summaryrefslogtreecommitdiff
path: root/modules/brotli/enc/entropy_encode.c
diff options
context:
space:
mode:
Diffstat (limited to 'modules/brotli/enc/entropy_encode.c')
-rw-r--r--modules/brotli/enc/entropy_encode.c501
1 files changed, 501 insertions, 0 deletions
diff --git a/modules/brotli/enc/entropy_encode.c b/modules/brotli/enc/entropy_encode.c
new file mode 100644
index 0000000000..97f9dfb82a
--- /dev/null
+++ b/modules/brotli/enc/entropy_encode.c
@@ -0,0 +1,501 @@
+/* Copyright 2010 Google Inc. All Rights Reserved.
+
+ Distributed under MIT license.
+ See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
+*/
+
+/* Entropy encoding (Huffman) utilities. */
+
+#include "./entropy_encode.h"
+
+#include <string.h> /* memset */
+
+#include "../common/constants.h"
+#include "../common/platform.h"
+#include <brotli/types.h>
+
+#if defined(__cplusplus) || defined(c_plusplus)
+extern "C" {
+#endif
+
+BROTLI_BOOL BrotliSetDepth(
+ int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) {
+ int stack[16];
+ int level = 0;
+ int p = p0;
+ BROTLI_DCHECK(max_depth <= 15);
+ stack[0] = -1;
+ while (BROTLI_TRUE) {
+ if (pool[p].index_left_ >= 0) {
+ level++;
+ if (level > max_depth) return BROTLI_FALSE;
+ stack[level] = pool[p].index_right_or_value_;
+ p = pool[p].index_left_;
+ continue;
+ } else {
+ depth[pool[p].index_right_or_value_] = (uint8_t)level;
+ }
+ while (level >= 0 && stack[level] == -1) level--;
+ if (level < 0) return BROTLI_TRUE;
+ p = stack[level];
+ stack[level] = -1;
+ }
+}
+
+/* Sort the root nodes, least popular first. */
+static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
+ const HuffmanTree* v0, const HuffmanTree* v1) {
+ if (v0->total_count_ != v1->total_count_) {
+ return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
+ }
+ return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_);
+}
+
+/* This function will create a Huffman tree.
+
+ The catch here is that the tree cannot be arbitrarily deep.
+ Brotli specifies a maximum depth of 15 bits for "code trees"
+ and 7 bits for "code length code trees."
+
+ count_limit is the value that is to be faked as the minimum value
+ and this minimum value is raised until the tree matches the
+ maximum length requirement.
+
+ This algorithm is not of excellent performance for very long data blocks,
+ especially when population counts are longer than 2**tree_limit, but
+ we are not planning to use this with extremely long blocks.
+
+ See http://en.wikipedia.org/wiki/Huffman_coding */
+void BrotliCreateHuffmanTree(const uint32_t* data,
+ const size_t length,
+ const int tree_limit,
+ HuffmanTree* tree,
+ uint8_t* depth) {
+ uint32_t count_limit;
+ HuffmanTree sentinel;
+ InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
+ /* For block sizes below 64 kB, we never need to do a second iteration
+ of this loop. Probably all of our block sizes will be smaller than
+ that, so this loop is mostly of academic interest. If we actually
+ would need this, we would be better off with the Katajainen algorithm. */
+ for (count_limit = 1; ; count_limit *= 2) {
+ size_t n = 0;
+ size_t i;
+ size_t j;
+ size_t k;
+ for (i = length; i != 0;) {
+ --i;
+ if (data[i]) {
+ const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit);
+ InitHuffmanTree(&tree[n++], count, -1, (int16_t)i);
+ }
+ }
+
+ if (n == 1) {
+ depth[tree[0].index_right_or_value_] = 1; /* Only one element. */
+ break;
+ }
+
+ SortHuffmanTreeItems(tree, n, SortHuffmanTree);
+
+ /* The nodes are:
+ [0, n): the sorted leaf nodes that we start with.
+ [n]: we add a sentinel here.
+ [n + 1, 2n): new parent nodes are added here, starting from
+ (n+1). These are naturally in ascending order.
+ [2n]: we add a sentinel at the end as well.
+ There will be (2n+1) elements at the end. */
+ tree[n] = sentinel;
+ tree[n + 1] = sentinel;
+
+ i = 0; /* Points to the next leaf node. */
+ j = n + 1; /* Points to the next non-leaf node. */
+ for (k = n - 1; k != 0; --k) {
+ size_t left, right;
+ if (tree[i].total_count_ <= tree[j].total_count_) {
+ left = i;
+ ++i;
+ } else {
+ left = j;
+ ++j;
+ }
+ if (tree[i].total_count_ <= tree[j].total_count_) {
+ right = i;
+ ++i;
+ } else {
+ right = j;
+ ++j;
+ }
+
+ {
+ /* The sentinel node becomes the parent node. */
+ size_t j_end = 2 * n - k;
+ tree[j_end].total_count_ =
+ tree[left].total_count_ + tree[right].total_count_;
+ tree[j_end].index_left_ = (int16_t)left;
+ tree[j_end].index_right_or_value_ = (int16_t)right;
+
+ /* Add back the last sentinel node. */
+ tree[j_end + 1] = sentinel;
+ }
+ }
+ if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) {
+ /* We need to pack the Huffman tree in tree_limit bits. If this was not
+ successful, add fake entities to the lowest values and retry. */
+ break;
+ }
+ }
+}
+
+static void Reverse(uint8_t* v, size_t start, size_t end) {
+ --end;
+ while (start < end) {
+ uint8_t tmp = v[start];
+ v[start] = v[end];
+ v[end] = tmp;
+ ++start;
+ --end;
+ }
+}
+
+static void BrotliWriteHuffmanTreeRepetitions(
+ const uint8_t previous_value,
+ const uint8_t value,
+ size_t repetitions,
+ size_t* tree_size,
+ uint8_t* tree,
+ uint8_t* extra_bits_data) {
+ BROTLI_DCHECK(repetitions > 0);
+ if (previous_value != value) {
+ tree[*tree_size] = value;
+ extra_bits_data[*tree_size] = 0;
+ ++(*tree_size);
+ --repetitions;
+ }
+ if (repetitions == 7) {
+ tree[*tree_size] = value;
+ extra_bits_data[*tree_size] = 0;
+ ++(*tree_size);
+ --repetitions;
+ }
+ if (repetitions < 3) {
+ size_t i;
+ for (i = 0; i < repetitions; ++i) {
+ tree[*tree_size] = value;
+ extra_bits_data[*tree_size] = 0;
+ ++(*tree_size);
+ }
+ } else {
+ size_t start = *tree_size;
+ repetitions -= 3;
+ while (BROTLI_TRUE) {
+ tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH;
+ extra_bits_data[*tree_size] = repetitions & 0x3;
+ ++(*tree_size);
+ repetitions >>= 2;
+ if (repetitions == 0) {
+ break;
+ }
+ --repetitions;
+ }
+ Reverse(tree, start, *tree_size);
+ Reverse(extra_bits_data, start, *tree_size);
+ }
+}
+
+static void BrotliWriteHuffmanTreeRepetitionsZeros(
+ size_t repetitions,
+ size_t* tree_size,
+ uint8_t* tree,
+ uint8_t* extra_bits_data) {
+ if (repetitions == 11) {
+ tree[*tree_size] = 0;
+ extra_bits_data[*tree_size] = 0;
+ ++(*tree_size);
+ --repetitions;
+ }
+ if (repetitions < 3) {
+ size_t i;
+ for (i = 0; i < repetitions; ++i) {
+ tree[*tree_size] = 0;
+ extra_bits_data[*tree_size] = 0;
+ ++(*tree_size);
+ }
+ } else {
+ size_t start = *tree_size;
+ repetitions -= 3;
+ while (BROTLI_TRUE) {
+ tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH;
+ extra_bits_data[*tree_size] = repetitions & 0x7;
+ ++(*tree_size);
+ repetitions >>= 3;
+ if (repetitions == 0) {
+ break;
+ }
+ --repetitions;
+ }
+ Reverse(tree, start, *tree_size);
+ Reverse(extra_bits_data, start, *tree_size);
+ }
+}
+
+void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts,
+ uint8_t* good_for_rle) {
+ size_t nonzero_count = 0;
+ size_t stride;
+ size_t limit;
+ size_t sum;
+ const size_t streak_limit = 1240;
+ /* Let's make the Huffman code more compatible with RLE encoding. */
+ size_t i;
+ for (i = 0; i < length; i++) {
+ if (counts[i]) {
+ ++nonzero_count;
+ }
+ }
+ if (nonzero_count < 16) {
+ return;
+ }
+ while (length != 0 && counts[length - 1] == 0) {
+ --length;
+ }
+ if (length == 0) {
+ return; /* All zeros. */
+ }
+ /* Now counts[0..length - 1] does not have trailing zeros. */
+ {
+ size_t nonzeros = 0;
+ uint32_t smallest_nonzero = 1 << 30;
+ for (i = 0; i < length; ++i) {
+ if (counts[i] != 0) {
+ ++nonzeros;
+ if (smallest_nonzero > counts[i]) {
+ smallest_nonzero = counts[i];
+ }
+ }
+ }
+ if (nonzeros < 5) {
+ /* Small histogram will model it well. */
+ return;
+ }
+ if (smallest_nonzero < 4) {
+ size_t zeros = length - nonzeros;
+ if (zeros < 6) {
+ for (i = 1; i < length - 1; ++i) {
+ if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
+ counts[i] = 1;
+ }
+ }
+ }
+ }
+ if (nonzeros < 28) {
+ return;
+ }
+ }
+ /* 2) Let's mark all population counts that already can be encoded
+ with an RLE code. */
+ memset(good_for_rle, 0, length);
+ {
+ /* Let's not spoil any of the existing good RLE codes.
+ Mark any seq of 0's that is longer as 5 as a good_for_rle.
+ Mark any seq of non-0's that is longer as 7 as a good_for_rle. */
+ uint32_t symbol = counts[0];
+ size_t step = 0;
+ for (i = 0; i <= length; ++i) {
+ if (i == length || counts[i] != symbol) {
+ if ((symbol == 0 && step >= 5) ||
+ (symbol != 0 && step >= 7)) {
+ size_t k;
+ for (k = 0; k < step; ++k) {
+ good_for_rle[i - k - 1] = 1;
+ }
+ }
+ step = 1;
+ if (i != length) {
+ symbol = counts[i];
+ }
+ } else {
+ ++step;
+ }
+ }
+ }
+ /* 3) Let's replace those population counts that lead to more RLE codes.
+ Math here is in 24.8 fixed point representation. */
+ stride = 0;
+ limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
+ sum = 0;
+ for (i = 0; i <= length; ++i) {
+ if (i == length || good_for_rle[i] ||
+ (i != 0 && good_for_rle[i - 1]) ||
+ (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) {
+ if (stride >= 4 || (stride >= 3 && sum == 0)) {
+ size_t k;
+ /* The stride must end, collapse what we have, if we have enough (4). */
+ size_t count = (sum + stride / 2) / stride;
+ if (count == 0) {
+ count = 1;
+ }
+ if (sum == 0) {
+ /* Don't make an all zeros stride to be upgraded to ones. */
+ count = 0;
+ }
+ for (k = 0; k < stride; ++k) {
+ /* We don't want to change value at counts[i],
+ that is already belonging to the next stride. Thus - 1. */
+ counts[i - k - 1] = (uint32_t)count;
+ }
+ }
+ stride = 0;
+ sum = 0;
+ if (i < length - 2) {
+ /* All interesting strides have a count of at least 4, */
+ /* at least when non-zeros. */
+ limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
+ } else if (i < length) {
+ limit = 256 * counts[i];
+ } else {
+ limit = 0;
+ }
+ }
+ ++stride;
+ if (i != length) {
+ sum += counts[i];
+ if (stride >= 4) {
+ limit = (256 * sum + stride / 2) / stride;
+ }
+ if (stride == 4) {
+ limit += 120;
+ }
+ }
+ }
+}
+
+static void DecideOverRleUse(const uint8_t* depth, const size_t length,
+ BROTLI_BOOL* use_rle_for_non_zero,
+ BROTLI_BOOL* use_rle_for_zero) {
+ size_t total_reps_zero = 0;
+ size_t total_reps_non_zero = 0;
+ size_t count_reps_zero = 1;
+ size_t count_reps_non_zero = 1;
+ size_t i;
+ for (i = 0; i < length;) {
+ const uint8_t value = depth[i];
+ size_t reps = 1;
+ size_t k;
+ for (k = i + 1; k < length && depth[k] == value; ++k) {
+ ++reps;
+ }
+ if (reps >= 3 && value == 0) {
+ total_reps_zero += reps;
+ ++count_reps_zero;
+ }
+ if (reps >= 4 && value != 0) {
+ total_reps_non_zero += reps;
+ ++count_reps_non_zero;
+ }
+ i += reps;
+ }
+ *use_rle_for_non_zero =
+ TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2);
+ *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2);
+}
+
+void BrotliWriteHuffmanTree(const uint8_t* depth,
+ size_t length,
+ size_t* tree_size,
+ uint8_t* tree,
+ uint8_t* extra_bits_data) {
+ uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH;
+ size_t i;
+ BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE;
+ BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE;
+
+ /* Throw away trailing zeros. */
+ size_t new_length = length;
+ for (i = 0; i < length; ++i) {
+ if (depth[length - i - 1] == 0) {
+ --new_length;
+ } else {
+ break;
+ }
+ }
+
+ /* First gather statistics on if it is a good idea to do RLE. */
+ if (length > 50) {
+ /* Find RLE coding for longer codes.
+ Shorter codes seem not to benefit from RLE. */
+ DecideOverRleUse(depth, new_length,
+ &use_rle_for_non_zero, &use_rle_for_zero);
+ }
+
+ /* Actual RLE coding. */
+ for (i = 0; i < new_length;) {
+ const uint8_t value = depth[i];
+ size_t reps = 1;
+ if ((value != 0 && use_rle_for_non_zero) ||
+ (value == 0 && use_rle_for_zero)) {
+ size_t k;
+ for (k = i + 1; k < new_length && depth[k] == value; ++k) {
+ ++reps;
+ }
+ }
+ if (value == 0) {
+ BrotliWriteHuffmanTreeRepetitionsZeros(
+ reps, tree_size, tree, extra_bits_data);
+ } else {
+ BrotliWriteHuffmanTreeRepetitions(previous_value,
+ value, reps, tree_size,
+ tree, extra_bits_data);
+ previous_value = value;
+ }
+ i += reps;
+ }
+}
+
+static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) {
+ static const size_t kLut[16] = { /* Pre-reversed 4-bit values. */
+ 0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
+ 0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F
+ };
+ size_t retval = kLut[bits & 0x0F];
+ size_t i;
+ for (i = 4; i < num_bits; i += 4) {
+ retval <<= 4;
+ bits = (uint16_t)(bits >> 4);
+ retval |= kLut[bits & 0x0F];
+ }
+ retval >>= ((0 - num_bits) & 0x03);
+ return (uint16_t)retval;
+}
+
+/* 0..15 are values for bits */
+#define MAX_HUFFMAN_BITS 16
+
+void BrotliConvertBitDepthsToSymbols(const uint8_t* depth,
+ size_t len,
+ uint16_t* bits) {
+ /* In Brotli, all bit depths are [1..15]
+ 0 bit depth means that the symbol does not exist. */
+ uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 };
+ uint16_t next_code[MAX_HUFFMAN_BITS];
+ size_t i;
+ int code = 0;
+ for (i = 0; i < len; ++i) {
+ ++bl_count[depth[i]];
+ }
+ bl_count[0] = 0;
+ next_code[0] = 0;
+ for (i = 1; i < MAX_HUFFMAN_BITS; ++i) {
+ code = (code + bl_count[i - 1]) << 1;
+ next_code[i] = (uint16_t)code;
+ }
+ for (i = 0; i < len; ++i) {
+ if (depth[i]) {
+ bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++);
+ }
+ }
+}
+
+#if defined(__cplusplus) || defined(c_plusplus)
+} /* extern "C" */
+#endif