNK_STATEMENTLIST));
return ListContainsHoistedDeclaration(cx, &node->pn_expr->as<ListNode>(), result);
}
// List nodes with all non-null children.
case PNK_STATEMENTLIST:
return ListContainsHoistedDeclaration(cx, &node->as<ListNode>(), result);
// Grammar sub-components that should never be reached directly by this
// method, because some parent component should have asserted itself.
case PNK_OBJECT_PROPERTY_NAME:
case PNK_COMPUTED_NAME:
case PNK_SPREAD:
case PNK_MUTATEPROTO:
case PNK_COLON:
case PNK_SHORTHAND:
case PNK_CONDITIONAL:
case PNK_TYPEOFNAME:
case PNK_TYPEOFEXPR:
case PNK_AWAIT:
case PNK_VOID:
case PNK_NOT:
case PNK_BITNOT:
case PNK_DELETENAME:
case PNK_DELETEPROP:
case PNK_DELETEELEM:
case PNK_DELETEEXPR:
case PNK_DELETEOPTCHAIN:
case PNK_POS:
case PNK_NEG:
case PNK_PREINCREMENT:
case PNK_POSTINCREMENT:
case PNK_PREDECREMENT:
case PNK_POSTDECREMENT:
case PNK_COALESCE:
case PNK_OR:
case PNK_AND:
case PNK_BITOR:
case PNK_BITXOR:
case PNK_BITAND:
case PNK_STRICTEQ:
case PNK_EQ:
case PNK_STRICTNE:
case PNK_NE:
case PNK_LT:
case PNK_LE:
case PNK_GT:
case PNK_GE:
case PNK_INSTANCEOF:
case PNK_IN:
case PNK_LSH:
case PNK_RSH:
case PNK_URSH:
case PNK_ADD:
case PNK_SUB:
case PNK_STAR:
case PNK_DIV:
case PNK_MOD:
case PNK_POW:
case PNK_ASSIGN:
case PNK_ADDASSIGN:
case PNK_SUBASSIGN:
case PNK_BITORASSIGN:
case PNK_BITXORASSIGN:
case PNK_BITANDASSIGN:
case PNK_LSHASSIGN:
case PNK_RSHASSIGN:
case PNK_URSHASSIGN:
case PNK_MULASSIGN:
case PNK_DIVASSIGN:
case PNK_MODASSIGN:
case PNK_POWASSIGN:
case PNK_COMMA:
case PNK_ARRAY:
case PNK_OBJECT:
case PNK_DOT:
case PNK_ELEM:
case PNK_CALL:
case PNK_OPTCHAIN:
case PNK_OPTDOT:
case PNK_OPTELEM:
case PNK_OPTCALL:
case PNK_NAME:
case PNK_TEMPLATE_STRING:
case PNK_TEMPLATE_STRING_LIST:
case PNK_TAGGED_TEMPLATE:
case PNK_CALLSITEOBJ:
case PNK_STRING:
case PNK_REGEXP:
case PNK_TRUE:
case PNK_FALSE:
case PNK_NULL:
case PNK_RAW_UNDEFINED:
case PNK_THIS:
case PNK_ELISION:
case PNK_NUMBER:
case PNK_NEW:
case PNK_GENERATOR:
case PNK_GENEXP:
case PNK_ARRAYCOMP:
case PNK_PARAMSBODY:
case PNK_CATCHLIST:
case PNK_CATCH:
case PNK_FORIN:
case PNK_FOROF:
case PNK_FORHEAD:
case PNK_CLASSMETHOD:
case PNK_CLASSMETHODLIST:
case PNK_CLASSNAMES:
case PNK_NEWTARGET:
case PNK_POSHOLDER:
case PNK_SUPERCALL:
case PNK_SUPERBASE:
case PNK_SETTHIS:
MOZ_CRASH("ContainsHoistedDeclaration should have indicated false on "
"some parent node without recurring to test this node");
case PNK_LIMIT: // invalid sentinel value
MOZ_CRASH("unexpected PNK_LIMIT in node");
}
MOZ_CRASH("invalid node kind");
}
/*
* Fold from one constant type to another.
* XXX handles only strings and numbers for now
*/
static bool
FoldType(ExclusiveContext* cx, ParseNode* pn, ParseNodeKind kind)
{
if (!pn->isKind(kind)) {
switch (kind) {
case PNK_NUMBER:
if (pn->isKind(PNK_STRING)) {
double d;
if (!StringToNumber(cx, pn->pn_atom, &d))
return false;
pn->pn_dval = d;
pn->setKind(PNK_NUMBER);
pn->setOp(JSOP_DOUBLE);
}
break;
case PNK_STRING:
if (pn->isKind(PNK_NUMBER)) {
pn->pn_atom = NumberToAtom(cx, pn->pn_dval);
if (!pn->pn_atom)
return false;
pn->setKind(PNK_STRING);
pn->setOp(JSOP_STRING);
}
break;
default:;
}
}
return true;
}
// Remove a ParseNode, **pnp, from a parse tree, putting another ParseNode,
// *pn, in its place.
//
// pnp points to a ParseNode pointer. This must be the only pointer that points
// to the parse node being replaced. The replacement, *pn, is unchanged except
// for its pn_next pointer; updating that is necessary if *pn's new parent is a
// list node.
static void
ReplaceNode(ParseNode** pnp, ParseNode* pn)
{
pn->pn_next = (*pnp)->pn_next;
*pnp = pn;
}
static bool
IsEffectless(ParseNode* node)
{
return node->isKind(PNK_TRUE) ||
node->isKind(PNK_FALSE) ||
node->isKind(PNK_STRING) ||
node->isKind(PNK_TEMPLATE_STRING) ||
node->isKind(PNK_NUMBER) ||
node->isKind(PNK_NULL) ||
node->isKind(PNK_RAW_UNDEFINED) ||
node->isKind(PNK_FUNCTION) ||
node->isKind(PNK_GENEXP);
}
enum Truthiness { Truthy, Falsy, Unknown };
static Truthiness
Boolish(ParseNode* pn, bool isNullish = false)
{
switch (pn->getKind()) {
case PNK_NUMBER: {
bool isNonZeroNumber = (pn->pn_dval != 0 && !IsNaN(pn->pn_dval));
return (isNullish || isNonZeroNumber) ? Truthy : Falsy;
}
case PNK_STRING:
case PNK_TEMPLATE_STRING: {
bool isNonZeroLengthString = (pn->pn_atom->length() > 0);
return (isNullish || isNonZeroLengthString) ? Truthy : Falsy;
}
case PNK_TRUE:
case PNK_FUNCTION:
case PNK_GENEXP:
return Truthy;
case PNK_FALSE:
return isNullish ? Truthy : Falsy;
case PNK_NULL:
case PNK_RAW_UNDEFINED:
return Falsy;
case PNK_VOID: {
// |void <foo>| evaluates to |undefined| which isn't truthy. But the
// sense of this method requires that the expression be literally
// replaceable with true/false: not the case if the nested expression
// is effectful, might throw, &c. Walk past the |void| (and nested
// |void| expressions, for good measure) and check that the nested
// expression doesn't break this requirement before indicating falsity.
do {
pn = pn->pn_kid;
} while (pn->isKind(PNK_VOID));
return IsEffectless(pn) ? Falsy : Unknown;
}
default:
return Unknown;
}
}
static bool
Fold(ExclusiveContext* cx, ParseNode** pnp, Parser<FullParseHandler>& parser, bool inGenexpLambda);
static bool
FoldCondition(ExclusiveContext* cx, ParseNode** nodePtr, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
// Conditions fold like any other expression...
if (!Fold(cx, nodePtr, parser, inGenexpLambda))
return false;
// ...but then they sometimes can be further folded to constants.
ParseNode* node = *nodePtr;
Truthiness t = Boolish(node);
if (t != Unknown) {
// We can turn function nodes into constant nodes here, but mutating
// function nodes is tricky --- in particular, mutating a function node
// that appears on a method list corrupts the method list. However,
// methods are M's in statements of the form 'this.foo = M;', which we
// never fold, so we're okay.
parser.prepareNodeForMutation(node);
if (t == Truthy) {
node->setKind(PNK_TRUE);
node->setOp(JSOP_TRUE);
} else {
node->setKind(PNK_FALSE);
node->setOp(JSOP_FALSE);
}
node->setArity(PN_NULLARY);
}
return true;
}
static bool
FoldTypeOfExpr(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_TYPEOFEXPR));
MOZ_ASSERT(node->isArity(PN_UNARY));
ParseNode*& expr = node->pn_kid;
if (!Fold(cx, &expr, parser, inGenexpLambda))
return false;
// Constant-fold the entire |typeof| if given a constant with known type.
RootedPropertyName result(cx);
if (expr->isKind(PNK_STRING) || expr->isKind(PNK_TEMPLATE_STRING))
result = cx->names().string;
else if (expr->isKind(PNK_NUMBER))
result = cx->names().number;
else if (expr->isKind(PNK_NULL))
result = cx->names().object;
else if (expr->isKind(PNK_TRUE) || expr->isKind(PNK_FALSE))
result = cx->names().boolean;
else if (expr->isKind(PNK_FUNCTION))
result = cx->names().function;
if (result) {
parser.prepareNodeForMutation(node);
node->setKind(PNK_STRING);
node->setArity(PN_NULLARY);
node->setOp(JSOP_NOP);
node->pn_atom = result;
}
return true;
}
static bool
FoldDeleteExpr(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_DELETEEXPR));
MOZ_ASSERT(node->isArity(PN_UNARY));
ParseNode*& expr = node->pn_kid;
if (!Fold(cx, &expr, parser, inGenexpLambda))
return false;
// Expression deletion evaluates the expression, then evaluates to true.
// For effectless expressions, eliminate the expression evaluation.
if (IsEffectless(expr)) {
parser.prepareNodeForMutation(node);
node->setKind(PNK_TRUE);
node->setArity(PN_NULLARY);
node->setOp(JSOP_TRUE);
}
return true;
}
static bool
FoldDeleteElement(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_DELETEELEM));
MOZ_ASSERT(node->isArity(PN_UNARY));
MOZ_ASSERT(node->pn_kid->isKind(PNK_ELEM));
ParseNode*& expr = node->pn_kid;
if (!Fold(cx, &expr, parser, inGenexpLambda))
return false;
// If we're deleting an element, but constant-folding converted our
// element reference into a dotted property access, we must *also*
// morph the node's kind.
//
// In principle this also applies to |super["foo"] -> super.foo|,
// but we don't constant-fold |super["foo"]| yet.
MOZ_ASSERT(expr->isKind(PNK_ELEM) || expr->isKind(PNK_DOT));
if (expr->isKind(PNK_DOT))
node->setKind(PNK_DELETEPROP);
return true;
}
static bool
FoldDeleteProperty(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_DELETEPROP));
MOZ_ASSERT(node->isArity(PN_UNARY));
MOZ_ASSERT(node->pn_kid->isKind(PNK_DOT));
ParseNode*& expr = node->pn_kid;
#ifdef DEBUG
ParseNodeKind oldKind = expr->getKind();
#endif
if (!Fold(cx, &expr, parser, inGenexpLambda))
return false;
MOZ_ASSERT(expr->isKind(oldKind),
"kind should have remained invariant under folding");
return true;
}
static bool
FoldNot(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_NOT));
MOZ_ASSERT(node->isArity(PN_UNARY));
ParseNode*& expr = node->pn_kid;
if (!FoldCondition(cx, &expr, parser, inGenexpLambda))
return false;
if (expr->isKind(PNK_NUMBER)) {
double d = expr->pn_dval;
parser.prepareNodeForMutation(node);
if (d == 0 || IsNaN(d)) {
node->setKind(PNK_TRUE);
node->setOp(JSOP_TRUE);
} else {
node->setKind(PNK_FALSE);
node->setOp(JSOP_FALSE);
}
node->setArity(PN_NULLARY);
} else if (expr->isKind(PNK_TRUE) || expr->isKind(PNK_FALSE)) {
bool newval = !expr->isKind(PNK_TRUE);
parser.prepareNodeForMutation(node);
node->setKind(newval ? PNK_TRUE : PNK_FALSE);
node->setArity(PN_NULLARY);
node->setOp(newval ? JSOP_TRUE : JSOP_FALSE);
}
return true;
}
static bool
FoldUnaryArithmetic(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_BITNOT) || node->isKind(PNK_POS) || node->isKind(PNK_NEG),
"need a different method for this node kind");
MOZ_ASSERT(node->isArity(PN_UNARY));
ParseNode*& expr = node->pn_kid;
if (!Fold(cx, &expr, parser, inGenexpLambda))
return false;
if (expr->isKind(PNK_NUMBER) || expr->isKind(PNK_TRUE) || expr->isKind(PNK_FALSE)) {
double d = expr->isKind(PNK_NUMBER)
? expr->pn_dval
: double(expr->isKind(PNK_TRUE));
if (node->isKind(PNK_BITNOT))
d = ~ToInt32(d);
else if (node->isKind(PNK_NEG))
d = -d;
else
MOZ_ASSERT(node->isKind(PNK_POS)); // nothing to do
parser.prepareNodeForMutation(node);
node->setKind(PNK_NUMBER);
node->setOp(JSOP_DOUBLE);
node->setArity(PN_NULLARY);
node->pn_dval = d;
}
return true;
}
static bool
FoldIncrementDecrement(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_PREINCREMENT) ||
node->isKind(PNK_POSTINCREMENT) ||
node->isKind(PNK_PREDECREMENT) ||
node->isKind(PNK_POSTDECREMENT));
MOZ_ASSERT(node->isArity(PN_UNARY));
ParseNode*& target = node->pn_kid;
MOZ_ASSERT(parser.isValidSimpleAssignmentTarget(target, Parser<FullParseHandler>::PermitAssignmentToFunctionCalls));
if (!Fold(cx, &target, parser, inGenexpLambda))
return false;
MOZ_ASSERT(parser.isValidSimpleAssignmentTarget(target, Parser<FullParseHandler>::PermitAssignmentToFunctionCalls));
return true;
}
static bool
FoldLogical(ExclusiveContext* cx, ParseNode** nodePtr, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
ParseNode* node = *nodePtr;
bool isCoalesceNode = node->isKind(PNK_COALESCE);
bool isOrNode = node->isKind(PNK_OR);
bool isAndNode = node->isKind(PNK_AND);
MOZ_ASSERT(isCoalesceNode || isOrNode || isAndNode);
MOZ_ASSERT(node->isArity(PN_LIST));
ParseNode** elem = &node->pn_head;
do {
if (!Fold(cx, elem, parser, inGenexpLambda))
return false;
Truthiness t = Boolish(*elem, isCoalesceNode);
// If we don't know the constant-folded node's truthiness, we can't
// reduce this node with its surroundings. Continue folding any
// remaining nodes.
if (t == Unknown) {
elem = &(*elem)->pn_next;
continue;
}
bool terminateEarly = (isOrNode && t == Truthy) ||
(isAndNode && t == Falsy) ||
(isCoalesceNode && t == Truthy);
// If the constant-folded node's truthiness will terminate the
// condition -- `a || true || expr` or `b && false && expr` or
// `false ?? c ?? expr` -- then trailing nodes will never be
// evaluated. Truncate the list after the known-truthiness node,
// as it's the overall result.
if (terminateEarly) {
ParseNode* afterNext;
for (ParseNode* next = (*elem)->pn_next; next; next = afterNext) {
afterNext = next->pn_next;
parser.handler.freeTree(next);
--node->pn_count;
}
// Terminate the original and/or list at the known-truthiness
// node.
(*elem)->pn_next = nullptr;
elem = &(*elem)->pn_next;
break;
}
// We've encountered a vacuous node that'll never short- circuit
// evaluation.
if ((*elem)->pn_next) {
// This node is never the overall result when there are
// subsequent nodes. Remove it.
ParseNode* elt = *elem;
*elem = elt->pn_next;
parser.handler.freeTree(elt);
--node->pn_count;
} else {
// Otherwise this node is the result of the overall expression,
// so leave it alone. And we're done.
elem = &(*elem)->pn_next;
break;
}
} while (*elem);
// If the last node in the list was replaced, we need to update the
// tail pointer in the original and/or node.
node->pn_tail = elem;
node->checkListConsistency();
// If we removed nodes, we may have to replace a one-element list with
// its element.
if (node->pn_count == 1) {
ParseNode* first = node->pn_head;
ReplaceNode(nodePtr, first);
node->setKind(PNK_NULL);
node->setArity(PN_NULLARY);
parser.freeTree(node);
}
return true;
}
static bool
FoldConditional(ExclusiveContext* cx, ParseNode** nodePtr, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
ParseNode** nextNode = nodePtr;
do {
// |nextNode| on entry points to the C?T:F expression to be folded.
// Reset it to exit the loop in the common case where F isn't another
// ?: expression.
nodePtr = nextNode;
nextNode = nullptr;
ParseNode* node = *nodePtr;
MOZ_ASSERT(node->isKind(PNK_CONDITIONAL));
MOZ_ASSERT(node->isArity(PN_TERNARY));
ParseNode*& expr = node->pn_kid1;
if (!FoldCondition(cx, &expr, parser, inGenexpLambda))
return false;
ParseNode*& ifTruthy = node->pn_kid2;
if (!Fold(cx, &ifTruthy, parser, inGenexpLambda))
return false;
ParseNode*& ifFalsy = node->pn_kid3;
// If our C?T:F node has F as another ?: node, *iteratively* constant-
// fold F *after* folding C and T (and possibly eliminating C and one
// of T/F entirely); otherwise fold F normally. Making |nextNode| non-
// null causes this loop to run again to fold F.
//
// Conceivably we could instead/also iteratively constant-fold T, if T
// were more complex than F. Such an optimization is unimplemented.
if (ifFalsy->isKind(PNK_CONDITIONAL)) {
nextNode = &ifFalsy;
} else {
if (!Fold(cx, &ifFalsy, parser, inGenexpLambda))
return false;
}
// Try to constant-fold based on the condition expression.
Truthiness t = Boolish(expr);
if (t == Unknown)
continue;
// Otherwise reduce 'C ? T : F' to T or F as directed by C.
ParseNode* replacement;
ParseNode* discarded;
if (t == Truthy) {
replacement = ifTruthy;
discarded = ifFalsy;
} else {
replacement = ifFalsy;
discarded = ifTruthy;
}
// Otherwise perform a replacement. This invalidates |nextNode|, so
// reset it (if the replacement requires folding) or clear it (if
// |ifFalsy| is dead code) as needed.
if (nextNode)
nextNode = (*nextNode == replacement) ? nodePtr : nullptr;
ReplaceNode(nodePtr, replacement);
parser.freeTree(discarded);
} while (nextNode);
return true;
}
static bool
FoldIf(ExclusiveContext* cx, ParseNode** nodePtr, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
ParseNode** nextNode = nodePtr;
do {
// |nextNode| on entry points to the initial |if| to be folded. Reset
// it to exit the loop when the |else| arm isn't another |if|.
nodePtr = nextNode;
nextNode = nullptr;
ParseNode* node = *nodePtr;
MOZ_ASSERT(node->isKind(PNK_IF));
MOZ_ASSERT(node->isArity(PN_TERNARY));
ParseNode*& expr = node->pn_kid1;
if (!FoldCondition(cx, &expr, parser, inGenexpLambda))
return false;
ParseNode*& consequent = node->pn_kid2;
if (!Fold(cx, &consequent, parser, inGenexpLambda))
return false;
ParseNode*& alternative = node->pn_kid3;
if (alternative) {
// If in |if (C) T; else F;| we have |F| as another |if|,
// *iteratively* constant-fold |F| *after* folding |C| and |T| (and
// possibly completely replacing the whole thing with |T| or |F|);
// otherwise fold F normally. Making |nextNode| non-null causes
// this loop to run again to fold F.
if (alternative->isKind(PNK_IF)) {
nextNode = &alternative;
} else {
if (!Fold(cx, &alternative, parser, inGenexpLambda))
return false;
}
}
// Eliminate the consequent or alternative if the condition has
// constant truthiness. Don't eliminate if we have an |if (0)| in
// trailing position in a generator expression, as this is a special
// form we can't fold away.
Truthiness t = Boolish(expr);
if (t == Unknown || inGenexpLambda)
continue;
// Careful! Either of these can be null: |replacement| in |if (0) T;|,
// and |discarded| in |if (true) T;|.
ParseNode* replacement;
ParseNode* discarded;
if (t == Truthy) {
replacement = consequent;
discarded = alternative;
} else {
replacement = alternative;
discarded = consequent;
}
bool performReplacement = true;
if (discarded) {
// A declaration that hoists outside the discarded arm prevents the
// |if| from being folded away.
bool containsHoistedDecls;
if (!ContainsHoistedDeclaration(cx, discarded, &containsHoistedDecls))
return false;
performReplacement = !containsHoistedDecls;
}
if (!performReplacement)
continue;
if (!replacement) {
// If there's no replacement node, we have a constantly-false |if|
// with no |else|. Replace the entire thing with an empty
// statement list.
parser.prepareNodeForMutation(node);
node->setKind(PNK_STATEMENTLIST);
node->setArity(PN_LIST);
node->makeEmpty();
} else {
// Replacement invalidates |nextNode|, so reset it (if the
// replacement requires folding) or clear it (if |alternative|
// is dead code) as needed.
if (nextNode)
nextNode = (*nextNode == replacement) ? nodePtr : nullptr;
ReplaceNode(nodePtr, replacement);
// Morph the original node into a discardable node, then
// aggressively free it and the discarded arm (if any) to suss out
// any bugs in the preceding logic.
node->setKind(PNK_STATEMENTLIST);
node->setArity(PN_LIST);
node->makeEmpty();
if (discarded)
node->append(discarded);
parser.freeTree(node);
}
} while (nextNode);
return true;
}
static bool
FoldFunction(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_FUNCTION));
MOZ_ASSERT(node->isArity(PN_CODE));
// Don't constant-fold inside "use asm" code, as this could create a parse
// tree that doesn't type-check as asm.js.
if (node->pn_funbox->useAsmOrInsideUseAsm())
return true;
// Note: pn_body is null for lazily-parsed functions.
if (ParseNode*& functionBody = node->pn_body) {
if (!Fold(cx, &functionBody, parser, node->pn_funbox->isGenexpLambda))
return false;
}
return true;
}
static double
ComputeBinary(ParseNodeKind kind, double left, double right)
{
if (kind == PNK_ADD)
return left + right;
if (kind == PNK_SUB)
return left - right;
if (kind == PNK_STAR)
return left * right;
if (kind == PNK_MOD)
return right == 0 ? GenericNaN() : js_fmod(left, right);
if (kind == PNK_URSH)
return ToUint32(left) >> (ToUint32(right) & 31);
if (kind == PNK_DIV) {
if (right == 0) {
#if defined(XP_WIN)
/* XXX MSVC miscompiles such that (NaN == 0) */
if (IsNaN(right))
return GenericNaN();
#endif
if (left == 0 || IsNaN(left))
return GenericNaN();
if (IsNegative(left) != IsNegative(right))
return NegativeInfinity<double>();
return PositiveInfinity<double>();
}
return left / right;
}
MOZ_ASSERT(kind == PNK_LSH || kind == PNK_RSH);
int32_t i = ToInt32(left);
uint32_t j = ToUint32(right) & 31;
return int32_t((kind == PNK_LSH) ? uint32_t(i) << j : i >> j);
}
static bool
FoldModule(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser)
{
MOZ_ASSERT(node->isKind(PNK_MODULE));
MOZ_ASSERT(node->isArity(PN_CODE));
ParseNode*& moduleBody = node->pn_body;
MOZ_ASSERT(moduleBody);
return Fold(cx, &moduleBody, parser, false);
}
static bool
FoldBinaryArithmetic(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_SUB) ||
node->isKind(PNK_STAR) ||
node->isKind(PNK_LSH) ||
node->isKind(PNK_RSH) ||
node->isKind(PNK_URSH) ||
node->isKind(PNK_DIV) ||
node->isKind(PNK_MOD));
MOZ_ASSERT(node->isArity(PN_LIST));
MOZ_ASSERT(node->pn_count >= 2);
// Fold each operand, ideally into a number.
ParseNode** listp = &node->pn_head;
for (; *listp; listp = &(*listp)->pn_next) {
if (!Fold(cx, listp, parser, inGenexpLambda))
return false;
if (!FoldType(cx, *listp, PNK_NUMBER))
return false;
}
// Repoint the list's tail pointer.
node->pn_tail = listp;
// Now fold all leading numeric terms together into a single number.
// (Trailing terms for the non-shift operations can't be folded together
// due to floating point imprecision. For example, if |x === -2**53|,
// |x - 1 - 1 === -2**53| but |x - 2 === -2**53 - 2|. Shifts could be
// folded, but it doesn't seem worth the effort.)
ParseNode* elem = node->pn_head;
ParseNode* next = elem->pn_next;
if (elem->isKind(PNK_NUMBER)) {
ParseNodeKind kind = node->getKind();
while (true) {
if (!next || !next->isKind(PNK_NUMBER))
break;
double d = ComputeBinary(kind, elem->pn_dval, next->pn_dval);
ParseNode* afterNext = next->pn_next;
parser.freeTree(next);
next = afterNext;
elem->pn_next = next;
elem->setKind(PNK_NUMBER);
elem->setOp(JSOP_DOUBLE);
elem->setArity(PN_NULLARY);
elem->pn_dval = d;
node->pn_count--;
}
if (node->pn_count == 1) {
MOZ_ASSERT(node->pn_head == elem);
MOZ_ASSERT(elem->isKind(PNK_NUMBER));
double d = elem->pn_dval;
node->setKind(PNK_NUMBER);
node->setArity(PN_NULLARY);
node->setOp(JSOP_DOUBLE);
node->pn_dval = d;
parser.freeTree(elem);
}
}
return true;
}
static bool
FoldExponentiation(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_POW));
MOZ_ASSERT(node->isArity(PN_LIST));
MOZ_ASSERT(node->pn_count >= 2);
// Fold each operand, ideally into a number.
ParseNode** listp = &node->pn_head;
for (; *listp; listp = &(*listp)->pn_next) {
if (!Fold(cx, listp, parser, inGenexpLambda))
return false;
if (!FoldType(cx, *listp, PNK_NUMBER))
return false;
}
// Repoint the list's tail pointer.
node->pn_tail = listp;
// Unlike all other binary arithmetic operators, ** is right-associative:
// 2**3**5 is 2**(3**5), not (2**3)**5. As list nodes singly-link their
// children, full constant-folding requires either linear space or dodgy
// in-place linked list reversal. So we only fold one exponentiation: it's
// easy and addresses common cases like |2**32|.
if (node->pn_count > 2)
return true;
ParseNode* base = node->pn_head;
ParseNode* exponent = base->pn_next;
if (!base->isKind(PNK_NUMBER) || !exponent->isKind(PNK_NUMBER))
return true;
double d1 = base->pn_dval, d2 = exponent->pn_dval;
parser.prepareNodeForMutation(node);
node->setKind(PNK_NUMBER);
node->setArity(PN_NULLARY);
node->setOp(JSOP_DOUBLE);
node->pn_dval = ecmaPow(d1, d2);
return true;
}
static bool
FoldList(ExclusiveContext* cx, ParseNode* list, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(list->isArity(PN_LIST));
ParseNode** elem = &list->pn_head;
for (; *elem; elem = &(*elem)->pn_next) {
if (!Fold(cx, elem, parser, inGenexpLambda))
return false;
}
// Repoint the list's tail pointer if the final element was replaced.
list->pn_tail = elem;
list->checkListConsistency();
return true;
}
static bool
FoldReturn(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_RETURN));
MOZ_ASSERT(node->isArity(PN_UNARY));
if (ParseNode*& expr = node->pn_kid) {
if (!Fold(cx, &expr, parser, inGenexpLambda))
return false;
}
return true;
}
static bool
FoldTry(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_TRY));
MOZ_ASSERT(node->isArity(PN_TERNARY));
ParseNode*& statements = node->pn_kid1;
if (!Fold(cx, &statements, parser, inGenexpLambda))
return false;
if (ParseNode*& catchList = node->pn_kid2) {
if (!Fold(cx, &catchList, parser, inGenexpLambda))
return false;
}
if (ParseNode*& finally = node->pn_kid3) {
if (!Fold(cx, &finally, parser, inGenexpLambda))
return false;
}
return true;
}
static bool
FoldCatch(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_CATCH));
MOZ_ASSERT(node->isArity(PN_TERNARY));
if (ParseNode*& declPattern = node->pn_kid1) {
if (!Fold(cx, &declPattern, parser, inGenexpLambda))
return false;
}
if (ParseNode*& cond = node->pn_kid2) {
if (!FoldCondition(cx, &cond, parser, inGenexpLambda))
return false;
}
if (ParseNode*& statements = node->pn_kid3) {
if (!Fold(cx, &statements, parser, inGenexpLambda))
return false;
}
return true;
}
static bool
FoldClass(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_CLASS));
MOZ_ASSERT(node->isArity(PN_TERNARY));
if (ParseNode*& classNames = node->pn_kid1) {
if (!Fold(cx, &classNames, parser, inGenexpLambda))
return false;
}
if (ParseNode*& heritage = node->pn_kid2) {
if (!Fold(cx, &heritage, parser, inGenexpLambda))
return false;
}
ParseNode*& body = node->pn_kid3;
return Fold(cx, &body, parser, inGenexpLambda);
}
static bool
FoldElement(ExclusiveContext* cx, ParseNode** nodePtr, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
ParseNode* node = *nodePtr;
MOZ_ASSERT(node->isKind(PNK_ELEM) || node->isKind(PNK_OPTELEM));
MOZ_ASSERT(node->isArity(PN_BINARY));
ParseNode*& expr = node->pn_left;
if (!Fold(cx, &expr, parser, inGenexpLambda))
return false;
ParseNode*& key = node->pn_right;
if (!Fold(cx, &key, parser, inGenexpLambda))
return false;
PropertyName* name = nullptr;
if (key->isKind(PNK_STRING)) {
JSAtom* atom = key->pn_atom;
uint32_t index;
if (atom->isIndex(&index)) {
// Optimization 1: We have something like expr["100"]. This is
// equivalent to expr[100] which is faster.
key->setKind(PNK_NUMBER);
key->setOp(JSOP_DOUBLE);
key->pn_dval = index;
} else {
name = atom->asPropertyName();
}
} else if (key->isKind(PNK_NUMBER)) {
double number = key->pn_dval;
if (number != ToUint32(number)) {
// Optimization 2: We have something like expr[3.14]. The number
// isn't an array index, so it converts to a string ("3.14"),
// enabling optimization 3 below.
JSAtom* atom = ToAtom<NoGC>(cx, DoubleValue(number));
if (!atom)
return false;
name = atom->asPropertyName();
}
}
// If we don't have a name, we can't optimize to getprop.
if (!name)
return true;
// Optimization 3: We have expr["foo"] where foo is not an index. Convert
// to a property access (like expr.foo) that optimizes better downstream.
ParseNode* dottedAccess;
if (node->isKind(PNK_OPTELEM)) {
dottedAccess = parser.handler.newOptionalPropertyAccess(expr, name, node->pn_pos.end);
} else {
dottedAccess = parser.handler.newPropertyAccess(expr, name, node->pn_pos.end);
}
if (!dottedAccess) {
return false;
}
dottedAccess->setInParens(node->isInParens());
ReplaceNode(nodePtr, dottedAccess);
// If we've replaced |expr["prop"]| with |expr.prop|, we can now free the
// |"prop"| and |expr["prop"]| nodes -- but not the |expr| node that we're
// now using as a sub-node of |dottedAccess|. Munge |expr["prop"]| into a
// node with |"prop"| as its only child, that'll pass AST sanity-checking
// assertions during freeing, then free it.
node->setKind(PNK_TYPEOFEXPR);
node->setArity(PN_UNARY);
node->pn_kid = key;
parser.freeTree(node);
return true;
}
static bool
FoldAdd(ExclusiveContext* cx, ParseNode** nodePtr, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
ParseNode* node = *nodePtr;
MOZ_ASSERT(node->isKind(PNK_ADD));
MOZ_ASSERT(node->isArity(PN_LIST));
MOZ_ASSERT(node->pn_count >= 2);
// Generically fold all operands first.
if (!FoldList(cx, node, parser, inGenexpLambda))
return false;
// Fold leading numeric operands together:
//
// (1 + 2 + x) becomes (3 + x)
//
// Don't go past the leading operands: additions after a string are
// string concatenations, not additions: ("1" + 2 + 3 === "123").
ParseNode* current = node->pn_head;
ParseNode* next = current->pn_next;
if (current->isKind(PNK_NUMBER)) {
do {
if (!next->isKind(PNK_NUMBER))
break;
current->pn_dval += next->pn_dval;
current->pn_next = next->pn_next;
parser.freeTree(next);
next = current->pn_next;
MOZ_ASSERT(node->pn_count > 1);
node->pn_count--;
} while (next);
}
// If any operands remain, attempt string concatenation folding.
do {
// If no operands remain, we're done.
if (!next)
break;
// (number + string) is string concatenation *only* at the start of
// the list: (x + 1 + "2" !== x + "12") when x is a number.
if (current->isKind(PNK_NUMBER) && next->isKind(PNK_STRING)) {
if (!FoldType(cx, current, PNK_STRING))
return false;
next = current->pn_next;
}
// The first string forces all subsequent additions to be
// string concatenations.
do {
if (current->isKind(PNK_STRING))
break;
current = next;
next = next->pn_next;
} while (next);
// If there's nothing left to fold, we're done.
if (!next)
break;
RootedString combination(cx);
RootedString tmp(cx);
do {
// Create a rope of the current string and all succeeding
// constants that we can convert to strings, then atomize it
// and replace them all with that fresh string.
MOZ_ASSERT(current->isKind(PNK_STRING));
combination = current->pn_atom;
do {
// Try folding the next operand to a string.
if (!FoldType(cx, next, PNK_STRING))
return false;
// Stop glomming once folding doesn't produce a string.
if (!next->isKind(PNK_STRING))
break;
// Add this string to the combination and remove the node.
tmp = next->pn_atom;
combination = ConcatStrings<CanGC>(cx, combination, tmp);
if (!combination)
return false;
current->pn_next = next->pn_next;
parser.freeTree(next);
next = current->pn_next;
MOZ_ASSERT(node->pn_count > 1);
node->pn_count--;
} while (next);
// Replace |current|'s string with the entire combination.
MOZ_ASSERT(current->isKind(PNK_STRING));
combination = AtomizeString(cx, combination);
if (!combination)
return false;
current->pn_atom = &combination->asAtom();
// If we're out of nodes, we're done.
if (!next)
break;
current = next;
next = current->pn_next;
// If we're out of nodes *after* the non-foldable-to-string
// node, we're done.
if (!next)
break;
// Otherwise find the next node foldable to a string, and loop.
do {
current = next;
next = current->pn_next;
if (!FoldType(cx, current, PNK_STRING))
return false;
next = current->pn_next;
} while (!current->isKind(PNK_STRING) && next);
} while (next);
} while (false);
MOZ_ASSERT(!next, "must have considered all nodes here");
MOZ_ASSERT(!current->pn_next, "current node must be the last node");
node->pn_tail = ¤t->pn_next;
node->checkListConsistency();
if (node->pn_count == 1) {
// We reduced the list to a constant. Replace the PNK_ADD node
// with that constant.
ReplaceNode(nodePtr, current);
// Free the old node to aggressively verify nothing uses it.
node->setKind(PNK_TRUE);
node->setArity(PN_NULLARY);
node->setOp(JSOP_TRUE);
parser.freeTree(node);
}
return true;
}
static bool
FoldCall(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_CALL) ||
node->isKind(PNK_OPTCALL) ||
node->isKind(PNK_SUPERCALL) ||
node->isKind(PNK_TAGGED_TEMPLATE));
MOZ_ASSERT(node->isArity(PN_LIST));
// Don't fold a parenthesized callable component in an invocation, as this
// might cause a different |this| value to be used, changing semantics:
//
// var prop = "global";
// var obj = { prop: "obj", f: function() { return this.prop; } };
// assertEq((true ? obj.f : null)(), "global");
// assertEq(obj.f(), "obj");
// assertEq((true ? obj.f : null)``, "global");
// assertEq(obj.f``, "obj");
//
// See bug 537673 and bug 1182373.
ParseNode** listp = &node->pn_head;
if ((*listp)->isInParens())
listp = &(*listp)->pn_next;
for (; *listp; listp = &(*listp)->pn_next) {
if (!Fold(cx, listp, parser, inGenexpLambda))
return false;
}
// If the last node in the list was replaced, pn_tail points into the wrong node.
node->pn_tail = listp;
node->checkListConsistency();
return true;
}
static bool
FoldForInOrOf(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_FORIN) || node->isKind(PNK_FOROF));
MOZ_ASSERT(node->isArity(PN_TERNARY));
MOZ_ASSERT(!node->pn_kid2);
return Fold(cx, &node->pn_kid1, parser, inGenexpLambda) &&
Fold(cx, &node->pn_kid3, parser, inGenexpLambda);
}
static bool
FoldForHead(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_FORHEAD));
MOZ_ASSERT(node->isArity(PN_TERNARY));
if (ParseNode*& init = node->pn_kid1) {
if (!Fold(cx, &init, parser, inGenexpLambda))
return false;
}
if (ParseNode*& test = node->pn_kid2) {
if (!FoldCondition(cx, &test, parser, inGenexpLambda))
return false;
if (test->isKind(PNK_TRUE)) {
parser.freeTree(test);
test = nullptr;
}
}
if (ParseNode*& update = node->pn_kid3) {
if (!Fold(cx, &update, parser, inGenexpLambda))
return false;
}
return true;
}
static bool
FoldDottedProperty(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_DOT) || node->isKind(PNK_OPTDOT));
MOZ_ASSERT(node->isArity(PN_NAME));
// Iterate through a long chain of dotted property accesses to find the
// most-nested non-dotted property node, then fold that.
ParseNode** nested = &node->pn_expr;
while ((*nested)->isKind(PNK_DOT) || (*nested)->isKind(PNK_OPTDOT)) {
MOZ_ASSERT((*nested)->isArity(PN_NAME));
nested = &(*nested)->pn_expr;
}
return Fold(cx, nested, parser, inGenexpLambda);
}
static bool
FoldName(ExclusiveContext* cx, ParseNode* node, Parser<FullParseHandler>& parser,
bool inGenexpLambda)
{
MOZ_ASSERT(node->isKind(PNK_NAME));
MOZ_ASSERT(node->isArity(PN_NAME));
if (!node->pn_expr)
return true;
return Fold(cx, &node->pn_expr, parser, inGenexpLambda);
}
bool
Fold(ExclusiveContext* cx, ParseNode** pnp, Parser<FullParseHandler>& parser, bool inGenexpLambda)
{
JS_CHECK_RECURSION(cx, return false);
ParseNode* pn = *pnp;
#ifdef DEBUG
ParseNodeKind kind = pn->getKind();
#endif
switch (pn->getKind()) {
case PNK_NOP:
case PNK_REGEXP:
case PNK_STRING:
case PNK_TRUE:
case PNK_FALSE:
case PNK_NULL:
case PNK_RAW_UNDEFINED:
case PNK_ELISION:
case PNK_NUMBER:
case PNK_DEBUGGER:
case PNK_BREAK:
case PNK_CONTINUE:
case PNK_TEMPLATE_STRING:
case PNK_GENERATOR:
case PNK_EXPORT_BATCH_SPEC:
case PNK_OBJECT_PROPERTY_NAME:
case PNK_POSHOLDER:
MOZ_ASSERT(pn->isArity(PN_NULLARY));
return true;
case PNK_SUPERBASE:
case PNK_TYPEOFNAME:
MOZ_ASSERT(pn->isArity(PN_UNARY));
MOZ_ASSERT(pn->pn_kid->isKind(PNK_NAME));
MOZ_ASSERT(!pn->pn_kid->expr());
return true;
case PNK_TYPEOFEXPR:
return FoldTypeOfExpr(cx, pn, parser, inGenexpLambda);
case PNK_DELETENAME: {
MOZ_ASSERT(pn->isArity(PN_UNARY));
MOZ_ASSERT(pn->pn_kid->isKind(PNK_NAME));
return true;
}
case PNK_DELETEEXPR:
return FoldDeleteExpr(cx, pn, parser, inGenexpLambda);
case PNK_DELETEELEM:
return FoldDeleteElement(cx, pn, parser, inGenexpLambda);
case PNK_DELETEPROP:
return FoldDeleteProperty(cx, pn, parser, inGenexpLambda);
case PNK_CONDITIONAL:
return FoldConditional(cx, pnp, parser, inGenexpLambda);
case PNK_IF:
return FoldIf(cx, pnp, parser, inGenexpLambda);
case PNK_NOT:
return FoldNot(cx, pn, parser, inGenexpLambda);
case PNK_BITNOT:
case PNK_POS:
case PNK_NEG:
return FoldUnaryArithmetic(cx, pn, parser, inGenexpLambda);
case PNK_PREINCREMENT:
case PNK_POSTINCREMENT:
case PNK_PREDECREMENT:
case PNK_POSTDECREMENT:
return FoldIncrementDecrement(cx, pn, parser, inGenexpLambda);
case PNK_THROW:
case PNK_ARRAYPUSH:
case PNK_MUTATEPROTO:
case PNK_COMPUTED_NAME:
case PNK_SPREAD:
case PNK_EXPORT:
case PNK_VOID:
MOZ_ASSERT(pn->isArity(PN_UNARY));
return Fold(cx, &pn->pn_kid, parser, inGenexpLambda);
case PNK_EXPORT_DEFAULT:
MOZ_ASSERT(pn->isArity(PN_BINARY));
return Fold(cx, &pn->pn_left, parser, inGenexpLambda);
case PNK_DELETEOPTCHAIN:
case PNK_OPTCHAIN:
case PNK_SEMI:
case PNK_THIS:
MOZ_ASSERT(pn->isArity(PN_UNARY));
if (ParseNode*& expr = pn->pn_kid)
return Fold(cx, &expr, parser, inGenexpLambda);
return true;
case PNK_COALESCE:
case PNK_AND:
case PNK_OR:
return FoldLogical(cx, pnp, parser, inGenexpLambda);
case PNK_FUNCTION:
return FoldFunction(cx, pn, parser, inGenexpLambda);
case PNK_MODULE:
return FoldModule(cx, pn, parser);
case PNK_SUB:
case PNK_STAR:
case PNK_LSH:
case PNK_RSH:
case PNK_URSH:
case PNK_DIV:
case PNK_MOD:
return FoldBinaryArithmetic(cx, pn, parser, inGenexpLambda);
case PNK_POW:
return FoldExponentiation(cx, pn, parser, inGenexpLambda);
// Various list nodes not requiring care to minimally fold. Some of
// these could be further folded/optimized, but we don't make the effort.
case PNK_BITOR:
case PNK_BITXOR:
case PNK_BITAND:
case PNK_STRICTEQ:
case PNK_EQ:
case PNK_STRICTNE:
case PNK_NE:
case PNK_LT:
case PNK_LE:
case PNK_GT:
case PNK_GE:
case PNK_INSTANCEOF:
case PNK_IN:
case PNK_COMMA:
case PNK_NEW:
case PNK_ARRAY:
case PNK_OBJECT:
case PNK_ARRAYCOMP:
case PNK_STATEMENTLIST:
case PNK_CLASSMETHODLIST:
case PNK_CATCHLIST:
case PNK_TEMPLATE_STRING_LIST:
case PNK_VAR:
case PNK_CONST:
case PNK_LET:
case PNK_PARAMSBODY:
case PNK_CALLSITEOBJ:
case PNK_EXPORT_SPEC_LIST:
case PNK_IMPORT_SPEC_LIST:
case PNK_GENEXP:
return FoldList(cx, pn, parser, inGenexpLambda);
case PNK_INITIALYIELD:
MOZ_ASSERT(pn->isArity(PN_UNARY));
MOZ_ASSERT(pn->pn_kid->isKind(PNK_ASSIGN) &&
pn->pn_kid->pn_left->isKind(PNK_NAME) &&
pn->pn_kid->pn_right->isKind(PNK_GENERATOR));
return true;
case PNK_YIELD_STAR:
MOZ_ASSERT(pn->isArity(PN_UNARY));
return Fold(cx, &pn->pn_kid, parser, inGenexpLambda);
case PNK_YIELD:
case PNK_AWAIT:
MOZ_ASSERT(pn->isArity(PN_UNARY));
if (!pn->pn_kid)
return true;
return Fold(cx, &pn->pn_kid, parser, inGenexpLambda);
case PNK_RETURN:
return FoldReturn(cx, pn, parser, inGenexpLambda);
case PNK_TRY:
return FoldTry(cx, pn, parser, inGenexpLambda);
case PNK_CATCH:
return FoldCatch(cx, pn, parser, inGenexpLambda);
case PNK_CLASS:
return FoldClass(cx, pn, parser, inGenexpLambda);
case PNK_OPTELEM:
case PNK_ELEM:
return FoldElement(cx, pnp, parser, inGenexpLambda);
case PNK_ADD:
return FoldAdd(cx, pnp, parser, inGenexpLambda);
case PNK_CALL:
case PNK_OPTCALL:
case PNK_SUPERCALL:
case PNK_TAGGED_TEMPLATE:
return FoldCall(cx, pn, parser, inGenexpLambda);
case PNK_SWITCH:
case PNK_COLON:
case PNK_ASSIGN:
case PNK_ADDASSIGN:
case PNK_SUBASSIGN:
case PNK_BITORASSIGN:
case PNK_BITANDASSIGN:
case PNK_BITXORASSIGN:
case PNK_LSHASSIGN:
case PNK_RSHASSIGN:
case PNK_URSHASSIGN:
case PNK_DIVASSIGN:
case PNK_MODASSIGN:
case PNK_MULASSIGN:
case PNK_POWASSIGN:
case PNK_IMPORT:
case PNK_EXPORT_FROM:
case PNK_SHORTHAND:
case PNK_FOR:
case PNK_COMPREHENSIONFOR:
case PNK_CLASSMETHOD:
case PNK_IMPORT_SPEC:
case PNK_EXPORT_SPEC:
case PNK_SETTHIS:
MOZ_ASSERT(pn->isArity(PN_BINARY));
return Fold(cx, &pn->pn_left, parser, inGenexpLambda) &&
Fold(cx, &pn->pn_right, parser, inGenexpLambda);
case PNK_NEWTARGET:
MOZ_ASSERT(pn->isArity(PN_BINARY));
MOZ_ASSERT(pn->pn_left->isKind(PNK_POSHOLDER));
MOZ_ASSERT(pn->pn_right->isKind(PNK_POSHOLDER));
return true;
case PNK_CLASSNAMES:
MOZ_ASSERT(pn->isArity(PN_BINARY));
if (ParseNode*& outerBinding = pn->pn_left) {
if (!Fold(cx, &outerBinding, parser, inGenexpLambda))
return false;
}
return Fold(cx, &pn->pn_right, parser, inGenexpLambda);
case PNK_DOWHILE:
MOZ_ASSERT(pn->isArity(PN_BINARY));
return Fold(cx, &pn->pn_left, parser, inGenexpLambda) &&
FoldCondition(cx, &pn->pn_right, parser, inGenexpLambda);
case PNK_WHILE:
MOZ_ASSERT(pn->isArity(PN_BINARY));
return FoldCondition(cx, &pn->pn_left, parser, inGenexpLambda) &&
Fold(cx, &pn->pn_right, parser, inGenexpLambda);
case PNK_CASE: {
MOZ_ASSERT(pn->isArity(PN_BINARY));
// pn_left is null for DefaultClauses.
if (pn->pn_left) {
if (!Fold(cx, &pn->pn_left, parser, inGenexpLambda))
return false;
}
return Fold(cx, &pn->pn_right, parser, inGenexpLambda);
}
case PNK_WITH:
MOZ_ASSERT(pn->isArity(PN_BINARY));
return Fold(cx, &pn->pn_left, parser, inGenexpLambda) &&
Fold(cx, &pn->pn_right, parser, inGenexpLambda);
case PNK_FORIN:
case PNK_FOROF:
return FoldForInOrOf(cx, pn, parser, inGenexpLambda);
case PNK_FORHEAD:
return FoldForHead(cx, pn, parser, inGenexpLambda);
case PNK_LABEL:
MOZ_ASSERT(pn->isArity(PN_NAME));
return Fold(cx, &pn->pn_expr, parser, inGenexpLambda);
case PNK_OPTDOT:
case PNK_DOT:
return FoldDottedProperty(cx, pn, parser, inGenexpLambda);
case PNK_LEXICALSCOPE:
MOZ_ASSERT(pn->isArity(PN_SCOPE));
if (!pn->scopeBody())
return true;
return Fold(cx, &pn->pn_u.scope.body, parser, inGenexpLambda);
case PNK_NAME:
return FoldName(cx, pn, parser, inGenexpLambda);
case PNK_LIMIT: // invalid sentinel value
MOZ_CRASH("invalid node kind");
}
MOZ_CRASH("shouldn't reach here");
return false;
}
bool
frontend::FoldConstants(ExclusiveContext* cx, ParseNode** pnp, Parser<FullParseHandler>* parser)
{
// Don't constant-fold inside "use asm" code, as this could create a parse
// tree that doesn't type-check as asm.js.
if (parser->pc->useAsmOrInsideUseAsm())
return true;
return Fold(cx, pnp, *parser, false);
}
|