diff options
Diffstat (limited to 'build/docs/build-overview.rst')
-rw-r--r-- | build/docs/build-overview.rst | 117 |
1 files changed, 117 insertions, 0 deletions
diff --git a/build/docs/build-overview.rst b/build/docs/build-overview.rst new file mode 100644 index 0000000000..a81531bc91 --- /dev/null +++ b/build/docs/build-overview.rst @@ -0,0 +1,117 @@ +.. _build_overview: + +===================== +Build System Overview +===================== + +This document provides an overview on how the build system works. It is +targeted at people wanting to learn about internals of the build system. +It is not meant for persons who casually interact with the build system. +That being said, knowledge empowers, so consider reading on. + +The build system is composed of many different components working in +harmony to build the source tree. We begin with a graphic overview. + +.. graphviz:: + + digraph build_components { + rankdir="LR"; + "configure" -> "config.status" -> "build backend" -> "build output" + } + +Phase 1: Configuration +====================== + +Phase 1 centers around the ``configure`` script, which is a bash shell script. +The file is generated from a file called ``configure.in`` which is written in M4 +and processed using Autoconf 2.13 to create the final configure script. +You don't have to worry about how you obtain a ``configure`` file: the build +system does this for you. + +The primary job of ``configure`` is to determine characteristics of the system +and compiler, apply options passed into it, and validate everything looks OK to +build. The primary output of the ``configure`` script is an executable file +in the object directory called ``config.status``. ``configure`` also produces +some additional files (like ``autoconf.mk``). However, the most important file +in terms of architecture is ``config.status``. + +The existence of a ``config.status`` file may be familiar to those who have worked +with Autoconf before. However, Mozilla's ``config.status`` is different from almost +any other ``config.status`` you've ever seen: it's written in Python! Instead of +having our ``configure`` script produce a shell script, we have it generating +Python. + +Now is as good a time as any to mention that Python is prevalent in our build +system. If we need to write code for the build system, we do it in Python. +That's just how we roll. For more, see :ref:`python`. + +``config.status`` contains 2 parts: data structures representing the output of +``configure`` and a command-line interface for preparing/configuring/generating +an appropriate build backend. (A build backend is merely a tool used to build +the tree - like GNU Make or Tup). These data structures essentially describe +the current state of the system and what the existing build configuration looks +like. For example, it defines which compiler to use, how to invoke it, which +application features are enabled, etc. You are encouraged to open up +``config.status`` to have a look for yourself! + +Once we have emitted a ``config.status`` file, we pass into the realm of +phase 2. + +Phase 2: Build Backend Preparation and the Build Definition +=========================================================== + +Once ``configure`` has determined what the current build configuration is, +we need to apply this to the source tree so we can actually build. + +What essentially happens is the automatically-produced ``config.status`` Python +script is executed as soon as ``configure`` has generated it. ``config.status`` +is charged with the task of tell a tool how to build the tree. To do this, +``config.status`` must first scan the build system definition. + +The build system definition consists of various ``moz.build`` files in the tree. +There is roughly one ``moz.build`` file per directory or per set of related directories. +Each ``moz.build`` files defines how its part of the build config works. For +example it says *I want these C++ files compiled* or *look for additional +information in these directories.* config.status starts with the ``moz.build`` +file from the root directory and then descends into referenced ``moz.build`` +files by following ``DIRS`` variables or similar. + +As the ``moz.build`` files are read, data structures describing the overall +build system definition are emitted. These data structures are then fed into a +build backend, which then performs actions, such as writing out files to +be read by a build tool. e.g. a ``make`` backend will write a +``Makefile``. + +When ``config.status`` runs, you'll see the following output:: + + Reticulating splines... + Finished reading 1096 moz.build files into 1276 descriptors in 2.40s + Backend executed in 2.39s + 2188 total backend files. 0 created; 1 updated; 2187 unchanged + Total wall time: 5.03s; CPU time: 3.79s; Efficiency: 75% + +What this is saying is that a total of *1096* ``moz.build`` files were read. +Altogether, *1276* data structures describing the build configuration were +derived from them. It took *2.40s* wall time to just read these files and +produce the data structures. The *1276* data structures were fed into the +build backend which then determined it had to manage *2188* files derived +from those data structures. Most of them already existed and didn't need +changed. However, *1* was updated as a result of the new configuration. +The whole process took *5.03s*. Although, only *3.79s* was in +CPU time. That likely means we spent roughly *25%* of the time waiting on +I/O. + +For more on how ``moz.build`` files work, see :ref:`mozbuild-files`. + +Phase 3: Invokation of the Build Backend +======================================== + +When most people think of the build system, they think of phase 3. This is +where we take all the code in the tree and produce Firefox or whatever +application you are creating. Phase 3 effectively takes whatever was +generated by phase 2 and runs it. Since the dawn of Mozilla, this has been +make consuming Makefiles. However, with the transition to moz.build files, +you may soon see non-Make build backends, such as Tup or Visual Studio. + +When building the tree, most of the time is spent in phase 3. This is when +header files are installed, C++ files are compiled, files are preprocessed, etc. |