diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /js/src/jit/RegisterAllocator.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | uxp-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz |
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/src/jit/RegisterAllocator.cpp')
-rw-r--r-- | js/src/jit/RegisterAllocator.cpp | 614 |
1 files changed, 614 insertions, 0 deletions
diff --git a/js/src/jit/RegisterAllocator.cpp b/js/src/jit/RegisterAllocator.cpp new file mode 100644 index 0000000000..0ed1480fe9 --- /dev/null +++ b/js/src/jit/RegisterAllocator.cpp @@ -0,0 +1,614 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- + * vim: set ts=8 sts=4 et sw=4 tw=99: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/RegisterAllocator.h" + +using namespace js; +using namespace js::jit; + +bool +AllocationIntegrityState::record() +{ + // Ignore repeated record() calls. + if (!instructions.empty()) + return true; + + if (!instructions.appendN(InstructionInfo(), graph.numInstructions())) + return false; + + if (!virtualRegisters.appendN((LDefinition*)nullptr, graph.numVirtualRegisters())) + return false; + + if (!blocks.reserve(graph.numBlocks())) + return false; + for (size_t i = 0; i < graph.numBlocks(); i++) { + blocks.infallibleAppend(BlockInfo()); + LBlock* block = graph.getBlock(i); + MOZ_ASSERT(block->mir()->id() == i); + + BlockInfo& blockInfo = blocks[i]; + if (!blockInfo.phis.reserve(block->numPhis())) + return false; + + for (size_t j = 0; j < block->numPhis(); j++) { + blockInfo.phis.infallibleAppend(InstructionInfo()); + InstructionInfo& info = blockInfo.phis[j]; + LPhi* phi = block->getPhi(j); + MOZ_ASSERT(phi->numDefs() == 1); + uint32_t vreg = phi->getDef(0)->virtualRegister(); + virtualRegisters[vreg] = phi->getDef(0); + if (!info.outputs.append(*phi->getDef(0))) + return false; + for (size_t k = 0, kend = phi->numOperands(); k < kend; k++) { + if (!info.inputs.append(*phi->getOperand(k))) + return false; + } + } + + for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) { + LInstruction* ins = *iter; + InstructionInfo& info = instructions[ins->id()]; + + for (size_t k = 0; k < ins->numTemps(); k++) { + if (!ins->getTemp(k)->isBogusTemp()) { + uint32_t vreg = ins->getTemp(k)->virtualRegister(); + virtualRegisters[vreg] = ins->getTemp(k); + } + if (!info.temps.append(*ins->getTemp(k))) + return false; + } + for (size_t k = 0; k < ins->numDefs(); k++) { + if (!ins->getDef(k)->isBogusTemp()) { + uint32_t vreg = ins->getDef(k)->virtualRegister(); + virtualRegisters[vreg] = ins->getDef(k); + } + if (!info.outputs.append(*ins->getDef(k))) + return false; + } + for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) { + if (!info.inputs.append(**alloc)) + return false; + } + } + } + + return seen.init(); +} + +bool +AllocationIntegrityState::check(bool populateSafepoints) +{ + MOZ_ASSERT(!instructions.empty()); + +#ifdef JS_JITSPEW + if (JitSpewEnabled(JitSpew_RegAlloc)) + dump(); +#endif +#ifdef DEBUG + for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) { + LBlock* block = graph.getBlock(blockIndex); + + // Check that all instruction inputs and outputs have been assigned an allocation. + for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) { + LInstruction* ins = *iter; + + for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) + MOZ_ASSERT(!alloc->isUse()); + + for (size_t i = 0; i < ins->numDefs(); i++) { + LDefinition* def = ins->getDef(i); + MOZ_ASSERT(!def->output()->isUse()); + + LDefinition oldDef = instructions[ins->id()].outputs[i]; + MOZ_ASSERT_IF(oldDef.policy() == LDefinition::MUST_REUSE_INPUT, + *def->output() == *ins->getOperand(oldDef.getReusedInput())); + } + + for (size_t i = 0; i < ins->numTemps(); i++) { + LDefinition* temp = ins->getTemp(i); + MOZ_ASSERT_IF(!temp->isBogusTemp(), temp->output()->isRegister()); + + LDefinition oldTemp = instructions[ins->id()].temps[i]; + MOZ_ASSERT_IF(oldTemp.policy() == LDefinition::MUST_REUSE_INPUT, + *temp->output() == *ins->getOperand(oldTemp.getReusedInput())); + } + } + } +#endif + + // Check that the register assignment and move groups preserve the original + // semantics of the virtual registers. Each virtual register has a single + // write (owing to the SSA representation), but the allocation may move the + // written value around between registers and memory locations along + // different paths through the script. + // + // For each use of an allocation, follow the physical value which is read + // backward through the script, along all paths to the value's virtual + // register's definition. + for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) { + LBlock* block = graph.getBlock(blockIndex); + for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) { + LInstruction* ins = *iter; + const InstructionInfo& info = instructions[ins->id()]; + + LSafepoint* safepoint = ins->safepoint(); + if (safepoint) { + for (size_t i = 0; i < ins->numTemps(); i++) { + if (ins->getTemp(i)->isBogusTemp()) + continue; + uint32_t vreg = info.temps[i].virtualRegister(); + LAllocation* alloc = ins->getTemp(i)->output(); + if (!checkSafepointAllocation(ins, vreg, *alloc, populateSafepoints)) + return false; + } + MOZ_ASSERT_IF(ins->isCall() && !populateSafepoints, + safepoint->liveRegs().emptyFloat() && + safepoint->liveRegs().emptyGeneral()); + } + + size_t inputIndex = 0; + for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) { + LAllocation oldInput = info.inputs[inputIndex++]; + if (!oldInput.isUse()) + continue; + + uint32_t vreg = oldInput.toUse()->virtualRegister(); + + if (safepoint && !oldInput.toUse()->usedAtStart()) { + if (!checkSafepointAllocation(ins, vreg, **alloc, populateSafepoints)) + return false; + } + + // Start checking at the previous instruction, in case this + // instruction reuses its input register for an output. + LInstructionReverseIterator riter = block->rbegin(ins); + riter++; + if (!checkIntegrity(block, *riter, vreg, **alloc, populateSafepoints)) + return false; + + while (!worklist.empty()) { + IntegrityItem item = worklist.popCopy(); + if (!checkIntegrity(item.block, *item.block->rbegin(), item.vreg, item.alloc, + populateSafepoints)) { + return false; + } + } + } + } + } + + return true; +} + +bool +AllocationIntegrityState::checkIntegrity(LBlock* block, LInstruction* ins, + uint32_t vreg, LAllocation alloc, bool populateSafepoints) +{ + for (LInstructionReverseIterator iter(block->rbegin(ins)); iter != block->rend(); iter++) { + ins = *iter; + + // Follow values through assignments in move groups. All assignments in + // a move group are considered to happen simultaneously, so stop after + // the first matching move is found. + if (ins->isMoveGroup()) { + LMoveGroup* group = ins->toMoveGroup(); + for (int i = group->numMoves() - 1; i >= 0; i--) { + if (group->getMove(i).to() == alloc) { + alloc = group->getMove(i).from(); + break; + } + } + } + + const InstructionInfo& info = instructions[ins->id()]; + + // Make sure the physical location being tracked is not clobbered by + // another instruction, and that if the originating vreg definition is + // found that it is writing to the tracked location. + + for (size_t i = 0; i < ins->numDefs(); i++) { + LDefinition* def = ins->getDef(i); + if (def->isBogusTemp()) + continue; + if (info.outputs[i].virtualRegister() == vreg) { + MOZ_ASSERT(*def->output() == alloc); + + // Found the original definition, done scanning. + return true; + } else { + MOZ_ASSERT(*def->output() != alloc); + } + } + + for (size_t i = 0; i < ins->numTemps(); i++) { + LDefinition* temp = ins->getTemp(i); + if (!temp->isBogusTemp()) + MOZ_ASSERT(*temp->output() != alloc); + } + + if (ins->safepoint()) { + if (!checkSafepointAllocation(ins, vreg, alloc, populateSafepoints)) + return false; + } + } + + // Phis are effectless, but change the vreg we are tracking. Check if there + // is one which produced this vreg. We need to follow back through the phi + // inputs as it is not guaranteed the register allocator filled in physical + // allocations for the inputs and outputs of the phis. + for (size_t i = 0; i < block->numPhis(); i++) { + const InstructionInfo& info = blocks[block->mir()->id()].phis[i]; + LPhi* phi = block->getPhi(i); + if (info.outputs[0].virtualRegister() == vreg) { + for (size_t j = 0, jend = phi->numOperands(); j < jend; j++) { + uint32_t newvreg = info.inputs[j].toUse()->virtualRegister(); + LBlock* predecessor = block->mir()->getPredecessor(j)->lir(); + if (!addPredecessor(predecessor, newvreg, alloc)) + return false; + } + return true; + } + } + + // No phi which defined the vreg we are tracking, follow back through all + // predecessors with the existing vreg. + for (size_t i = 0, iend = block->mir()->numPredecessors(); i < iend; i++) { + LBlock* predecessor = block->mir()->getPredecessor(i)->lir(); + if (!addPredecessor(predecessor, vreg, alloc)) + return false; + } + + return true; +} + +bool +AllocationIntegrityState::checkSafepointAllocation(LInstruction* ins, + uint32_t vreg, LAllocation alloc, + bool populateSafepoints) +{ + LSafepoint* safepoint = ins->safepoint(); + MOZ_ASSERT(safepoint); + + if (ins->isCall() && alloc.isRegister()) + return true; + + if (alloc.isRegister()) { + AnyRegister reg = alloc.toRegister(); + if (populateSafepoints) + safepoint->addLiveRegister(reg); + + MOZ_ASSERT(safepoint->liveRegs().has(reg)); + } + + // The |this| argument slot is implicitly included in all safepoints. + if (alloc.isArgument() && alloc.toArgument()->index() < THIS_FRAME_ARGSLOT + sizeof(Value)) + return true; + + LDefinition::Type type = virtualRegisters[vreg] + ? virtualRegisters[vreg]->type() + : LDefinition::GENERAL; + + switch (type) { + case LDefinition::OBJECT: + if (populateSafepoints) { + JitSpew(JitSpew_RegAlloc, "Safepoint object v%u i%u %s", + vreg, ins->id(), alloc.toString().get()); + if (!safepoint->addGcPointer(alloc)) + return false; + } + MOZ_ASSERT(safepoint->hasGcPointer(alloc)); + break; + case LDefinition::SLOTS: + if (populateSafepoints) { + JitSpew(JitSpew_RegAlloc, "Safepoint slots v%u i%u %s", + vreg, ins->id(), alloc.toString().get()); + if (!safepoint->addSlotsOrElementsPointer(alloc)) + return false; + } + MOZ_ASSERT(safepoint->hasSlotsOrElementsPointer(alloc)); + break; +#ifdef JS_NUNBOX32 + // Do not assert that safepoint information for nunbox types is complete, + // as if a vreg for a value's components are copied in multiple places + // then the safepoint information may not reflect all copies. All copies + // of payloads must be reflected, however, for generational GC. + case LDefinition::TYPE: + if (populateSafepoints) { + JitSpew(JitSpew_RegAlloc, "Safepoint type v%u i%u %s", + vreg, ins->id(), alloc.toString().get()); + if (!safepoint->addNunboxType(vreg, alloc)) + return false; + } + break; + case LDefinition::PAYLOAD: + if (populateSafepoints) { + JitSpew(JitSpew_RegAlloc, "Safepoint payload v%u i%u %s", + vreg, ins->id(), alloc.toString().get()); + if (!safepoint->addNunboxPayload(vreg, alloc)) + return false; + } + MOZ_ASSERT(safepoint->hasNunboxPayload(alloc)); + break; +#else + case LDefinition::BOX: + if (populateSafepoints) { + JitSpew(JitSpew_RegAlloc, "Safepoint boxed value v%u i%u %s", + vreg, ins->id(), alloc.toString().get()); + if (!safepoint->addBoxedValue(alloc)) + return false; + } + MOZ_ASSERT(safepoint->hasBoxedValue(alloc)); + break; +#endif + default: + break; + } + + return true; +} + +bool +AllocationIntegrityState::addPredecessor(LBlock* block, uint32_t vreg, LAllocation alloc) +{ + // There is no need to reanalyze if we have already seen this predecessor. + // We share the seen allocations across analysis of each use, as there will + // likely be common ground between different uses of the same vreg. + IntegrityItem item; + item.block = block; + item.vreg = vreg; + item.alloc = alloc; + item.index = seen.count(); + + IntegrityItemSet::AddPtr p = seen.lookupForAdd(item); + if (p) + return true; + if (!seen.add(p, item)) + return false; + + return worklist.append(item); +} + +void +AllocationIntegrityState::dump() +{ +#ifdef DEBUG + fprintf(stderr, "Register Allocation Integrity State:\n"); + + for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) { + LBlock* block = graph.getBlock(blockIndex); + MBasicBlock* mir = block->mir(); + + fprintf(stderr, "\nBlock %lu", static_cast<unsigned long>(blockIndex)); + for (size_t i = 0; i < mir->numSuccessors(); i++) + fprintf(stderr, " [successor %u]", mir->getSuccessor(i)->id()); + fprintf(stderr, "\n"); + + for (size_t i = 0; i < block->numPhis(); i++) { + const InstructionInfo& info = blocks[blockIndex].phis[i]; + LPhi* phi = block->getPhi(i); + CodePosition input(block->getPhi(0)->id(), CodePosition::INPUT); + CodePosition output(block->getPhi(block->numPhis() - 1)->id(), CodePosition::OUTPUT); + + fprintf(stderr, "[%u,%u Phi] [def %s] ", + input.bits(), + output.bits(), + phi->getDef(0)->toString().get()); + for (size_t j = 0; j < phi->numOperands(); j++) + fprintf(stderr, " [use %s]", info.inputs[j].toString().get()); + fprintf(stderr, "\n"); + } + + for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) { + LInstruction* ins = *iter; + const InstructionInfo& info = instructions[ins->id()]; + + CodePosition input(ins->id(), CodePosition::INPUT); + CodePosition output(ins->id(), CodePosition::OUTPUT); + + fprintf(stderr, "["); + if (input != CodePosition::MIN) + fprintf(stderr, "%u,%u ", input.bits(), output.bits()); + fprintf(stderr, "%s]", ins->opName()); + + if (ins->isMoveGroup()) { + LMoveGroup* group = ins->toMoveGroup(); + for (int i = group->numMoves() - 1; i >= 0; i--) { + fprintf(stderr, " [%s -> %s]", + group->getMove(i).from().toString().get(), + group->getMove(i).to().toString().get()); + } + fprintf(stderr, "\n"); + continue; + } + + for (size_t i = 0; i < ins->numDefs(); i++) + fprintf(stderr, " [def %s]", ins->getDef(i)->toString().get()); + + for (size_t i = 0; i < ins->numTemps(); i++) { + LDefinition* temp = ins->getTemp(i); + if (!temp->isBogusTemp()) + fprintf(stderr, " [temp v%u %s]", info.temps[i].virtualRegister(), + temp->toString().get()); + } + + size_t index = 0; + for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) { + fprintf(stderr, " [use %s", info.inputs[index++].toString().get()); + if (!alloc->isConstant()) + fprintf(stderr, " %s", alloc->toString().get()); + fprintf(stderr, "]"); + } + + fprintf(stderr, "\n"); + } + } + + // Print discovered allocations at the ends of blocks, in the order they + // were discovered. + + Vector<IntegrityItem, 20, SystemAllocPolicy> seenOrdered; + if (!seenOrdered.appendN(IntegrityItem(), seen.count())) { + fprintf(stderr, "OOM while dumping allocations\n"); + return; + } + + for (IntegrityItemSet::Enum iter(seen); !iter.empty(); iter.popFront()) { + IntegrityItem item = iter.front(); + seenOrdered[item.index] = item; + } + + if (!seenOrdered.empty()) { + fprintf(stderr, "Intermediate Allocations:\n"); + + for (size_t i = 0; i < seenOrdered.length(); i++) { + IntegrityItem item = seenOrdered[i]; + fprintf(stderr, " block %u reg v%u alloc %s\n", + item.block->mir()->id(), item.vreg, item.alloc.toString().get()); + } + } + + fprintf(stderr, "\n"); +#endif +} + +const CodePosition CodePosition::MAX(UINT_MAX); +const CodePosition CodePosition::MIN(0); + +bool +RegisterAllocator::init() +{ + if (!insData.init(mir, graph.numInstructions())) + return false; + + if (!entryPositions.reserve(graph.numBlocks()) || !exitPositions.reserve(graph.numBlocks())) + return false; + + for (size_t i = 0; i < graph.numBlocks(); i++) { + LBlock* block = graph.getBlock(i); + for (LInstructionIterator ins = block->begin(); ins != block->end(); ins++) + insData[ins->id()] = *ins; + for (size_t j = 0; j < block->numPhis(); j++) { + LPhi* phi = block->getPhi(j); + insData[phi->id()] = phi; + } + + CodePosition entry = block->numPhis() != 0 + ? CodePosition(block->getPhi(0)->id(), CodePosition::INPUT) + : inputOf(block->firstInstructionWithId()); + CodePosition exit = outputOf(block->lastInstructionWithId()); + + MOZ_ASSERT(block->mir()->id() == i); + entryPositions.infallibleAppend(entry); + exitPositions.infallibleAppend(exit); + } + + return true; +} + +LMoveGroup* +RegisterAllocator::getInputMoveGroup(LInstruction* ins) +{ + MOZ_ASSERT(!ins->fixReuseMoves()); + if (ins->inputMoves()) + return ins->inputMoves(); + + LMoveGroup* moves = LMoveGroup::New(alloc()); + ins->setInputMoves(moves); + ins->block()->insertBefore(ins, moves); + return moves; +} + +LMoveGroup* +RegisterAllocator::getFixReuseMoveGroup(LInstruction* ins) +{ + if (ins->fixReuseMoves()) + return ins->fixReuseMoves(); + + LMoveGroup* moves = LMoveGroup::New(alloc()); + ins->setFixReuseMoves(moves); + ins->block()->insertBefore(ins, moves); + return moves; +} + +LMoveGroup* +RegisterAllocator::getMoveGroupAfter(LInstruction* ins) +{ + if (ins->movesAfter()) + return ins->movesAfter(); + + LMoveGroup* moves = LMoveGroup::New(alloc()); + ins->setMovesAfter(moves); + + ins->block()->insertAfter(ins, moves); + return moves; +} + +void +RegisterAllocator::dumpInstructions() +{ +#ifdef JS_JITSPEW + fprintf(stderr, "Instructions:\n"); + + for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) { + LBlock* block = graph.getBlock(blockIndex); + MBasicBlock* mir = block->mir(); + + fprintf(stderr, "\nBlock %lu", static_cast<unsigned long>(blockIndex)); + for (size_t i = 0; i < mir->numSuccessors(); i++) + fprintf(stderr, " [successor %u]", mir->getSuccessor(i)->id()); + fprintf(stderr, "\n"); + + for (size_t i = 0; i < block->numPhis(); i++) { + LPhi* phi = block->getPhi(i); + + fprintf(stderr, "[%u,%u Phi] [def %s]", + inputOf(phi).bits(), + outputOf(phi).bits(), + phi->getDef(0)->toString().get()); + for (size_t j = 0; j < phi->numOperands(); j++) + fprintf(stderr, " [use %s]", phi->getOperand(j)->toString().get()); + fprintf(stderr, "\n"); + } + + for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) { + LInstruction* ins = *iter; + + fprintf(stderr, "["); + if (ins->id() != 0) + fprintf(stderr, "%u,%u ", inputOf(ins).bits(), outputOf(ins).bits()); + fprintf(stderr, "%s]", ins->opName()); + + if (ins->isMoveGroup()) { + LMoveGroup* group = ins->toMoveGroup(); + for (int i = group->numMoves() - 1; i >= 0; i--) { + // Use two printfs, as LAllocation::toString is not reentant. + fprintf(stderr, " [%s", group->getMove(i).from().toString().get()); + fprintf(stderr, " -> %s]", group->getMove(i).to().toString().get()); + } + fprintf(stderr, "\n"); + continue; + } + + for (size_t i = 0; i < ins->numDefs(); i++) + fprintf(stderr, " [def %s]", ins->getDef(i)->toString().get()); + + for (size_t i = 0; i < ins->numTemps(); i++) { + LDefinition* temp = ins->getTemp(i); + if (!temp->isBogusTemp()) + fprintf(stderr, " [temp %s]", temp->toString().get()); + } + + for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) { + if (!alloc->isBogus()) + fprintf(stderr, " [use %s]", alloc->toString().get()); + } + + fprintf(stderr, "\n"); + } + } + fprintf(stderr, "\n"); +#endif // JS_JITSPEW +} |