summaryrefslogtreecommitdiff
path: root/js/src/vm/BigIntType.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/vm/BigIntType.cpp')
-rw-r--r--js/src/vm/BigIntType.cpp3206
1 files changed, 3206 insertions, 0 deletions
diff --git a/js/src/vm/BigIntType.cpp b/js/src/vm/BigIntType.cpp
new file mode 100644
index 0000000000..7b8375526f
--- /dev/null
+++ b/js/src/vm/BigIntType.cpp
@@ -0,0 +1,3206 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * Portions of this code taken from WebKit, whose copyright is as follows:
+ *
+ * Copyright (C) 2017 Caio Lima <ticaiolima@gmail.com>
+ * Copyright (C) 2017-2018 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Portions of this code taken from V8, whose copyright notice is as follows:
+ *
+ * Copyright 2017 the V8 project authors. All rights reserved.
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ * * Neither the name of Google Inc. nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Portions of this code taken from Dart, whose copyright notice is as follows:
+ *
+ * Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file
+ * [1] for details. All rights reserved. Use of this source code is governed by
+ * a BSD-style license that can be found in the LICENSE file [2].
+ *
+ * [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS
+ * [2] https://github.com/dart-lang/sdk/blob/master/LICENSE
+ *
+ * Portions of this code taken from Go, whose copyright notice is as follows:
+ *
+ * Copyright 2009 The Go Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style
+ * license that can be found in the LICENSE file [3].
+ *
+ * [3] https://golang.org/LICENSE
+ */
+
+#include "vm/BigIntType.h"
+
+#include "mozilla/Casting.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/HashFunctions.h"
+#include "mozilla/MathAlgorithms.h"
+#include "mozilla/Maybe.h"
+#include "mozilla/Range.h"
+#include "mozilla/RangedPtr.h"
+#include "mozilla/WrappingOperations.h"
+
+#include <functional>
+#include <math.h>
+#include <memory>
+
+#include "jsapi.h"
+#include "jsnum.h"
+#include "jscntxt.h"
+
+#include "builtin/BigInt.h"
+#include "gc/Allocator.h"
+#include "js/Initialization.h"
+#include "js/Utility.h"
+#include "vm/SelfHosting.h"
+
+#include "vm/String.h"
+
+using namespace js;
+
+using mozilla::Abs;
+using mozilla::AssertedCast;
+using mozilla::BitwiseCast;
+using mozilla::IsFinite;
+using mozilla::Maybe;
+using mozilla::NegativeInfinity;
+using mozilla::Nothing;
+using mozilla::PositiveInfinity;
+using mozilla::Range;
+using mozilla::RangedPtr;
+using mozilla::Some;
+using mozilla::WrapToSigned;
+
+static inline unsigned DigitLeadingZeroes(BigInt::Digit x) {
+ return sizeof(x) == 4 ? mozilla::CountLeadingZeroes32(x)
+ : mozilla::CountLeadingZeroes64(x);
+}
+
+BigInt* BigInt::createUninitialized(ExclusiveContext* cx, size_t length,
+ bool isNegative) {
+ if (length > MaxDigitLength) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_TOO_LARGE);
+ }
+ return nullptr;
+ }
+
+ UniquePtr<Digit[], JS::FreePolicy> heapDigits;
+ if (length > InlineDigitsLength) {
+ heapDigits = cx->make_pod_array<Digit>(length);
+ if (!heapDigits) {
+ return nullptr;
+ }
+ } else {
+ heapDigits = nullptr;
+ }
+
+ BigInt* x = Allocate<BigInt>(cx);
+ if (!x) {
+ return nullptr;
+ }
+
+ x->lengthSignAndReservedBits_ =
+ (length << LengthShift) | (isNegative ? SignBit : 0);
+ MOZ_ASSERT(x->digitLength() == length);
+ MOZ_ASSERT(x->isNegative() == isNegative);
+
+ if (heapDigits) {
+ x->heapDigits_ = heapDigits.release();
+ }
+
+ return x;
+}
+
+void BigInt::initializeDigitsToZero() {
+ auto digs = digits();
+ std::uninitialized_fill_n(digs.begin(), digs.Length(), 0);
+}
+
+void BigInt::finalize(js::FreeOp* fop) {
+ if (hasHeapDigits()) {
+ fop->free_(heapDigits_);
+ }
+}
+
+js::HashNumber BigInt::hash() {
+ js::HashNumber h =
+ mozilla::HashBytes(digits().data(), digitLength() * sizeof(Digit));
+ return mozilla::AddToHash(h, isNegative());
+}
+
+size_t BigInt::sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
+ return hasInlineDigits() ? 0 : mallocSizeOf(heapDigits_);
+}
+
+BigInt* BigInt::zero(ExclusiveContext* cx) {
+ return createUninitialized(cx, 0, false);
+}
+
+BigInt* BigInt::one(ExclusiveContext* cx) {
+ BigInt* ret = createUninitialized(cx, 1, false);
+
+ if (!ret) {
+ return nullptr;
+ }
+
+ ret->setDigit(0, 1);
+
+ return ret;
+}
+
+BigInt* BigInt::neg(ExclusiveContext* cx, HandleBigInt x) {
+ if (x->isZero()) {
+ return x;
+ }
+
+ BigInt* result = copy(cx, x);
+ if (!result) {
+ return nullptr;
+ }
+ result->lengthSignAndReservedBits_ ^= SignBit;
+ return result;
+}
+
+#if !defined(JS_64BIT)
+#define HAVE_TWO_DIGIT 1
+using TwoDigit = uint64_t;
+#elif defined(HAVE_INT128_SUPPORT)
+#define HAVE_TWO_DIGIT 1
+using TwoDigit = __uint128_t;
+#endif
+
+inline BigInt::Digit BigInt::digitMul(Digit a, Digit b, Digit* high) {
+#if defined(HAVE_TWO_DIGIT)
+ TwoDigit result = static_cast<TwoDigit>(a) * static_cast<TwoDigit>(b);
+ *high = result >> DigitBits;
+
+ return static_cast<Digit>(result);
+#else
+ // Multiply in half-pointer-sized chunks.
+ // For inputs [AH AL]*[BH BL], the result is:
+ //
+ // [AL*BL] // rLow
+ // + [AL*BH] // rMid1
+ // + [AH*BL] // rMid2
+ // + [AH*BH] // rHigh
+ // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1]
+ //
+ // Where of course we must be careful with carries between the columns.
+ Digit aLow = a & HalfDigitMask;
+ Digit aHigh = a >> HalfDigitBits;
+ Digit bLow = b & HalfDigitMask;
+ Digit bHigh = b >> HalfDigitBits;
+
+ Digit rLow = aLow * bLow;
+ Digit rMid1 = aLow * bHigh;
+ Digit rMid2 = aHigh * bLow;
+ Digit rHigh = aHigh * bHigh;
+
+ Digit carry = 0;
+ Digit low = digitAdd(rLow, rMid1 << HalfDigitBits, &carry);
+ low = digitAdd(low, rMid2 << HalfDigitBits, &carry);
+
+ *high = (rMid1 >> HalfDigitBits) + (rMid2 >> HalfDigitBits) + rHigh + carry;
+
+ return low;
+#endif
+}
+
+BigInt::Digit BigInt::digitDiv(Digit high, Digit low, Digit divisor,
+ Digit* remainder) {
+ MOZ_ASSERT(high < divisor, "division must not overflow");
+#if defined(__x86_64__)
+ Digit quotient;
+ Digit rem;
+ __asm__("divq %[divisor]"
+ // Outputs: `quotient` will be in rax, `rem` in rdx.
+ : "=a"(quotient), "=d"(rem)
+ // Inputs: put `high` into rdx, `low` into rax, and `divisor` into
+ // any register or stack slot.
+ : "d"(high), "a"(low), [divisor] "rm"(divisor));
+ *remainder = rem;
+ return quotient;
+#elif defined(__i386__)
+ Digit quotient;
+ Digit rem;
+ __asm__("divl %[divisor]"
+ // Outputs: `quotient` will be in eax, `rem` in edx.
+ : "=a"(quotient), "=d"(rem)
+ // Inputs: put `high` into edx, `low` into eax, and `divisor` into
+ // any register or stack slot.
+ : "d"(high), "a"(low), [divisor] "rm"(divisor));
+ *remainder = rem;
+ return quotient;
+#else
+ static constexpr Digit HalfDigitBase = 1ull << HalfDigitBits;
+ // Adapted from Warren, Hacker's Delight, p. 152.
+ unsigned s = DigitLeadingZeroes(divisor);
+ // If `s` is DigitBits here, it causes an undefined behavior.
+ // But `s` is never DigitBits since `divisor` is never zero here.
+ MOZ_ASSERT(s != DigitBits);
+ divisor <<= s;
+
+ Digit vn1 = divisor >> HalfDigitBits;
+ Digit vn0 = divisor & HalfDigitMask;
+
+ // `sZeroMask` which is 0 if s == 0 and all 1-bits otherwise.
+ //
+ // `s` can be 0. If `s` is 0, performing "low >> (DigitBits - s)" must not
+ // be done since it causes an undefined behavior since `>> DigitBits` is
+ // undefined in C++. Quoted from C++ spec, "The type of the result is that of
+ // the promoted left operand.
+ //
+ // The behavior is undefined if the right operand is negative, or greater
+ // than or equal to the length in bits of the promoted left operand". We
+ // mask the right operand of the shift by `shiftMask` (`DigitBits - 1`),
+ // which makes `DigitBits - 0` zero.
+ //
+ // This shifting produces a value which covers 0 < `s` <= (DigitBits - 1)
+ // cases. `s` == DigitBits never happen as we asserted. Since `sZeroMask`
+ // clears the value in the case of `s` == 0, `s` == 0 case is also covered.
+ static_assert(sizeof(intptr_t) == sizeof(Digit),
+ "unexpected size of BigInt::Digit");
+ Digit sZeroMask =
+ static_cast<Digit>((-static_cast<intptr_t>(s)) >> (DigitBits - 1));
+ static constexpr unsigned shiftMask = DigitBits - 1;
+ Digit un32 =
+ (high << s) | ((low >> ((DigitBits - s) & shiftMask)) & sZeroMask);
+
+ Digit un10 = low << s;
+ Digit un1 = un10 >> HalfDigitBits;
+ Digit un0 = un10 & HalfDigitMask;
+ Digit q1 = un32 / vn1;
+ Digit rhat = un32 - q1 * vn1;
+
+ while (q1 >= HalfDigitBase || q1 * vn0 > rhat * HalfDigitBase + un1) {
+ q1--;
+ rhat += vn1;
+ if (rhat >= HalfDigitBase) {
+ break;
+ }
+ }
+
+ Digit un21 = un32 * HalfDigitBase + un1 - q1 * divisor;
+ Digit q0 = un21 / vn1;
+ rhat = un21 - q0 * vn1;
+
+ while (q0 >= HalfDigitBase || q0 * vn0 > rhat * HalfDigitBase + un0) {
+ q0--;
+ rhat += vn1;
+ if (rhat >= HalfDigitBase) {
+ break;
+ }
+ }
+
+ *remainder = (un21 * HalfDigitBase + un0 - q0 * divisor) >> s;
+ return q1 * HalfDigitBase + q0;
+#endif
+}
+
+// Multiplies `source` with `factor` and adds `summand` to the result.
+// `result` and `source` may be the same BigInt for inplace modification.
+void BigInt::internalMultiplyAdd(BigInt* source, Digit factor, Digit summand,
+ unsigned n, BigInt* result) {
+ MOZ_ASSERT(source->digitLength() >= n);
+ MOZ_ASSERT(result->digitLength() >= n);
+
+ Digit carry = summand;
+ Digit high = 0;
+ for (unsigned i = 0; i < n; i++) {
+ Digit current = source->digit(i);
+ Digit newCarry = 0;
+
+ // Compute this round's multiplication.
+ Digit newHigh = 0;
+ current = digitMul(current, factor, &newHigh);
+
+ // Add last round's carryovers.
+ current = digitAdd(current, high, &newCarry);
+ current = digitAdd(current, carry, &newCarry);
+
+ // Store result and prepare for next round.
+ result->setDigit(i, current);
+ carry = newCarry;
+ high = newHigh;
+ }
+
+ if (result->digitLength() > n) {
+ result->setDigit(n++, carry + high);
+
+ // Current callers don't pass in such large results, but let's be robust.
+ while (n < result->digitLength()) {
+ result->setDigit(n++, 0);
+ }
+ } else {
+ MOZ_ASSERT(!(carry + high));
+ }
+}
+
+// Multiplies `this` with `factor` and adds `summand` to the result.
+void BigInt::inplaceMultiplyAdd(Digit factor, Digit summand) {
+ internalMultiplyAdd(this, factor, summand, digitLength(), this);
+}
+
+// Multiplies `multiplicand` with `multiplier` and adds the result to
+// `accumulator`, starting at `accumulatorIndex` for the least-significant
+// digit. Callers must ensure that `accumulator`'s digitLength and
+// corresponding digit storage is long enough to hold the result.
+void BigInt::multiplyAccumulate(BigInt* multiplicand, Digit multiplier,
+ BigInt* accumulator,
+ unsigned accumulatorIndex) {
+ MOZ_ASSERT(accumulator->digitLength() >
+ multiplicand->digitLength() + accumulatorIndex);
+ if (!multiplier) {
+ return;
+ }
+
+ Digit carry = 0;
+ Digit high = 0;
+ for (unsigned i = 0; i < multiplicand->digitLength();
+ i++, accumulatorIndex++) {
+ Digit acc = accumulator->digit(accumulatorIndex);
+ Digit newCarry = 0;
+
+ // Add last round's carryovers.
+ acc = digitAdd(acc, high, &newCarry);
+ acc = digitAdd(acc, carry, &newCarry);
+
+ // Compute this round's multiplication.
+ Digit multiplicandDigit = multiplicand->digit(i);
+ Digit low = digitMul(multiplier, multiplicandDigit, &high);
+ acc = digitAdd(acc, low, &newCarry);
+
+ // Store result and prepare for next round.
+ accumulator->setDigit(accumulatorIndex, acc);
+ carry = newCarry;
+ }
+
+ while (carry || high) {
+ MOZ_ASSERT(accumulatorIndex < accumulator->digitLength());
+ Digit acc = accumulator->digit(accumulatorIndex);
+ Digit newCarry = 0;
+ acc = digitAdd(acc, high, &newCarry);
+ high = 0;
+ acc = digitAdd(acc, carry, &newCarry);
+ accumulator->setDigit(accumulatorIndex, acc);
+ carry = newCarry;
+ accumulatorIndex++;
+ }
+}
+
+inline int8_t BigInt::absoluteCompare(BigInt* x, BigInt* y) {
+ MOZ_ASSERT(!x->digitLength() || x->digit(x->digitLength() - 1));
+ MOZ_ASSERT(!y->digitLength() || y->digit(y->digitLength() - 1));
+
+ // Sanity checks to catch negative zeroes escaping to the wild.
+ MOZ_ASSERT(!x->isNegative() || !x->isZero());
+ MOZ_ASSERT(!y->isNegative() || !y->isZero());
+
+ int diff = x->digitLength() - y->digitLength();
+ if (diff) {
+ return diff < 0 ? -1 : 1;
+ }
+
+ int i = x->digitLength() - 1;
+ while (i >= 0 && x->digit(i) == y->digit(i)) {
+ i--;
+ }
+
+ if (i < 0) {
+ return 0;
+ }
+
+ return x->digit(i) > y->digit(i) ? 1 : -1;
+}
+
+BigInt* BigInt::absoluteAdd(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y,
+ bool resultNegative) {
+ bool swap = x->digitLength() < y->digitLength();
+ // Ensure `left` has at least as many digits as `right`.
+ HandleBigInt& left = swap ? y : x;
+ HandleBigInt& right = swap ? x : y;
+
+ if (left->isZero()) {
+ MOZ_ASSERT(right->isZero());
+ return left;
+ }
+
+ if (right->isZero()) {
+ return resultNegative == left->isNegative() ? left : neg(cx, left);
+ }
+
+ RootedBigInt result(
+ cx, createUninitialized(cx, left->digitLength() + 1, resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+ Digit carry = 0;
+ unsigned i = 0;
+ for (; i < right->digitLength(); i++) {
+ Digit newCarry = 0;
+ Digit sum = digitAdd(left->digit(i), right->digit(i), &newCarry);
+ sum = digitAdd(sum, carry, &newCarry);
+ result->setDigit(i, sum);
+ carry = newCarry;
+ }
+
+ for (; i < left->digitLength(); i++) {
+ Digit newCarry = 0;
+ Digit sum = digitAdd(left->digit(i), carry, &newCarry);
+ result->setDigit(i, sum);
+ carry = newCarry;
+ }
+
+ result->setDigit(i, carry);
+
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+BigInt* BigInt::absoluteSub(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y,
+ bool resultNegative) {
+ MOZ_ASSERT(x->digitLength() >= y->digitLength());
+
+ if (x->isZero()) {
+ MOZ_ASSERT(y->isZero());
+ return x;
+ }
+
+ if (y->isZero()) {
+ return resultNegative == x->isNegative() ? x : neg(cx, x);
+ }
+
+ int8_t comparisonResult = absoluteCompare(x, y);
+ MOZ_ASSERT(comparisonResult >= 0);
+ if (comparisonResult == 0) {
+ return zero(cx);
+ }
+
+ RootedBigInt result(
+ cx, createUninitialized(cx, x->digitLength(), resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+ Digit borrow = 0;
+ unsigned i = 0;
+ for (; i < y->digitLength(); i++) {
+ Digit newBorrow = 0;
+ Digit difference = digitSub(x->digit(i), y->digit(i), &newBorrow);
+ difference = digitSub(difference, borrow, &newBorrow);
+ result->setDigit(i, difference);
+ borrow = newBorrow;
+ }
+
+ for (; i < x->digitLength(); i++) {
+ Digit newBorrow = 0;
+ Digit difference = digitSub(x->digit(i), borrow, &newBorrow);
+ result->setDigit(i, difference);
+ borrow = newBorrow;
+ }
+
+ MOZ_ASSERT(!borrow);
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+// Divides `x` by `divisor`, returning the result in `quotient` and `remainder`.
+// Mathematically, the contract is:
+//
+// quotient = (x - remainder) / divisor, with 0 <= remainder < divisor.
+//
+// If `quotient` is an empty handle, an appropriately sized BigInt will be
+// allocated for it; otherwise the caller must ensure that it is big enough.
+// `quotient` can be the same as `x` for an in-place division. `quotient` can
+// also be `Nothing()` if the caller is only interested in the remainder.
+//
+// This function returns false if `quotient` is an empty handle, but allocating
+// the quotient failed. Otherwise it returns true, indicating success.
+bool BigInt::absoluteDivWithDigitDivisor(ExclusiveContext* cx, HandleBigInt x,
+ Digit divisor,
+ const Maybe<MutableHandleBigInt>& quotient,
+ Digit* remainder,
+ bool quotientNegative) {
+ MOZ_ASSERT(divisor);
+
+ MOZ_ASSERT(!x->isZero());
+ *remainder = 0;
+ if (divisor == 1) {
+ if (quotient) {
+ BigInt* q;
+ if (x->isNegative() == quotientNegative) {
+ q = x;
+ } else {
+ q = neg(cx, x);
+ if (!q) {
+ return false;
+ }
+ }
+ quotient.value().set(q);
+ }
+ return true;
+ }
+
+ unsigned length = x->digitLength();
+ if (quotient) {
+ if (!quotient.value()) {
+ BigInt* q = createUninitialized(cx, length, quotientNegative);
+ if (!q) {
+ return false;
+ }
+ quotient.value().set(q);
+ }
+
+ for (int i = length - 1; i >= 0; i--) {
+ Digit q = digitDiv(*remainder, x->digit(i), divisor, remainder);
+ quotient.value()->setDigit(i, q);
+ }
+ } else {
+ for (int i = length - 1; i >= 0; i--) {
+ digitDiv(*remainder, x->digit(i), divisor, remainder);
+ }
+ }
+
+ return true;
+}
+
+// Adds `summand` onto `this`, starting with `summand`'s 0th digit
+// at `this`'s `startIndex`'th digit. Returns the "carry" (0 or 1).
+BigInt::Digit BigInt::absoluteInplaceAdd(BigInt* summand, unsigned startIndex) {
+ Digit carry = 0;
+ unsigned n = summand->digitLength();
+ MOZ_ASSERT(digitLength() > startIndex,
+ "must start adding at an in-range digit");
+ MOZ_ASSERT(digitLength() - startIndex >= n,
+ "digits being added to must not extend above the digits in "
+ "this (except for the returned carry digit)");
+ for (unsigned i = 0; i < n; i++) {
+ Digit newCarry = 0;
+ Digit sum = digitAdd(digit(startIndex + i), summand->digit(i), &newCarry);
+ sum = digitAdd(sum, carry, &newCarry);
+ setDigit(startIndex + i, sum);
+ carry = newCarry;
+ }
+
+ return carry;
+}
+
+// Subtracts `subtrahend` from this, starting with `subtrahend`'s 0th digit
+// at `this`'s `startIndex`-th digit. Returns the "borrow" (0 or 1).
+BigInt::Digit BigInt::absoluteInplaceSub(BigInt* subtrahend,
+ unsigned startIndex) {
+ Digit borrow = 0;
+ unsigned n = subtrahend->digitLength();
+ MOZ_ASSERT(digitLength() > startIndex,
+ "must start subtracting from an in-range digit");
+ MOZ_ASSERT(digitLength() - startIndex >= n,
+ "digits being subtracted from must not extend above the "
+ "digits in this (except for the returned borrow digit)");
+ for (unsigned i = 0; i < n; i++) {
+ Digit newBorrow = 0;
+ Digit difference =
+ digitSub(digit(startIndex + i), subtrahend->digit(i), &newBorrow);
+ difference = digitSub(difference, borrow, &newBorrow);
+ setDigit(startIndex + i, difference);
+ borrow = newBorrow;
+ }
+
+ return borrow;
+}
+
+// Returns whether (factor1 * factor2) > (high << kDigitBits) + low.
+inline bool BigInt::productGreaterThan(Digit factor1, Digit factor2, Digit high,
+ Digit low) {
+ Digit resultHigh;
+ Digit resultLow = digitMul(factor1, factor2, &resultHigh);
+ return resultHigh > high || (resultHigh == high && resultLow > low);
+}
+
+void BigInt::inplaceRightShiftLowZeroBits(unsigned shift) {
+ MOZ_ASSERT(shift < DigitBits);
+ MOZ_ASSERT(!(digit(0) & ((static_cast<Digit>(1) << shift) - 1)),
+ "should only be shifting away zeroes");
+
+ if (!shift) {
+ return;
+ }
+
+ Digit carry = digit(0) >> shift;
+ unsigned last = digitLength() - 1;
+ for (unsigned i = 0; i < last; i++) {
+ Digit d = digit(i + 1);
+ setDigit(i, (d << (DigitBits - shift)) | carry);
+ carry = d >> shift;
+ }
+ setDigit(last, carry);
+}
+
+// Always copies the input, even when `shift` == 0.
+BigInt* BigInt::absoluteLeftShiftAlwaysCopy(ExclusiveContext* cx, HandleBigInt x,
+ unsigned shift,
+ LeftShiftMode mode) {
+ MOZ_ASSERT(shift < DigitBits);
+ MOZ_ASSERT(!x->isZero());
+
+ unsigned n = x->digitLength();
+ unsigned resultLength = mode == LeftShiftMode::AlwaysAddOneDigit ? n + 1 : n;
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, x->isNegative()));
+ if (!result) {
+ return nullptr;
+ }
+
+ if (!shift) {
+ for (unsigned i = 0; i < n; i++) {
+ result->setDigit(i, x->digit(i));
+ }
+ if (mode == LeftShiftMode::AlwaysAddOneDigit) {
+ result->setDigit(n, 0);
+ }
+
+ return result;
+ }
+
+ Digit carry = 0;
+ for (unsigned i = 0; i < n; i++) {
+ Digit d = x->digit(i);
+ result->setDigit(i, (d << shift) | carry);
+ carry = d >> (DigitBits - shift);
+ }
+
+ if (mode == LeftShiftMode::AlwaysAddOneDigit) {
+ result->setDigit(n, carry);
+ } else {
+ MOZ_ASSERT(mode == LeftShiftMode::SameSizeResult);
+ MOZ_ASSERT(!carry);
+ }
+
+ return result;
+}
+
+// Divides `dividend` by `divisor`, returning the result in `quotient` and
+// `remainder`. Mathematically, the contract is:
+//
+// quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor.
+//
+// Both `quotient` and `remainder` are optional, for callers that are only
+// interested in one of them. See Knuth, Volume 2, section 4.3.1, Algorithm D.
+// Also see the overview of the algorithm by Jan Marthedal Rasmussen over at
+// https://janmr.com/blog/2014/04/basic-multiple-precision-long-division/.
+bool BigInt::absoluteDivWithBigIntDivisor(ExclusiveContext* cx, HandleBigInt dividend,
+ HandleBigInt divisor,
+ const Maybe<MutableHandleBigInt>& quotient,
+ const Maybe<MutableHandleBigInt>& remainder,
+ bool isNegative) {
+ MOZ_ASSERT(divisor->digitLength() >= 2);
+ MOZ_ASSERT(dividend->digitLength() >= divisor->digitLength());
+
+ // Any early error return is detectable by checking the quotient and/or
+ // remainder output values.
+ MOZ_ASSERT(!quotient || !quotient.value());
+ MOZ_ASSERT(!remainder || !remainder.value());
+
+ // The unusual variable names inside this function are consistent with
+ // Knuth's book, as well as with Go's implementation of this algorithm.
+ // Maintaining this consistency is probably more useful than trying to
+ // come up with more descriptive names for them.
+ const unsigned n = divisor->digitLength();
+ const unsigned m = dividend->digitLength() - n;
+
+ // The quotient to be computed.
+ RootedBigInt q(cx);
+ if (quotient) {
+ q = createUninitialized(cx, m + 1, isNegative);
+ if (!q) {
+ return false;
+ }
+ }
+
+ // In each iteration, `qhatv` holds `divisor` * `current quotient digit`.
+ // "v" is the book's name for `divisor`, `qhat` the current quotient digit.
+ RootedBigInt qhatv(cx, createUninitialized(cx, n + 1, isNegative));
+ if (!qhatv) {
+ return false;
+ }
+
+ // D1.
+ // Left-shift inputs so that the divisor's MSB is set. This is necessary to
+ // prevent the digit-wise divisions (see digitDiv call below) from
+ // overflowing (they take a two digits wide input, and return a one digit
+ // result).
+ Digit lastDigit = divisor->digit(n - 1);
+ unsigned shift = DigitLeadingZeroes(lastDigit);
+
+ RootedBigInt shiftedDivisor(cx);
+ if (shift > 0) {
+ shiftedDivisor = absoluteLeftShiftAlwaysCopy(cx, divisor, shift,
+ LeftShiftMode::SameSizeResult);
+ if (!shiftedDivisor) {
+ return false;
+ }
+ } else {
+ shiftedDivisor = divisor;
+ }
+
+ // Holds the (continuously updated) remaining part of the dividend, which
+ // eventually becomes the remainder.
+ RootedBigInt u(cx,
+ absoluteLeftShiftAlwaysCopy(cx, dividend, shift,
+ LeftShiftMode::AlwaysAddOneDigit));
+ if (!u) {
+ return false;
+ }
+
+ // D2.
+ // Iterate over the dividend's digit (like the "grade school" algorithm).
+ // `vn1` is the divisor's most significant digit.
+ Digit vn1 = shiftedDivisor->digit(n - 1);
+ for (int j = m; j >= 0; j--) {
+ // D3.
+ // Estimate the current iteration's quotient digit (see Knuth for details).
+ // `qhat` is the current quotient digit.
+ Digit qhat = std::numeric_limits<Digit>::max();
+
+ // `ujn` is the dividend's most significant remaining digit.
+ Digit ujn = u->digit(j + n);
+ if (ujn != vn1) {
+ // `rhat` is the current iteration's remainder.
+ Digit rhat = 0;
+ // Estimate the current quotient digit by dividing the most significant
+ // digits of dividend and divisor. The result will not be too small,
+ // but could be a bit too large.
+ qhat = digitDiv(ujn, u->digit(j + n - 1), vn1, &rhat);
+
+ // Decrement the quotient estimate as needed by looking at the next
+ // digit, i.e. by testing whether
+ // qhat * v_{n-2} > (rhat << DigitBits) + u_{j+n-2}.
+ Digit vn2 = shiftedDivisor->digit(n - 2);
+ Digit ujn2 = u->digit(j + n - 2);
+ while (productGreaterThan(qhat, vn2, rhat, ujn2)) {
+ qhat--;
+ Digit prevRhat = rhat;
+ rhat += vn1;
+ // v[n-1] >= 0, so this tests for overflow.
+ if (rhat < prevRhat) {
+ break;
+ }
+ }
+ }
+
+ // D4.
+ // Multiply the divisor with the current quotient digit, and subtract
+ // it from the dividend. If there was "borrow", then the quotient digit
+ // was one too high, so we must correct it and undo one subtraction of
+ // the (shifted) divisor.
+ internalMultiplyAdd(shiftedDivisor, qhat, 0, n, qhatv);
+ Digit c = u->absoluteInplaceSub(qhatv, j);
+ if (c) {
+ c = u->absoluteInplaceAdd(shiftedDivisor, j);
+ u->setDigit(j + n, u->digit(j + n) + c);
+ qhat--;
+ }
+
+ if (quotient) {
+ q->setDigit(j, qhat);
+ }
+ }
+
+ if (quotient) {
+ BigInt* bi = destructivelyTrimHighZeroDigits(cx, q);
+ if (!bi) {
+ return false;
+ }
+ quotient.value().set(q);
+ }
+
+ if (remainder) {
+ u->inplaceRightShiftLowZeroBits(shift);
+ remainder.value().set(u);
+ }
+
+ return true;
+}
+
+// Helper for Absolute{And,AndNot,Or,Xor}.
+// Performs the given binary `op` on digit pairs of `x` and `y`; when the
+// end of the shorter of the two is reached, `kind` configures how
+// remaining digits are handled.
+// Example:
+// y: [ y2 ][ y1 ][ y0 ]
+// x: [ x3 ][ x2 ][ x1 ][ x0 ]
+// | | | |
+// (Fill) (op) (op) (op)
+// | | | |
+// v v v v
+// result: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ]
+template <BigInt::BitwiseOpKind kind, typename BitwiseOp>
+inline BigInt* BigInt::absoluteBitwiseOp(ExclusiveContext* cx, HandleBigInt x,
+ HandleBigInt y, BitwiseOp&& op) {
+ unsigned xLength = x->digitLength();
+ unsigned yLength = y->digitLength();
+ unsigned numPairs = std::min(xLength, yLength);
+ unsigned resultLength;
+ if (kind == BitwiseOpKind::SymmetricTrim) {
+ resultLength = numPairs;
+ } else if (kind == BitwiseOpKind::SymmetricFill) {
+ resultLength = std::max(xLength, yLength);
+ } else {
+ MOZ_ASSERT(kind == BitwiseOpKind::AsymmetricFill);
+ resultLength = xLength;
+ }
+ bool resultNegative = false;
+
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+
+ unsigned i = 0;
+ for (; i < numPairs; i++) {
+ result->setDigit(i, op(x->digit(i), y->digit(i)));
+ }
+
+ if (kind != BitwiseOpKind::SymmetricTrim) {
+ HandleBigInt& source =
+ kind == BitwiseOpKind::AsymmetricFill ? x : xLength == i ? y : x;
+ for (; i < resultLength; i++) {
+ result->setDigit(i, source->digit(i));
+ }
+ }
+
+ MOZ_ASSERT(i == resultLength);
+
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+BigInt* BigInt::absoluteAnd(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ return absoluteBitwiseOp<BitwiseOpKind::SymmetricTrim>(cx, x, y,
+ std::bit_and<Digit>());
+}
+
+BigInt* BigInt::absoluteOr(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ return absoluteBitwiseOp<BitwiseOpKind::SymmetricFill>(cx, x, y,
+ std::bit_or<Digit>());
+}
+
+BigInt* BigInt::absoluteAndNot(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ auto digitOperation = [](Digit a, Digit b) { return a & ~b; };
+ return absoluteBitwiseOp<BitwiseOpKind::AsymmetricFill>(cx, x, y,
+ digitOperation);
+}
+
+BigInt* BigInt::absoluteXor(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ return absoluteBitwiseOp<BitwiseOpKind::SymmetricFill>(cx, x, y,
+ std::bit_xor<Digit>());
+}
+
+BigInt* BigInt::absoluteAddOne(ExclusiveContext* cx, HandleBigInt x,
+ bool resultNegative) {
+ unsigned inputLength = x->digitLength();
+ // The addition will overflow into a new digit if all existing digits are
+ // at maximum.
+ bool willOverflow = true;
+ for (unsigned i = 0; i < inputLength; i++) {
+ if (std::numeric_limits<Digit>::max() != x->digit(i)) {
+ willOverflow = false;
+ break;
+ }
+ }
+
+ unsigned resultLength = inputLength + willOverflow;
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+
+ Digit carry = 1;
+ for (unsigned i = 0; i < inputLength; i++) {
+ Digit newCarry = 0;
+ result->setDigit(i, digitAdd(x->digit(i), carry, &newCarry));
+ carry = newCarry;
+ }
+ if (resultLength > inputLength) {
+ MOZ_ASSERT(carry == 1);
+ result->setDigit(inputLength, 1);
+ } else {
+ MOZ_ASSERT(!carry);
+ }
+
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+// Like the above, but you can specify that the allocated result should have
+// length `resultLength`, which must be at least as large as `x->digitLength()`.
+// The result will be unsigned.
+BigInt* BigInt::absoluteSubOne(ExclusiveContext* cx, HandleBigInt x,
+ unsigned resultLength) {
+ MOZ_ASSERT(!x->isZero());
+ MOZ_ASSERT(resultLength >= x->digitLength());
+ bool resultNegative = false;
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+
+ unsigned length = x->digitLength();
+ Digit borrow = 1;
+ for (unsigned i = 0; i < length; i++) {
+ Digit newBorrow = 0;
+ result->setDigit(i, digitSub(x->digit(i), borrow, &newBorrow));
+ borrow = newBorrow;
+ }
+ MOZ_ASSERT(!borrow);
+ for (unsigned i = length; i < resultLength; i++) {
+ result->setDigit(i, 0);
+ }
+
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+// Lookup table for the maximum number of bits required per character of a
+// base-N string representation of a number. To increase accuracy, the array
+// value is the actual value multiplied by 32. To generate this table:
+// for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); }
+static constexpr uint8_t maxBitsPerCharTable[] = {
+ 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8
+ 102, 107, 111, 115, 119, 122, 126, 128, // 9..16
+ 131, 134, 136, 139, 141, 143, 145, 147, // 17..24
+ 149, 151, 153, 154, 156, 158, 159, 160, // 25..32
+ 162, 163, 165, 166, // 33..36
+};
+
+static constexpr unsigned bitsPerCharTableShift = 5;
+static constexpr size_t bitsPerCharTableMultiplier = 1u
+ << bitsPerCharTableShift;
+static constexpr char radixDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
+
+static inline uint64_t CeilDiv(uint64_t numerator, uint64_t denominator) {
+ MOZ_ASSERT(numerator != 0);
+ return 1 + (numerator - 1) / denominator;
+};
+
+// Compute (an overapproximation of) the length of the string representation of
+// a BigInt. In base B an X-digit number has maximum value:
+//
+// B**X - 1
+//
+// We're trying to find N for an N-digit number in base |radix| full
+// representing a |bitLength|-digit number in base 2, so we have:
+//
+// radix**N - 1 ≥ 2**bitLength - 1
+// radix**N ≥ 2**bitLength
+// N ≥ log2(2**bitLength) / log2(radix)
+// N ≥ bitLength / log2(radix)
+//
+// so the smallest N is:
+//
+// N = ⌈bitLength / log2(radix)⌉
+//
+// We want to avoid floating-point computations and precompute the logarithm, so
+// we multiply both sides of the division by |bitsPerCharTableMultiplier|:
+//
+// N = ⌈(bPCTM * bitLength) / (bPCTM * log2(radix))⌉
+//
+// and then because |maxBitsPerChar| representing the denominator may have been
+// rounded *up* -- which could produce an overall under-computation -- we reduce
+// by one to undo any rounding and conservatively compute:
+//
+// N ≥ ⌈(bPCTM * bitLength) / (maxBitsPerChar - 1)⌉
+//
+size_t BigInt::calculateMaximumCharactersRequired(HandleBigInt x,
+ unsigned radix) {
+ MOZ_ASSERT(!x->isZero());
+ MOZ_ASSERT(radix >= 2 && radix <= 36);
+
+ size_t length = x->digitLength();
+ Digit lastDigit = x->digit(length - 1);
+ size_t bitLength = length * DigitBits - DigitLeadingZeroes(lastDigit);
+
+ uint8_t maxBitsPerChar = maxBitsPerCharTable[radix];
+ uint64_t maximumCharactersRequired =
+ CeilDiv(static_cast<uint64_t>(bitsPerCharTableMultiplier) * bitLength,
+ maxBitsPerChar - 1);
+ maximumCharactersRequired += x->isNegative();
+
+ return AssertedCast<size_t>(maximumCharactersRequired);
+}
+
+JSLinearString* BigInt::toStringBasePowerOfTwo(ExclusiveContext* cx, HandleBigInt x,
+ unsigned radix) {
+ MOZ_ASSERT(mozilla::IsPowerOfTwo(radix));
+ MOZ_ASSERT(radix >= 2 && radix <= 32);
+ MOZ_ASSERT(!x->isZero());
+
+ const unsigned length = x->digitLength();
+ const bool sign = x->isNegative();
+ const unsigned bitsPerChar = mozilla::CountTrailingZeroes32(radix);
+ const unsigned charMask = radix - 1;
+ // Compute the length of the resulting string: divide the bit length of the
+ // BigInt by the number of bits representable per character (rounding up).
+ const Digit msd = x->digit(length - 1);
+
+ const size_t bitLength = length * DigitBits - DigitLeadingZeroes(msd);
+ const size_t charsRequired = CeilDiv(bitLength, bitsPerChar) + sign;
+
+ if (charsRequired > JSString::MAX_LENGTH) {
+ ReportOutOfMemory(cx);
+ return nullptr;
+ }
+
+ auto resultChars = cx->make_pod_array<char>(charsRequired);
+ if (!resultChars) {
+ return nullptr;
+ }
+
+ Digit digit = 0;
+ // Keeps track of how many unprocessed bits there are in |digit|.
+ unsigned availableBits = 0;
+ size_t pos = charsRequired;
+ for (unsigned i = 0; i < length - 1; i++) {
+ Digit newDigit = x->digit(i);
+ // Take any leftover bits from the last iteration into account.
+ unsigned current = (digit | (newDigit << availableBits)) & charMask;
+ MOZ_ASSERT(pos);
+ resultChars[--pos] = radixDigits[current];
+ unsigned consumedBits = bitsPerChar - availableBits;
+ digit = newDigit >> consumedBits;
+ availableBits = DigitBits - consumedBits;
+ while (availableBits >= bitsPerChar) {
+ MOZ_ASSERT(pos);
+ resultChars[--pos] = radixDigits[digit & charMask];
+ digit >>= bitsPerChar;
+ availableBits -= bitsPerChar;
+ }
+ }
+
+ // Write out the character containing the lowest-order bit of |msd|.
+ //
+ // This character may include leftover bits from the Digit below |msd|. For
+ // example, if |x === 2n**64n| and |radix == 32|: the preceding loop writes
+ // twelve zeroes for low-order bits 0-59 in |x->digit(0)| (and |x->digit(1)|
+ // on 32-bit); then the highest 4 bits of of |x->digit(0)| (or |x->digit(1)|
+ // on 32-bit) and bit 0 of |x->digit(1)| (|x->digit(2)| on 32-bit) will
+ // comprise the |current == 0b1'0000| computed below for the high-order 'g'
+ // character.
+ unsigned current = (digit | (msd << availableBits)) & charMask;
+ MOZ_ASSERT(pos);
+ resultChars[--pos] = radixDigits[current];
+
+ // Write out remaining characters represented by |msd|. (There may be none,
+ // as in the example above.)
+ digit = msd >> (bitsPerChar - availableBits);
+ while (digit != 0) {
+ MOZ_ASSERT(pos);
+ resultChars[--pos] = radixDigits[digit & charMask];
+ digit >>= bitsPerChar;
+ }
+
+ if (sign) {
+ MOZ_ASSERT(pos);
+ resultChars[--pos] = '-';
+ }
+
+ MOZ_ASSERT(pos == 0);
+ return NewStringCopyN<CanGC>(cx, resultChars.get(), charsRequired);
+}
+
+static constexpr BigInt::Digit MaxPowerInDigit(uint8_t radix) {
+ BigInt::Digit result = 1;
+ while (result < BigInt::Digit(-1) / radix) {
+ result *= radix;
+ }
+ return result;
+}
+
+static constexpr uint8_t MaxExponentInDigit(uint8_t radix) {
+ uint8_t exp = 0;
+ BigInt::Digit result = 1;
+ while (result < BigInt::Digit(-1) / radix) {
+ result *= radix;
+ exp += 1;
+ }
+ return exp;
+}
+
+struct RadixInfo {
+ BigInt::Digit maxPowerInDigit;
+ uint8_t maxExponentInDigit;
+
+ constexpr RadixInfo(BigInt::Digit maxPower, uint8_t maxExponent)
+ : maxPowerInDigit(maxPower), maxExponentInDigit(maxExponent) {}
+
+ explicit constexpr RadixInfo(uint8_t radix)
+ : RadixInfo(MaxPowerInDigit(radix), MaxExponentInDigit(radix)) {}
+};
+
+static constexpr const RadixInfo toStringInfo[37] = {
+ {0, 0}, {0, 0}, RadixInfo(2), RadixInfo(3), RadixInfo(4),
+ RadixInfo(5), RadixInfo(6), RadixInfo(7), RadixInfo(8), RadixInfo(9),
+ RadixInfo(10), RadixInfo(11), RadixInfo(12), RadixInfo(13), RadixInfo(14),
+ RadixInfo(15), RadixInfo(16), RadixInfo(17), RadixInfo(18), RadixInfo(19),
+ RadixInfo(20), RadixInfo(21), RadixInfo(22), RadixInfo(23), RadixInfo(24),
+ RadixInfo(25), RadixInfo(26), RadixInfo(27), RadixInfo(28), RadixInfo(29),
+ RadixInfo(30), RadixInfo(31), RadixInfo(32), RadixInfo(33), RadixInfo(34),
+ RadixInfo(35), RadixInfo(36),
+};
+
+JSLinearString* BigInt::toStringGeneric(ExclusiveContext* cx, HandleBigInt x,
+ unsigned radix) {
+ MOZ_ASSERT(radix >= 2 && radix <= 36);
+ MOZ_ASSERT(!x->isZero());
+
+ size_t maximumCharactersRequired =
+ calculateMaximumCharactersRequired(x, radix);
+ if (maximumCharactersRequired > JSString::MAX_LENGTH) {
+ ReportOutOfMemory(cx);
+ return nullptr;
+ }
+
+ UniqueChars resultString(js_pod_malloc<char>(maximumCharactersRequired));
+ if (!resultString) {
+ ReportOutOfMemory(cx);
+ return nullptr;
+ }
+
+ size_t writePos = maximumCharactersRequired;
+ unsigned length = x->digitLength();
+ Digit lastDigit;
+ if (length == 1) {
+ lastDigit = x->digit(0);
+ } else {
+ unsigned chunkChars = toStringInfo[radix].maxExponentInDigit;
+ Digit chunkDivisor = toStringInfo[radix].maxPowerInDigit;
+
+ unsigned nonZeroDigit = length - 1;
+ MOZ_ASSERT(x->digit(nonZeroDigit) != 0);
+
+ // `rest` holds the part of the BigInt that we haven't looked at yet.
+ // Not to be confused with "remainder"!
+ RootedBigInt rest(cx);
+
+ // In the first round, divide the input, allocating a new BigInt for
+ // the result == rest; from then on divide the rest in-place.
+ //
+ // FIXME: absoluteDivWithDigitDivisor doesn't
+ // destructivelyTrimHighZeroDigits for in-place divisions, leading to
+ // worse constant factors. See
+ // https://bugzilla.mozilla.org/show_bug.cgi?id=1510213.
+ RootedBigInt dividend(cx, x);
+ do {
+ Digit chunk;
+ if (!absoluteDivWithDigitDivisor(cx, dividend, chunkDivisor, Some(&rest),
+ &chunk, dividend->isNegative())) {
+ return nullptr;
+ }
+
+ dividend = rest;
+ for (unsigned i = 0; i < chunkChars; i++) {
+ MOZ_ASSERT(writePos > 0);
+ resultString[--writePos] = radixDigits[chunk % radix];
+ chunk /= radix;
+ }
+ MOZ_ASSERT(!chunk);
+
+ if (!rest->digit(nonZeroDigit)) {
+ nonZeroDigit--;
+ }
+
+ MOZ_ASSERT(rest->digit(nonZeroDigit) != 0,
+ "division by a single digit can't remove more than one "
+ "digit from a number");
+ } while (nonZeroDigit > 0);
+
+ lastDigit = rest->digit(0);
+ }
+
+ do {
+ MOZ_ASSERT(writePos > 0);
+ resultString[--writePos] = radixDigits[lastDigit % radix];
+ lastDigit /= radix;
+ } while (lastDigit > 0);
+ MOZ_ASSERT(writePos < maximumCharactersRequired);
+ MOZ_ASSERT(maximumCharactersRequired - writePos <=
+ static_cast<size_t>(maximumCharactersRequired));
+
+ // Remove leading zeroes.
+ while (writePos + 1 < maximumCharactersRequired &&
+ resultString[writePos] == '0') {
+ writePos++;
+ }
+
+ if (x->isNegative()) {
+ MOZ_ASSERT(writePos > 0);
+ resultString[--writePos] = '-';
+ }
+
+ MOZ_ASSERT(writePos < maximumCharactersRequired);
+ // Would be better to somehow adopt resultString directly.
+ return NewStringCopyN<CanGC>(cx, resultString.get() + writePos,
+ maximumCharactersRequired - writePos);
+}
+
+BigInt* BigInt::trimHighZeroDigits(ExclusiveContext* cx, HandleBigInt x) {
+ if (x->isZero()) {
+ MOZ_ASSERT(!x->isNegative());
+ return x;
+ }
+ MOZ_ASSERT(x->digitLength());
+
+ int nonZeroIndex = x->digitLength() - 1;
+ while (nonZeroIndex >= 0 && x->digit(nonZeroIndex) == 0) {
+ nonZeroIndex--;
+ }
+
+ if (nonZeroIndex < 0) {
+ return zero(cx);
+ }
+
+ if (nonZeroIndex == static_cast<int>(x->digitLength() - 1)) {
+ return x;
+ }
+
+ unsigned newLength = nonZeroIndex + 1;
+ BigInt* trimmedBigInt = createUninitialized(cx, newLength, x->isNegative());
+ if (!trimmedBigInt) {
+ return nullptr;
+ }
+ for (unsigned i = 0; i < newLength; i++) {
+ trimmedBigInt->setDigit(i, x->digit(i));
+ }
+
+ return trimmedBigInt;
+}
+
+BigInt* BigInt::destructivelyTrimHighZeroDigits(ExclusiveContext* cx, HandleBigInt x) {
+ // TODO: Modify in place instead of allocating.
+ return trimHighZeroDigits(cx, x);
+}
+
+// The maximum value `radix**charCount - 1` must be represented as a max number
+// `2**(N * DigitBits) - 1` for `N` digits, so
+//
+// 2**(N * DigitBits) - 1 ≥ radix**charcount - 1
+// 2**(N * DigitBits) ≥ radix**charcount
+// N * DigitBits ≥ log2(radix**charcount)
+// N * DigitBits ≥ charcount * log2(radix)
+// N ≥ ⌈charcount * log2(radix) / DigitBits⌉ (conservatively)
+//
+// or in the code's terms (all numbers promoted to exact mathematical values),
+//
+// N ≥ ⌈charcount * bitsPerChar / (DigitBits * bitsPerCharTableMultiplier)⌉
+//
+// Note that `N` is computed even more conservatively here because `bitsPerChar`
+// is rounded up.
+bool BigInt::calculateMaximumDigitsRequired(ExclusiveContext* cx, uint8_t radix,
+ size_t charcount, size_t* result) {
+ MOZ_ASSERT(2 <= radix && radix <= 36);
+
+ size_t bitsPerChar = maxBitsPerCharTable[radix];
+
+ MOZ_ASSERT(charcount > 0);
+ MOZ_ASSERT(charcount <= std::numeric_limits<size_t>::max() / bitsPerChar);
+ uint64_t n =
+ CeilDiv(charcount * bitsPerChar, DigitBits * bitsPerCharTableMultiplier);
+ if (n > MaxDigitLength) {
+ ReportAllocationOverflow(cx);
+ return false;
+ }
+
+ *result = n;
+ return true;
+}
+
+template <typename CharT>
+BigInt* BigInt::parseLiteralDigits(ExclusiveContext* cx,
+ const Range<const CharT> chars,
+ unsigned radix, bool isNegative,
+ bool* haveParseError) {
+ MOZ_ASSERT(chars.length());
+
+ RangedPtr<const CharT> start = chars.begin();
+ RangedPtr<const CharT> end = chars.end();
+
+ // Skipping leading zeroes.
+ while (start[0] == '0') {
+ start++;
+ if (start == end) {
+ return zero(cx);
+ }
+ }
+
+ unsigned limit0 = '0' + std::min(radix, 10u);
+ unsigned limita = 'a' + (radix - 10);
+ unsigned limitA = 'A' + (radix - 10);
+
+ size_t length;
+ if (!calculateMaximumDigitsRequired(cx, radix, end - start, &length)) {
+ return nullptr;
+ }
+ RootedBigInt result(cx, createUninitialized(cx, length, isNegative));
+ if (!result) {
+ return nullptr;
+ }
+
+ result->initializeDigitsToZero();
+
+ RangedPtr<const CharT> begin = start;
+ for (; start < end; start++) {
+ uint32_t digit;
+ CharT c = *start;
+ if (c == '_' && start > begin && start < end - 1) {
+ // skip over block delimiters unless at the very start or end
+ continue;
+ } else if (c >= '0' && c < limit0) {
+ digit = c - '0';
+ } else if (c >= 'a' && c < limita) {
+ digit = c - 'a' + 10;
+ } else if (c >= 'A' && c < limitA) {
+ digit = c - 'A' + 10;
+ } else {
+ *haveParseError = true;
+ return nullptr;
+ }
+
+ result->inplaceMultiplyAdd(static_cast<Digit>(radix),
+ static_cast<Digit>(digit));
+ }
+
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+// BigInt proposal section 7.2
+template <typename CharT>
+BigInt* BigInt::parseLiteral(ExclusiveContext* cx, const Range<const CharT> chars,
+ bool* haveParseError) {
+ RangedPtr<const CharT> start = chars.begin();
+ const RangedPtr<const CharT> end = chars.end();
+ bool isNegative = false;
+
+ MOZ_ASSERT(chars.length());
+
+ if (end - start > 2 && start[0] == '0') {
+ if (start[1] == 'b' || start[1] == 'B') {
+ // StringNumericLiteral ::: BinaryIntegerLiteral
+ return parseLiteralDigits(cx, Range<const CharT>(start + 2, end), 2,
+ isNegative, haveParseError);
+ }
+ if (start[1] == 'x' || start[1] == 'X') {
+ // StringNumericLiteral ::: HexIntegerLiteral
+ return parseLiteralDigits(cx, Range<const CharT>(start + 2, end), 16,
+ isNegative, haveParseError);
+ }
+ if (start[1] == 'o' || start[1] == 'O') {
+ // StringNumericLiteral ::: OctalIntegerLiteral
+ return parseLiteralDigits(cx, Range<const CharT>(start + 2, end), 8,
+ isNegative, haveParseError);
+ }
+ }
+
+ return parseLiteralDigits(cx, Range<const CharT>(start, end), 10, isNegative,
+ haveParseError);
+}
+
+// BigInt proposal section 5.1.1
+static bool IsInteger(double d) {
+ // Step 1 is an assertion checked by the caller.
+ // Step 2.
+ if (!mozilla::IsFinite(d)) {
+ return false;
+ }
+
+ // Step 3.
+ double i = JS::ToInteger(d);
+
+ // Step 4.
+ if (i != d) {
+ return false;
+ }
+
+ // Step 5.
+ return true;
+}
+
+BigInt* BigInt::createFromDouble(ExclusiveContext* cx, double d) {
+ MOZ_ASSERT(::IsInteger(d),
+ "Only integer-valued doubles can convert to BigInt");
+
+ if (d == 0) {
+ return zero(cx);
+ }
+
+ int exponent = mozilla::ExponentComponent(d);
+ MOZ_ASSERT(exponent >= 0);
+ int length = exponent / DigitBits + 1;
+ BigInt* result = createUninitialized(cx, length, d < 0);
+ if (!result) {
+ return nullptr;
+ }
+
+ // We construct a BigInt from the double `d` by shifting its mantissa
+ // according to its exponent and mapping the bit pattern onto digits.
+ //
+ // <----------- bitlength = exponent + 1 ----------->
+ // <----- 52 ------> <------ trailing zeroes ------>
+ // mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
+ // digits: 0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
+ // <--> <------>
+ // msdTopBits DigitBits
+ //
+ using Double = mozilla::FloatingPoint<double>;
+ uint64_t mantissa =
+ mozilla::BitwiseCast<uint64_t>(d) & Double::kSignificandBits;
+ // Add implicit high bit.
+ mantissa |= 1ull << Double::kSignificandWidth;
+
+ const int mantissaTopBit = Double::kSignificandWidth; // 0-indexed.
+
+ // 0-indexed position of `d`'s most significant bit within the `msd`.
+ int msdTopBit = exponent % DigitBits;
+
+ // Next digit under construction.
+ Digit digit;
+
+ // First, build the MSD by shifting the mantissa appropriately.
+ if (msdTopBit < mantissaTopBit) {
+ int remainingMantissaBits = mantissaTopBit - msdTopBit;
+ digit = mantissa >> remainingMantissaBits;
+ mantissa = mantissa << (64 - remainingMantissaBits);
+ } else {
+ MOZ_ASSERT(msdTopBit >= mantissaTopBit);
+ digit = mantissa << (msdTopBit - mantissaTopBit);
+ mantissa = 0;
+ }
+ result->setDigit(--length, digit);
+
+ // Fill in digits containing mantissa contributions.
+ while (mantissa) {
+ MOZ_ASSERT(length > 0,
+ "double bits were all non-fractional, so there must be "
+ "digits present to hold them");
+
+ if (DigitBits == 64) {
+ result->setDigit(--length, mantissa);
+ break;
+ }
+
+ MOZ_ASSERT(DigitBits == 32);
+ Digit current = mantissa >> 32;
+ mantissa = mantissa << 32;
+ result->setDigit(--length, current);
+ }
+
+ // Fill in low-order zeroes.
+ for (int i = length - 1; i >= 0; i--) {
+ result->setDigit(i, 0);
+ }
+
+ return result;
+}
+
+BigInt* BigInt::createFromUint64(ExclusiveContext* cx, uint64_t n) {
+ if (n == 0) {
+ return zero(cx);
+ }
+
+ const bool isNegative = false;
+
+ if (DigitBits == 32) {
+ Digit low = n;
+ Digit high = n >> 32;
+ size_t length = high ? 2 : 1;
+
+ BigInt* res = createUninitialized(cx, length, isNegative);
+ if (!res) {
+ return nullptr;
+ }
+ res->setDigit(0, low);
+ if (high) {
+ res->setDigit(1, high);
+ }
+ return res;
+ }
+
+ BigInt* res = createUninitialized(cx, 1, isNegative);
+ if (!res) {
+ return nullptr;
+ }
+
+ res->setDigit(0, n);
+ return res;
+}
+
+BigInt* BigInt::createFromInt64(ExclusiveContext* cx, int64_t n) {
+ BigInt* res = createFromUint64(cx, Abs(n));
+ if (!res) {
+ return nullptr;
+ }
+
+ if (n < 0) {
+ res->lengthSignAndReservedBits_ |= SignBit;
+ }
+ MOZ_ASSERT(res->isNegative() == (n < 0));
+
+ return res;
+}
+
+// BigInt proposal section 5.1.2
+BigInt* js::NumberToBigInt(ExclusiveContext* cx, double d) {
+ // Step 1 is an assertion checked by the caller.
+ // Step 2.
+ if (!::IsInteger(d)) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_NUMBER_TO_BIGINT);
+ }
+ return nullptr;
+ }
+
+ // Step 3.
+ return BigInt::createFromDouble(cx, d);
+}
+
+BigInt* BigInt::copy(ExclusiveContext* cx, HandleBigInt x) {
+ if (x->isZero()) {
+ return zero(cx);
+ }
+
+ BigInt* result = createUninitialized(cx, x->digitLength(), x->isNegative());
+ if (!result) {
+ return nullptr;
+ }
+ for (size_t i = 0; i < x->digitLength(); i++) {
+ result->setDigit(i, x->digit(i));
+ }
+ return result;
+}
+
+// BigInt proposal section 1.1.7
+BigInt* BigInt::add(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ bool xNegative = x->isNegative();
+
+ // x + y == x + y
+ // -x + -y == -(x + y)
+ if (xNegative == y->isNegative()) {
+ return absoluteAdd(cx, x, y, xNegative);
+ }
+
+ // x + -y == x - y == -(y - x)
+ // -x + y == y - x == -(x - y)
+ if (absoluteCompare(x, y) >= 0) {
+ return absoluteSub(cx, x, y, xNegative);
+ }
+
+ return absoluteSub(cx, y, x, !xNegative);
+}
+
+// BigInt proposal section 1.1.8
+BigInt* BigInt::sub(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ bool xNegative = x->isNegative();
+ if (xNegative != y->isNegative()) {
+ // x - (-y) == x + y
+ // (-x) - y == -(x + y)
+ return absoluteAdd(cx, x, y, xNegative);
+ }
+ // x - y == -(y - x)
+ // (-x) - (-y) == y - x == -(x - y)
+ if (absoluteCompare(x, y) >= 0) {
+ return absoluteSub(cx, x, y, xNegative);
+ }
+
+ return absoluteSub(cx, y, x, !xNegative);
+}
+
+// BigInt proposal section 1.1.4
+BigInt* BigInt::mul(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (x->isZero()) {
+ return x;
+ }
+ if (y->isZero()) {
+ return y;
+ }
+
+ unsigned resultLength = x->digitLength() + y->digitLength();
+ bool resultNegative = x->isNegative() != y->isNegative();
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+ result->initializeDigitsToZero();
+
+ for (size_t i = 0; i < x->digitLength(); i++) {
+ multiplyAccumulate(y, x->digit(i), result, i);
+ }
+
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+// BigInt proposal section 1.1.5
+BigInt* BigInt::div(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ // 1. If y is 0n, throw a RangeError exception.
+ if (y->isZero()) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_DIVISION_BY_ZERO);
+ }
+ return nullptr;
+ }
+
+ // 2. Let quotient be the mathematical value of x divided by y.
+ // 3. Return a BigInt representing quotient rounded towards 0 to the next
+ // integral value.
+ if (x->isZero()) {
+ return x;
+ }
+
+ if (absoluteCompare(x, y) < 0) {
+ return zero(cx);
+ }
+
+ RootedBigInt quotient(cx);
+ bool resultNegative = x->isNegative() != y->isNegative();
+ if (y->digitLength() == 1) {
+ Digit divisor = y->digit(0);
+ if (divisor == 1) {
+ return resultNegative == x->isNegative() ? x : neg(cx, x);
+ }
+
+ Digit remainder;
+ if (!absoluteDivWithDigitDivisor(cx, x, divisor, Some(&quotient),
+ &remainder, resultNegative)) {
+ return nullptr;
+ }
+ } else {
+ if (!absoluteDivWithBigIntDivisor(cx, x, y, Some(&quotient), Nothing(),
+ resultNegative)) {
+ return nullptr;
+ }
+ }
+
+ return destructivelyTrimHighZeroDigits(cx, quotient);
+}
+
+// BigInt proposal section 1.1.6
+BigInt* BigInt::mod(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ // 1. If y is 0n, throw a RangeError exception.
+ if (y->isZero()) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_DIVISION_BY_ZERO);
+ }
+ return nullptr;
+ }
+
+ // 2. If x is 0n, return x.
+ if (x->isZero()) {
+ return x;
+ }
+ // 3. Let r be the BigInt defined by the mathematical relation r = x - (y ×
+ // q) where q is a BigInt that is negative only if x/y is negative and
+ // positive only if x/y is positive, and whose magnitude is as large as
+ // possible without exceeding the magnitude of the true mathematical
+ // quotient of x and y.
+ if (absoluteCompare(x, y) < 0) {
+ return x;
+ }
+
+ if (y->digitLength() == 1) {
+ Digit divisor = y->digit(0);
+ if (divisor == 1) {
+ return zero(cx);
+ }
+
+ Digit remainderDigit;
+ bool unusedQuotientNegative = false;
+ if (!absoluteDivWithDigitDivisor(cx, x, divisor, Nothing(), &remainderDigit,
+ unusedQuotientNegative)) {
+ MOZ_CRASH("BigInt div by digit failed unexpectedly");
+ }
+
+ if (!remainderDigit) {
+ return zero(cx);
+ }
+
+ BigInt* remainder = createUninitialized(cx, 1, x->isNegative());
+ if (!remainder) {
+ return nullptr;
+ }
+ remainder->setDigit(0, remainderDigit);
+ return remainder;
+ } else {
+ RootedBigInt remainder(cx);
+ if (!absoluteDivWithBigIntDivisor(cx, x, y, Nothing(), Some(&remainder),
+ x->isNegative())) {
+ return nullptr;
+ }
+ MOZ_ASSERT(remainder);
+ return destructivelyTrimHighZeroDigits(cx, remainder);
+ }
+}
+
+// BigInt proposal section 1.1.3
+BigInt* BigInt::pow(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ // 1. If exponent is < 0, throw a RangeError exception.
+ if (y->isNegative()) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_NEGATIVE_EXPONENT);
+ }
+ return nullptr;
+ }
+
+ // 2. If base is 0n and exponent is 0n, return 1n.
+ if (y->isZero()) {
+ return one(cx);
+ }
+
+ if (x->isZero()) {
+ return x;
+ }
+
+ // 3. Return a BigInt representing the mathematical value of base raised
+ // to the power exponent.
+ if (x->digitLength() == 1 && x->digit(0) == 1) {
+ // (-1) ** even_number == 1.
+ if (x->isNegative() && (y->digit(0) & 1) == 0) {
+ return neg(cx, x);
+ }
+ // (-1) ** odd_number == -1; 1 ** anything == 1.
+ return x;
+ }
+
+ // For all bases >= 2, very large exponents would lead to unrepresentable
+ // results.
+ static_assert(MaxBitLength < std::numeric_limits<Digit>::max(),
+ "unexpectedly large MaxBitLength");
+ if (y->digitLength() > 1) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_TOO_LARGE);
+ }
+ return nullptr;
+ }
+ Digit exponent = y->digit(0);
+ if (exponent == 1) {
+ return x;
+ }
+ if (exponent >= MaxBitLength) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_TOO_LARGE);
+ }
+ return nullptr;
+ }
+
+ static_assert(MaxBitLength <= std::numeric_limits<int>::max(),
+ "unexpectedly large MaxBitLength");
+ int n = static_cast<int>(exponent);
+ if (x->digitLength() == 1 && x->digit(0) == 2) {
+ // Fast path for 2^n.
+ int length = 1 + (n / DigitBits);
+ // Result is negative for odd powers of -2n.
+ bool resultNegative = x->isNegative() && (n & 1);
+ RootedBigInt result(cx, createUninitialized(cx, length, resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+ result->initializeDigitsToZero();
+ result->setDigit(length - 1, static_cast<Digit>(1) << (n % DigitBits));
+ return result;
+ }
+
+ // This implicitly sets the result's sign correctly.
+ RootedBigInt result(cx, (n & 1) ? x : nullptr);
+ RootedBigInt runningSquare(cx, x);
+ for (n /= 2; n; n /= 2) {
+ runningSquare = mul(cx, runningSquare, runningSquare);
+ if (!runningSquare) {
+ return nullptr;
+ }
+ if (n & 1) {
+ if (!result) {
+ result = runningSquare;
+ } else {
+ result = mul(cx, result, runningSquare);
+ if (!result) {
+ return nullptr;
+ }
+ }
+ }
+ }
+ return result;
+}
+
+BigInt* BigInt::lshByAbsolute(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (x->isZero() || y->isZero()) {
+ return x;
+ }
+
+ if (y->digitLength() > 1 || y->digit(0) > MaxBitLength) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_TOO_LARGE);
+ }
+ return nullptr;
+ }
+ Digit shift = y->digit(0);
+ int digitShift = static_cast<int>(shift / DigitBits);
+ int bitsShift = static_cast<int>(shift % DigitBits);
+ int length = x->digitLength();
+ bool grow = bitsShift && (x->digit(length - 1) >> (DigitBits - bitsShift));
+ int resultLength = length + digitShift + grow;
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, x->isNegative()));
+ if (!result) {
+ return nullptr;
+ }
+
+ int i = 0;
+ for (; i < digitShift; i++) {
+ result->setDigit(i, 0);
+ }
+
+ if (bitsShift == 0) {
+ for (int j = 0; i < resultLength; i++, j++) {
+ result->setDigit(i, x->digit(j));
+ }
+ } else {
+ Digit carry = 0;
+ for (int j = 0; j < length; i++, j++) {
+ Digit d = x->digit(j);
+ result->setDigit(i, (d << bitsShift) | carry);
+ carry = d >> (DigitBits - bitsShift);
+ }
+ if (grow) {
+ result->setDigit(i, carry);
+ } else {
+ MOZ_ASSERT(!carry);
+ }
+ }
+ return result;
+}
+
+BigInt* BigInt::rshByMaximum(ExclusiveContext* cx, bool isNegative) {
+ if (isNegative) {
+ RootedBigInt negativeOne(cx, createUninitialized(cx, 1, isNegative));
+ if (!negativeOne) {
+ return nullptr;
+ }
+ negativeOne->setDigit(0, 1);
+ return negativeOne;
+ }
+ return zero(cx);
+}
+
+BigInt* BigInt::rshByAbsolute(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (x->isZero() || y->isZero()) {
+ return x;
+ }
+
+ if (y->digitLength() > 1 || y->digit(0) >= MaxBitLength) {
+ return rshByMaximum(cx, x->isNegative());
+ }
+ Digit shift = y->digit(0);
+ int length = x->digitLength();
+ int digitShift = static_cast<int>(shift / DigitBits);
+ int bitsShift = static_cast<int>(shift % DigitBits);
+ int resultLength = length - digitShift;
+ if (resultLength <= 0) {
+ return rshByMaximum(cx, x->isNegative());
+ }
+ // For negative numbers, round down if any bit was shifted out (so that e.g.
+ // -5n >> 1n == -3n and not -2n). Check now whether this will happen and
+ // whether it can cause overflow into a new digit. If we allocate the result
+ // large enough up front, it avoids having to do a second allocation later.
+ bool mustRoundDown = false;
+ if (x->isNegative()) {
+ const Digit mask = (static_cast<Digit>(1) << bitsShift) - 1;
+ if ((x->digit(digitShift) & mask)) {
+ mustRoundDown = true;
+ } else {
+ for (int i = 0; i < digitShift; i++) {
+ if (x->digit(i)) {
+ mustRoundDown = true;
+ break;
+ }
+ }
+ }
+ }
+ // If bits_shift is non-zero, it frees up bits, preventing overflow.
+ if (mustRoundDown && bitsShift == 0) {
+ // Overflow cannot happen if the most significant digit has unset bits.
+ Digit msd = x->digit(length - 1);
+ bool roundingCanOverflow = msd == std::numeric_limits<Digit>::max();
+ if (roundingCanOverflow) {
+ resultLength++;
+ }
+ }
+
+ MOZ_ASSERT(resultLength <= length);
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, x->isNegative()));
+ if (!result) {
+ return nullptr;
+ }
+ if (!bitsShift) {
+ // If roundingCanOverflow, manually initialize the overflow digit.
+ result->setDigit(resultLength - 1, 0);
+ for (int i = digitShift; i < length; i++) {
+ result->setDigit(i - digitShift, x->digit(i));
+ }
+ } else {
+ Digit carry = x->digit(digitShift) >> bitsShift;
+ int last = length - digitShift - 1;
+ for (int i = 0; i < last; i++) {
+ Digit d = x->digit(i + digitShift + 1);
+ result->setDigit(i, (d << (DigitBits - bitsShift)) | carry);
+ carry = d >> bitsShift;
+ }
+ result->setDigit(last, carry);
+ }
+
+ if (mustRoundDown) {
+ MOZ_ASSERT(x->isNegative());
+ // Since the result is negative, rounding down means adding one to
+ // its absolute value. This cannot overflow. TODO: modify the result in
+ // place.
+ return absoluteAddOne(cx, result, x->isNegative());
+ }
+ return destructivelyTrimHighZeroDigits(cx, result);
+}
+
+// BigInt proposal section 1.1.9. BigInt::leftShift ( x, y )
+BigInt* BigInt::lsh(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (y->isNegative()) {
+ return rshByAbsolute(cx, x, y);
+ }
+ return lshByAbsolute(cx, x, y);
+}
+
+// BigInt proposal section 1.1.10. BigInt::signedRightShift ( x, y )
+BigInt* BigInt::rsh(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (y->isNegative()) {
+ return lshByAbsolute(cx, x, y);
+ }
+ return rshByAbsolute(cx, x, y);
+}
+
+// BigInt proposal section 1.1.17. BigInt::bitwiseAND ( x, y )
+BigInt* BigInt::bitAnd(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (x->isZero()) {
+ return x;
+ }
+
+ if (y->isZero()) {
+ return y;
+ }
+
+ if (!x->isNegative() && !y->isNegative()) {
+ return absoluteAnd(cx, x, y);
+ }
+
+ if (x->isNegative() && y->isNegative()) {
+ int resultLength = std::max(x->digitLength(), y->digitLength()) + 1;
+ // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1))
+ // == -(((x-1) | (y-1)) + 1)
+ RootedBigInt x1(cx, absoluteSubOne(cx, x, resultLength));
+ if (!x1) {
+ return nullptr;
+ }
+ RootedBigInt y1(cx, absoluteSubOne(cx, y, y->digitLength()));
+ if (!y1) {
+ return nullptr;
+ }
+ RootedBigInt result(cx, absoluteOr(cx, x1, y1));
+ if (!result) {
+ return nullptr;
+ }
+ bool resultNegative = true;
+ return absoluteAddOne(cx, result, resultNegative);
+ }
+
+ MOZ_ASSERT(x->isNegative() != y->isNegative());
+ HandleBigInt& pos = x->isNegative() ? y : x;
+ HandleBigInt& neg = x->isNegative() ? x : y;
+
+ RootedBigInt neg1(cx, absoluteSubOne(cx, neg, neg->digitLength()));
+ if (!neg1) {
+ return nullptr;
+ }
+
+ // x & (-y) == x & ~(y-1) == x & ~(y-1)
+ return absoluteAndNot(cx, pos, neg1);
+}
+
+// BigInt proposal section 1.1.18. BigInt::bitwiseXOR ( x, y )
+BigInt* BigInt::bitXor(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (x->isZero()) {
+ return y;
+ }
+
+ if (y->isZero()) {
+ return x;
+ }
+
+ if (!x->isNegative() && !y->isNegative()) {
+ return absoluteXor(cx, x, y);
+ }
+
+ if (x->isNegative() && y->isNegative()) {
+ int resultLength = std::max(x->digitLength(), y->digitLength());
+
+ // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1)
+ RootedBigInt x1(cx, absoluteSubOne(cx, x, resultLength));
+ if (!x1) {
+ return nullptr;
+ }
+ RootedBigInt y1(cx, absoluteSubOne(cx, y, y->digitLength()));
+ if (!y1) {
+ return nullptr;
+ }
+ return absoluteXor(cx, x1, y1);
+ }
+ MOZ_ASSERT(x->isNegative() != y->isNegative());
+ int resultLength = std::max(x->digitLength(), y->digitLength()) + 1;
+
+ HandleBigInt& pos = x->isNegative() ? y : x;
+ HandleBigInt& neg = x->isNegative() ? x : y;
+
+ // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1)
+ RootedBigInt result(cx, absoluteSubOne(cx, neg, resultLength));
+ if (!result) {
+ return nullptr;
+ }
+ result = absoluteXor(cx, result, pos);
+ if (!result) {
+ return nullptr;
+ }
+ bool resultNegative = true;
+ return absoluteAddOne(cx, result, resultNegative);
+}
+
+// BigInt proposal section 1.1.19. BigInt::bitwiseOR ( x, y )
+BigInt* BigInt::bitOr(ExclusiveContext* cx, HandleBigInt x, HandleBigInt y) {
+ if (x->isZero()) {
+ return y;
+ }
+
+ if (y->isZero()) {
+ return x;
+ }
+
+ unsigned resultLength = std::max(x->digitLength(), y->digitLength());
+ bool resultNegative = x->isNegative() || y->isNegative();
+
+ if (!resultNegative) {
+ return absoluteOr(cx, x, y);
+ }
+
+ if (x->isNegative() && y->isNegative()) {
+ // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1))
+ // == -(((x-1) & (y-1)) + 1)
+ RootedBigInt result(cx, absoluteSubOne(cx, x, resultLength));
+ if (!result) {
+ return nullptr;
+ }
+ RootedBigInt y1(cx, absoluteSubOne(cx, y, y->digitLength()));
+ if (!y1) {
+ return nullptr;
+ }
+ result = absoluteAnd(cx, result, y1);
+ if (!result) {
+ return nullptr;
+ }
+ return absoluteAddOne(cx, result, resultNegative);
+ }
+
+ MOZ_ASSERT(x->isNegative() != y->isNegative());
+ HandleBigInt& pos = x->isNegative() ? y : x;
+ HandleBigInt& neg = x->isNegative() ? x : y;
+
+ // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1)
+ RootedBigInt result(cx, absoluteSubOne(cx, neg, resultLength));
+ if (!result) {
+ return nullptr;
+ }
+ result = absoluteAndNot(cx, result, pos);
+ if (!result) {
+ return nullptr;
+ }
+ return absoluteAddOne(cx, result, resultNegative);
+}
+
+// BigInt proposal section 1.1.2. BigInt::bitwiseNOT ( x )
+BigInt* BigInt::bitNot(ExclusiveContext* cx, HandleBigInt x) {
+ if (x->isNegative()) {
+ // ~(-x) == ~(~(x-1)) == x-1
+ return absoluteSubOne(cx, x, x->digitLength());
+ } else {
+ // ~x == -x-1 == -(x+1)
+ bool resultNegative = true;
+ return absoluteAddOne(cx, x, resultNegative);
+ }
+}
+
+int64_t BigInt::toInt64(BigInt* x) { return WrapToSigned(toUint64(x)); }
+
+uint64_t BigInt::toUint64(BigInt* x) {
+ if (x->isZero()) {
+ return 0;
+ }
+
+ uint64_t digit = x->digit(0);
+
+ if (DigitBits == 32 && x->digitLength() > 1) {
+ digit |= static_cast<uint64_t>(x->digit(1)) << 32;
+ }
+
+ // Return the two's complement if x is negative.
+ if (x->isNegative()) {
+ return ~(digit - 1);
+ }
+
+ return digit;
+}
+
+// Compute `2**bits - (x & (2**bits - 1))`. Used when treating BigInt values as
+// arbitrary-precision two's complement signed integers.
+BigInt* BigInt::truncateAndSubFromPowerOfTwo(ExclusiveContext* cx, HandleBigInt x,
+ uint64_t bits,
+ bool resultNegative) {
+ MOZ_ASSERT(bits != 0);
+ MOZ_ASSERT(!x->isZero());
+
+ size_t resultLength = CeilDiv(bits, DigitBits);
+ RootedBigInt result(cx,
+ createUninitialized(cx, resultLength, resultNegative));
+ if (!result) {
+ return nullptr;
+ }
+
+ // Process all digits except the MSD.
+ size_t xLength = x->digitLength();
+ Digit borrow = 0;
+ // Take digits from `x` until its length is exhausted.
+ for (size_t i = 0; i < std::min(resultLength - 1, xLength); i++) {
+ Digit newBorrow = 0;
+ Digit difference = digitSub(0, x->digit(i), &newBorrow);
+ difference = digitSub(difference, borrow, &newBorrow);
+ result->setDigit(i, difference);
+ borrow = newBorrow;
+ }
+ // Then simulate leading zeroes in `x` as needed.
+ for (size_t i = xLength; i < resultLength - 1; i++) {
+ Digit newBorrow = 0;
+ Digit difference = digitSub(0, borrow, &newBorrow);
+ result->setDigit(i, difference);
+ borrow = newBorrow;
+ }
+
+ // The MSD might contain extra bits that we don't want.
+ Digit xMSD = resultLength <= xLength ? x->digit(resultLength - 1) : 0;
+ Digit resultMSD;
+ if (bits % DigitBits == 0) {
+ Digit newBorrow = 0;
+ resultMSD = digitSub(0, xMSD, &newBorrow);
+ resultMSD = digitSub(resultMSD, borrow, &newBorrow);
+ } else {
+ size_t drop = DigitBits - (bits % DigitBits);
+ xMSD = (xMSD << drop) >> drop;
+ Digit minuendMSD = Digit(1) << (DigitBits - drop);
+ Digit newBorrow = 0;
+ resultMSD = digitSub(minuendMSD, xMSD, &newBorrow);
+ resultMSD = digitSub(resultMSD, borrow, &newBorrow);
+ MOZ_ASSERT(newBorrow == 0, "result < 2^bits");
+ // If all subtracted bits were zero, we have to get rid of the
+ // materialized minuendMSD again.
+ resultMSD &= (minuendMSD - 1);
+ }
+ result->setDigit(resultLength - 1, resultMSD);
+
+ return trimHighZeroDigits(cx, result);
+}
+
+BigInt* BigInt::asUintN(ExclusiveContext* cx, HandleBigInt x, uint64_t bits) {
+ if (x->isZero()) {
+ return x;
+ }
+
+ if (bits == 0) {
+ return zero(cx);
+ }
+
+ // When truncating a negative number, simulate two's complement.
+ if (x->isNegative()) {
+ bool resultNegative = false;
+ return truncateAndSubFromPowerOfTwo(cx, x, bits, resultNegative);
+ }
+
+ if (bits <= 64) {
+ uint64_t u64 = toUint64(x);
+ uint64_t mask = uint64_t(-1) >> (64 - bits);
+ return createFromUint64(cx, u64 & mask);
+ }
+
+ if (bits >= MaxBitLength) {
+ return x;
+ }
+
+ Digit msd = x->digit(x->digitLength() - 1);
+ size_t msdBits = DigitBits - DigitLeadingZeroes(msd);
+ size_t bitLength = msdBits + (x->digitLength() - 1) * DigitBits;
+
+ if (bits >= bitLength) {
+ return x;
+ }
+
+ size_t length = CeilDiv(bits, DigitBits);
+ bool isNegative = false;
+
+ BigInt* res = createUninitialized(cx, length, isNegative);
+ if (!res) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(length >= 2, "single-digit cases should be handled above");
+ MOZ_ASSERT(length <= x->digitLength());
+ for (size_t i = 0; i < length - 1; i++) {
+ res->setDigit(i, x->digit(i));
+ }
+
+ Digit mask = Digit(-1) >> (DigitBits - (bits % DigitBits));
+ res->setDigit(length - 1, x->digit(length - 1) & mask);
+
+ return res;
+}
+
+BigInt* BigInt::asIntN(ExclusiveContext* cx, HandleBigInt x, uint64_t bits) {
+ if (x->isZero()) {
+ return x;
+ }
+
+ if (bits == 0) {
+ return zero(cx);
+ }
+
+ if (bits == 64) {
+ return createFromInt64(cx, toInt64(x));
+ }
+
+ if (bits > MaxBitLength) {
+ return x;
+ }
+
+ Digit msd = x->digit(x->digitLength() - 1);
+ size_t msdBits = DigitBits - DigitLeadingZeroes(msd);
+ size_t bitLength = msdBits + (x->digitLength() - 1) * DigitBits;
+
+ if (bits > bitLength) {
+ return x;
+ }
+
+ Digit signBit = Digit(1) << ((bits - 1) % DigitBits);
+ if (bits == bitLength && msd < signBit) {
+ return x;
+ }
+
+ // All the cases above were the trivial cases: truncating zero, or to zero
+ // bits, or to more bits than are in `x` (so we return `x` directly), or we
+ // already have the 64-bit fast path. If we get here, follow the textbook
+ // algorithm from the specification.
+
+ // BigInt.asIntN step 3: Let `mod` be `x` modulo `2**bits`.
+ RootedBigInt mod(cx, asUintN(cx, x, bits));
+ if (!mod) {
+ return nullptr;
+ }
+
+ // Step 4: If `mod >= 2**(bits - 1)`, return `mod - 2**bits`; otherwise,
+ // return `mod`.
+ if (mod->digitLength() == CeilDiv(bits, DigitBits) &&
+ (mod->digit(mod->digitLength() - 1) & signBit) != 0) {
+ bool resultNegative = true;
+ return truncateAndSubFromPowerOfTwo(cx, mod, bits, resultNegative);
+ }
+
+ return mod;
+}
+
+static bool ValidBigIntOperands(ExclusiveContext* cx, HandleValue lhs,
+ HandleValue rhs) {
+ MOZ_ASSERT(lhs.isBigInt() || rhs.isBigInt());
+
+ if (!lhs.isBigInt() || !rhs.isBigInt()) {
+ if (cx->isJSContext()) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_TO_NUMBER);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+bool BigInt::add(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::add(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::sub(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::sub(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::mul(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::mul(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::div(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::div(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::mod(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::mod(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::pow(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::pow(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::neg(ExclusiveContext* cx, HandleValue operand, MutableHandleValue res) {
+ MOZ_ASSERT(operand.isBigInt());
+
+ RootedBigInt operandBigInt(cx, operand.toBigInt());
+ BigInt* resBigInt = BigInt::neg(cx, operandBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::lsh(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::lsh(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::rsh(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::rsh(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::bitAnd(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::bitAnd(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::bitXor(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::bitXor(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::bitOr(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ if (!ValidBigIntOperands(cx, lhs, rhs)) {
+ return false;
+ }
+
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ BigInt* resBigInt = BigInt::bitOr(cx, lhsBigInt, rhsBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+bool BigInt::bitNot(ExclusiveContext* cx, HandleValue operand,
+ MutableHandleValue res) {
+ MOZ_ASSERT(operand.isBigInt());
+
+ RootedBigInt operandBigInt(cx, operand.toBigInt());
+ BigInt* resBigInt = BigInt::bitNot(cx, operandBigInt);
+ if (!resBigInt) {
+ return false;
+ }
+ res.setBigInt(resBigInt);
+ return true;
+}
+
+// BigInt proposal section 7.3
+BigInt* js::ToBigInt(ExclusiveContext* cx, HandleValue val) {
+ RootedValue v(cx, val);
+
+ if(cx->isJSContext()) {
+ // Step 1.
+ if (!ToPrimitive(cx->asJSContext(), JSTYPE_NUMBER, &v)) {
+ return nullptr;
+ }
+
+ // Step 2.
+ if (v.isBigInt()) {
+ return v.toBigInt();
+ }
+
+ if (v.isBoolean()) {
+ return v.toBoolean() ? BigInt::one(cx) : BigInt::zero(cx);
+ }
+
+ if (v.isString()) {
+ BigInt* bi = nullptr;
+ RootedString str(cx, v.toString());
+ JS_TRY_VAR_OR_RETURN_NULL(cx, bi, StringToBigInt(cx, str));
+ if (!bi) {
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr,
+ JSMSG_BIGINT_INVALID_SYNTAX);
+ return nullptr;
+ }
+ return bi;
+ }
+
+ JS_ReportErrorNumberASCII(cx->asJSContext(), GetErrorMessage, nullptr, JSMSG_NOT_BIGINT);
+ }
+ return nullptr;
+}
+
+double BigInt::numberValue(BigInt* x) {
+ if (x->isZero()) {
+ return 0.0;
+ }
+
+ using Double = mozilla::FloatingPoint<double>;
+ constexpr uint8_t ExponentShift = Double::kExponentShift;
+ constexpr uint8_t SignificandWidth = Double::kSignificandWidth;
+ constexpr unsigned ExponentBias = Double::kExponentBias;
+ constexpr uint8_t SignShift = Double::kExponentWidth + SignificandWidth;
+
+ size_t length = x->digitLength();
+ MOZ_ASSERT(length != 0);
+
+ // Fast path for the likely-common case of up to a uint64_t of magnitude
+ // that doesn't exceed integral precision in IEEE-754.
+ if (length <= 64 / DigitBits) {
+ uint64_t magnitude = x->digit(0);
+ if (DigitBits == 32 && length > 1) {
+ magnitude |= uint64_t(x->digit(1)) << 32;
+ }
+ const uint64_t MaxIntegralPrecisionDouble = uint64_t(1)
+ << (SignificandWidth + 1);
+ if (magnitude <= MaxIntegralPrecisionDouble) {
+ return x->isNegative() ? -double(magnitude) : +double(magnitude);
+ }
+ }
+
+ Digit msd = x->digit(length - 1);
+ uint8_t msdLeadingZeroes = DigitLeadingZeroes(msd);
+
+ // `2**ExponentBias` is the largest power of two in a finite IEEE-754
+ // double. If this bigint has a greater power of two, it'll round to
+ // infinity.
+ uint64_t exponent = length * DigitBits - msdLeadingZeroes - 1;
+ if (exponent > ExponentBias) {
+ return x->isNegative() ? mozilla::NegativeInfinity<double>()
+ : mozilla::PositiveInfinity<double>();
+ }
+
+ // Otherwise munge the most significant bits of the number into proper
+ // position in an IEEE-754 double and go to town.
+
+ // Omit the most significant bit: the IEEE-754 format includes this bit
+ // implicitly for all double-precision integers.
+ const uint8_t msdIgnoredBits = msdLeadingZeroes + 1;
+ const uint8_t msdIncludedBits = DigitBits - msdIgnoredBits;
+
+ uint8_t bitsFilled = msdIncludedBits;
+
+ // Shift `msd`'s contributed bits upward to remove high-order zeroes and
+ // the highest set bit (which is implicit in IEEE-754 integral values so
+ // must be removed) and to add low-order zeroes.
+ uint64_t shiftedMantissa =
+ msdIncludedBits == 0 ? 0 : uint64_t(msd) << (64 - msdIncludedBits);
+
+ // Add in bits from the next one or two digits if `msd` didn't contain all
+ // bits necessary to define the result. (The extra bit allows us to
+ // properly round an inexact overall result.) Any lower bits that are
+ // uselessly set will be shifted away when `shiftedMantissa` is converted to
+ // a real mantissa.
+ if (bitsFilled < SignificandWidth + 1) {
+ MOZ_ASSERT(length >= 2,
+ "single-Digit numbers with this few bits should have been "
+ "handled by the fast-path above");
+
+ Digit second = x->digit(length - 2);
+ if (DigitBits == 32) {
+ shiftedMantissa |= uint64_t(second) << msdIgnoredBits;
+ bitsFilled += DigitBits;
+
+ // Add in bits from another digit, if any, if we still have unfilled
+ // significand bits.
+ if (bitsFilled < SignificandWidth + 1 && length >= 3) {
+ Digit third = x->digit(length - 3);
+ shiftedMantissa |= uint64_t(third) >> msdIncludedBits;
+ // The second and third 32-bit digits contributed 64 bits total, filling
+ // well beyond the mantissa.
+ bitsFilled = 64;
+ }
+ } else {
+ shiftedMantissa |= second >> msdIncludedBits;
+ // A full 64-bit digit's worth of bits (some from the most significant
+ // digit, the rest from the next) fills well beyond the mantissa.
+ bitsFilled = 64;
+ }
+ }
+
+ // Round the overall result, if necessary. (It's possible we don't need to
+ // round -- the number might not have enough bits to round.)
+ if (bitsFilled >= SignificandWidth + 1) {
+ constexpr uint64_t LeastSignificantBit = uint64_t(1)
+ << (64 - SignificandWidth);
+ constexpr uint64_t ExtraBit = LeastSignificantBit >> 1;
+
+ // When the first bit outside the significand is set, the overall value
+ // is rounded: downward (i.e. no change to the bits) if the least
+ // significant bit in the significand is zero, upward if it instead is
+ // one.
+ if ((shiftedMantissa & ExtraBit) &&
+ (shiftedMantissa & LeastSignificantBit)) {
+ // We're rounding upward: add to the significand bits. If they
+ // overflow, the exponent must also be increased. If *that*
+ // overflows, return the appropriate infinity.
+ uint64_t before = shiftedMantissa;
+ shiftedMantissa += ExtraBit;
+ if (shiftedMantissa < before) {
+ exponent++;
+ if (exponent > ExponentBias) {
+ return x->isNegative() ? NegativeInfinity<double>()
+ : PositiveInfinity<double>();
+ }
+ }
+ }
+ }
+
+ uint64_t significandBits = shiftedMantissa >> (64 - SignificandWidth);
+ uint64_t signBit = uint64_t(x->isNegative() ? 1 : 0) << SignShift;
+ uint64_t exponentBits = (exponent + ExponentBias) << ExponentShift;
+ return mozilla::BitwiseCast<double>(signBit | exponentBits | significandBits);
+}
+
+int8_t BigInt::compare(BigInt* x, BigInt* y) {
+ // Sanity checks to catch negative zeroes escaping to the wild.
+ MOZ_ASSERT(!x->isNegative() || !x->isZero());
+ MOZ_ASSERT(!y->isNegative() || !y->isZero());
+
+ bool xSign = x->isNegative();
+
+ if (xSign != y->isNegative()) {
+ return xSign ? -1 : 1;
+ }
+
+ if (xSign) {
+ mozilla::Swap(x, y);
+ }
+
+ return absoluteCompare(x, y);
+}
+
+bool BigInt::equal(BigInt* lhs, BigInt* rhs) {
+ if (lhs == rhs) {
+ return true;
+ }
+ if (lhs->digitLength() != rhs->digitLength()) {
+ return false;
+ }
+ if (lhs->isNegative() != rhs->isNegative()) {
+ return false;
+ }
+ for (size_t i = 0; i < lhs->digitLength(); i++) {
+ if (lhs->digit(i) != rhs->digit(i)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+int8_t BigInt::compare(BigInt* x, double y) {
+ MOZ_ASSERT(!mozilla::IsNaN(y));
+
+ constexpr int LessThan = -1, Equal = 0, GreaterThan = 1;
+
+ // ±Infinity exceeds a finite bigint value.
+ if (!mozilla::IsFinite(y)) {
+ return y > 0 ? LessThan : GreaterThan;
+ }
+
+ // Handle `x === 0n` and `y == 0` special cases.
+ if (x->isZero()) {
+ if (y == 0) {
+ // -0 and +0 are treated identically.
+ return Equal;
+ }
+
+ return y > 0 ? LessThan : GreaterThan;
+ }
+
+ const bool xNegative = x->isNegative();
+ if (y == 0) {
+ return xNegative ? LessThan : GreaterThan;
+ }
+
+ // Nonzero `x` and `y` with different signs are trivially compared.
+ const bool yNegative = y < 0;
+ if (xNegative != yNegative) {
+ return xNegative ? LessThan : GreaterThan;
+ }
+
+ // `x` and `y` are same-signed. Determine which has greater magnitude,
+ // then combine that with the signedness just computed to reach a result.
+ const int exponent = mozilla::ExponentComponent(y);
+ if (exponent < 0) {
+ // `y` is a nonzero fraction of magnitude less than 1.
+ return xNegative ? LessThan : GreaterThan;
+ }
+
+ size_t xLength = x->digitLength();
+ MOZ_ASSERT(xLength > 0);
+
+ Digit xMSD = x->digit(xLength - 1);
+ const int shift = DigitLeadingZeroes(xMSD);
+ int xBitLength = xLength * DigitBits - shift;
+
+ // Differing bit-length makes for a simple comparison.
+ int yBitLength = exponent + 1;
+ if (xBitLength < yBitLength) {
+ return xNegative ? GreaterThan : LessThan;
+ }
+ if (xBitLength > yBitLength) {
+ return xNegative ? LessThan : GreaterThan;
+ }
+
+ // Compare the high 64 bits of both numbers. (Lower-order bits not present
+ // in either number are zeroed.) Either that distinguishes `x` and `y`, or
+ // `x` and `y` differ only if a subsequent nonzero bit in `x` means `x` has
+ // larger magnitude.
+
+ using Double = mozilla::FloatingPoint<double>;
+ constexpr uint8_t SignificandWidth = Double::kSignificandWidth;
+ constexpr uint64_t SignificandBits = Double::kSignificandBits;
+
+ const uint64_t doubleBits = mozilla::BitwiseCast<uint64_t>(y);
+ const uint64_t significandBits = doubleBits & SignificandBits;
+
+ // Readd the implicit-one bit when constructing `y`'s high 64 bits.
+ const uint64_t yHigh64Bits =
+ ((uint64_t(1) << SignificandWidth) | significandBits)
+ << (64 - SignificandWidth - 1);
+
+ // Cons up `x`'s high 64 bits, backfilling zeroes for binary fractions of 1
+ // if `x` doesn't have 64 bits.
+ uint8_t xBitsFilled = DigitBits - shift;
+ uint64_t xHigh64Bits = uint64_t(xMSD) << (64 - xBitsFilled);
+
+ // At this point we no longer need to look at the most significant digit.
+ xLength--;
+
+ // The high 64 bits from `x` will probably not align to a digit boundary.
+ // `xHasNonZeroLeftoverBits` will be set to true if any remaining
+ // least-significant bit from the digit holding xHigh64Bits's
+ // least-significant bit is nonzero.
+ bool xHasNonZeroLeftoverBits = false;
+
+ if (xBitsFilled < std::min(xBitLength, 64)) {
+ MOZ_ASSERT(xLength >= 1,
+ "If there are more bits to fill, there should be "
+ "more digits to fill them from");
+
+ Digit second = x->digit(--xLength);
+ if (DigitBits == 32) {
+ xBitsFilled += 32;
+ xHigh64Bits |= uint64_t(second) << (64 - xBitsFilled);
+ if (xBitsFilled < 64 && xLength >= 1) {
+ Digit third = x->digit(--xLength);
+ const uint8_t neededBits = 64 - xBitsFilled;
+ xHigh64Bits |= uint64_t(third) >> (DigitBits - neededBits);
+ xHasNonZeroLeftoverBits = (third << neededBits) != 0;
+ }
+ } else {
+ const uint8_t neededBits = 64 - xBitsFilled;
+ xHigh64Bits |= uint64_t(second) >> (DigitBits - neededBits);
+ xHasNonZeroLeftoverBits = (second << neededBits) != 0;
+ }
+ }
+
+ // If high bits are unequal, the larger one has greater magnitude.
+ if (yHigh64Bits > xHigh64Bits) {
+ return xNegative ? GreaterThan : LessThan;
+ }
+ if (xHigh64Bits > yHigh64Bits) {
+ return xNegative ? LessThan : GreaterThan;
+ }
+
+ // Otherwise the top 64 bits of both are equal. If the values differ, a
+ // lower-order bit in `x` is nonzero and `x` has greater magnitude than
+ // `y`; otherwise `x == y`.
+ if (xHasNonZeroLeftoverBits) {
+ return xNegative ? LessThan : GreaterThan;
+ }
+ while (xLength != 0) {
+ if (x->digit(--xLength) != 0) {
+ return xNegative ? LessThan : GreaterThan;
+ }
+ }
+
+ return Equal;
+}
+
+bool BigInt::equal(BigInt* lhs, double rhs) {
+ if (mozilla::IsNaN(rhs)) {
+ return false;
+ }
+ return compare(lhs, rhs) == 0;
+}
+
+// BigInt proposal section 3.2.5
+JS::Result<bool> BigInt::looselyEqual(ExclusiveContext* cx, HandleBigInt lhs,
+ HandleValue rhs) {
+ // Step 1.
+ if (rhs.isBigInt()) {
+ return equal(lhs, rhs.toBigInt());
+ }
+
+ // Steps 2-5 (not applicable).
+
+ // Steps 6-7.
+ if (rhs.isString()) {
+ RootedBigInt rhsBigInt(cx);
+ RootedString rhsString(cx, rhs.toString());
+ MOZ_TRY_VAR(rhsBigInt, StringToBigInt(cx, rhsString));
+ if (!rhsBigInt) {
+ return false;
+ }
+ return equal(lhs, rhsBigInt);
+ }
+
+ // Steps 8-9 (not applicable).
+
+ // Steps 10-11.
+ if (rhs.isObject()) {
+ RootedValue rhsPrimitive(cx, rhs);
+ if (!cx->isJSContext() || !ToPrimitive(cx->asJSContext(), &rhsPrimitive)) {
+ return cx->alreadyReportedError();
+ }
+ return looselyEqual(cx, lhs, rhsPrimitive);
+ }
+
+ // Step 12.
+ if (rhs.isNumber()) {
+ return equal(lhs, rhs.toNumber());
+ }
+
+ // Step 13.
+ return false;
+}
+
+// BigInt proposal section 1.1.12. BigInt::lessThan ( x, y )
+bool BigInt::lessThan(BigInt* x, BigInt* y) { return compare(x, y) < 0; }
+
+Maybe<bool> BigInt::lessThan(BigInt* lhs, double rhs) {
+ if (mozilla::IsNaN(rhs)) {
+ return Maybe<bool>(Nothing());
+ }
+ return Some(compare(lhs, rhs) < 0);
+}
+
+Maybe<bool> BigInt::lessThan(double lhs, BigInt* rhs) {
+ if (mozilla::IsNaN(lhs)) {
+ return Maybe<bool>(Nothing());
+ }
+ return Some(-compare(rhs, lhs) < 0);
+}
+
+bool BigInt::lessThan(ExclusiveContext* cx, HandleBigInt lhs, HandleString rhs,
+ Maybe<bool>& res) {
+ RootedBigInt rhsBigInt(cx);
+ JS_TRY_VAR_OR_RETURN_FALSE(cx, rhsBigInt, StringToBigInt(cx, rhs));
+ if (!rhsBigInt) {
+ res = Nothing();
+ return true;
+ }
+ res = Some(lessThan(lhs, rhsBigInt));
+ return true;
+}
+
+bool BigInt::lessThan(ExclusiveContext* cx, HandleString lhs, HandleBigInt rhs,
+ Maybe<bool>& res) {
+ RootedBigInt lhsBigInt(cx);
+ JS_TRY_VAR_OR_RETURN_FALSE(cx, lhsBigInt, StringToBigInt(cx, lhs));
+ if (!lhsBigInt) {
+ res = Nothing();
+ return true;
+ }
+ res = Some(lessThan(lhsBigInt, rhs));
+ return true;
+}
+
+bool BigInt::lessThan(ExclusiveContext* cx, HandleValue lhs, HandleValue rhs,
+ Maybe<bool>& res) {
+ if (lhs.isBigInt()) {
+ if (rhs.isString()) {
+ RootedBigInt lhsBigInt(cx, lhs.toBigInt());
+ RootedString rhsString(cx, rhs.toString());
+ return lessThan(cx, lhsBigInt, rhsString, res);
+ }
+
+ if (rhs.isNumber()) {
+ res = lessThan(lhs.toBigInt(), rhs.toNumber());
+ return true;
+ }
+
+ MOZ_ASSERT(rhs.isBigInt());
+ res = Some(lessThan(lhs.toBigInt(), rhs.toBigInt()));
+ return true;
+ }
+
+ MOZ_ASSERT(rhs.isBigInt());
+ if (lhs.isString()) {
+ RootedString lhsString(cx, lhs.toString());
+ RootedBigInt rhsBigInt(cx, rhs.toBigInt());
+ return lessThan(cx, lhsString, rhsBigInt, res);
+ }
+
+ MOZ_ASSERT(lhs.isNumber());
+ res = lessThan(lhs.toNumber(), rhs.toBigInt());
+ return true;
+}
+
+JSLinearString* BigInt::toString(ExclusiveContext* cx, HandleBigInt x, uint8_t radix) {
+ MOZ_ASSERT(2 <= radix && radix <= 36);
+
+ if (x->isZero()) {
+ return cx->staticStrings().getInt(0);
+ }
+
+ if (mozilla::IsPowerOfTwo(radix)) {
+ return toStringBasePowerOfTwo(cx, x, radix);
+ }
+
+ return toStringGeneric(cx, x, radix);
+}
+
+template <typename CharT>
+static inline BigInt* ParseStringBigIntLiteral(ExclusiveContext* cx,
+ Range<const CharT> range,
+ bool* haveParseError) {
+ auto start = range.begin();
+ auto end = range.end();
+
+ while (start < end && unicode::IsSpace(start[0])) {
+ start++;
+ }
+
+ while (start < end && unicode::IsSpace(end[-1])) {
+ end--;
+ }
+
+ if (start == end) {
+ return BigInt::zero(cx);
+ }
+
+ // StringNumericLiteral ::: StrDecimalLiteral, but without Infinity, decimal
+ // points, or exponents. Note that the raw '+' or '-' cases fall through
+ // because the string is too short, and eventually signal a parse error.
+ if (end - start > 1) {
+ if (start[0] == '+') {
+ bool isNegative = false;
+ start++;
+ return BigInt::parseLiteralDigits(cx, Range<const CharT>(start, end), 10,
+ isNegative, haveParseError);
+ } else if (start[0] == '-') {
+ bool isNegative = true;
+ start++;
+ return BigInt::parseLiteralDigits(cx, Range<const CharT>(start, end), 10,
+ isNegative, haveParseError);
+ }
+ }
+
+ return BigInt::parseLiteral(cx, Range<const CharT>(start, end),
+ haveParseError);
+}
+
+// Called from BigInt constructor.
+JS::Result<BigInt*, JS::OOM&> js::StringToBigInt(ExclusiveContext* cx,
+ HandleString str) {
+ JSLinearString* linear = str->ensureLinear(cx);
+ if (!linear) {
+ return cx->alreadyReportedOOM();
+ }
+
+ BigInt* res = nullptr;
+ bool parseError = false;
+
+ if(cx->isJSContext()) {
+ AutoStableStringChars chars(cx->asJSContext());
+ if (!chars.init(cx->asJSContext(), str)) {
+ return cx->alreadyReportedOOM();
+ }
+
+ if (chars.isLatin1()) {
+ res = ParseStringBigIntLiteral(cx->asJSContext(), chars.latin1Range(), &parseError);
+ } else {
+ res = ParseStringBigIntLiteral(cx->asJSContext(), chars.twoByteRange(), &parseError);
+ }
+ }
+
+ // A nullptr result can indicate either a parse error or out-of-memory.
+ if (!res && !parseError) {
+ return cx->alreadyReportedOOM();
+ }
+
+ return res;
+}
+
+// Called from parser with already trimmed and validated token.
+BigInt* js::ParseBigIntLiteral(ExclusiveContext* cx,
+ const Range<const char16_t>& chars) {
+ bool parseError = false;
+ BigInt* res = BigInt::parseLiteral(cx, chars, &parseError);
+ if (!res) {
+ return nullptr;
+ }
+ MOZ_RELEASE_ASSERT(!parseError);
+ return res;
+}
+
+JSAtom* js::BigIntToAtom(ExclusiveContext* cx, HandleBigInt bi) {
+ JSString* str = BigInt::toString(cx, bi, 10);
+ if (!str) {
+ return nullptr;
+ }
+ return AtomizeString(cx, str);
+}
+
+JS::ubi::Node::Size JS::ubi::Concrete<BigInt>::size(
+ mozilla::MallocSizeOf mallocSizeOf) const {
+ BigInt& bi = get();
+ MOZ_ASSERT(bi.isTenured());
+ size_t size = js::gc::Arena::thingSize(bi.asTenured().getAllocKind());
+ size += bi.sizeOfExcludingThis(mallocSizeOf);
+ return size;
+}
+
+template <XDRMode mode>
+bool js::XDRBigInt(XDRState<mode>* xdr, MutableHandleBigInt bi) {
+ ExclusiveContext* cx = xdr->cx();
+
+ uint8_t sign;
+ uint32_t length;
+
+ if (mode == XDR_ENCODE) {
+ sign = static_cast<uint8_t>(bi->isNegative());
+ uint64_t sz = bi->digitLength() * sizeof(BigInt::Digit);
+ // As the maximum source code size is currently UINT32_MAX code units
+ // (see BytecodeCompiler::checkLength), any bigint literal's length in
+ // word-sized digits will be less than UINT32_MAX as well. That could
+ // change or FoldConstants could start creating these though, so leave
+ // this as a release-enabled assert.
+ MOZ_RELEASE_ASSERT(sz <= UINT32_MAX);
+ length = static_cast<uint32_t>(sz);
+ }
+
+ if(!xdr->codeUint8(&sign))
+ return false;
+ if(!xdr->codeUint32(&length))
+ return false;
+
+ MOZ_RELEASE_ASSERT(length % sizeof(BigInt::Digit) == 0);
+ uint32_t digitLength = length / sizeof(BigInt::Digit);
+ auto buf = cx->make_pod_array<BigInt::Digit>(digitLength);
+ if (!buf) {
+ return xdr->fail(JS::TranscodeResult_Throw);
+ }
+
+ if (mode == XDR_ENCODE) {
+ std::uninitialized_copy_n(bi->digits().Elements(), digitLength, buf.get());
+ }
+
+ if(!xdr->codeBytes(buf.get(), length))
+ return false;
+
+ if (mode == XDR_DECODE) {
+ BigInt* res = BigInt::createUninitialized(cx, digitLength, sign);
+ if (!res) {
+ return xdr->fail(JS::TranscodeResult_Throw);
+ }
+ std::uninitialized_copy_n(buf.get(), digitLength, bi->digits().Elements());
+ bi.set(res);
+ }
+
+ return true;
+}
+
+template bool js::XDRBigInt(XDRState<XDR_ENCODE>* xdr, MutableHandleBigInt bi);
+
+template bool js::XDRBigInt(XDRState<XDR_DECODE>* xdr, MutableHandleBigInt bi);
+