1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifdef XP_WIN
// Include Windows headers required for enabling high precision timers.
#include "windows.h"
#include "mmsystem.h"
#endif
#include "mozilla/DebugOnly.h"
#include <stdint.h>
#include "MediaDecoderStateMachine.h"
#include "MediaTimer.h"
#include "AudioSink.h"
#include "nsTArray.h"
#include "MediaDecoder.h"
#include "MediaDecoderReader.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/mozalloc.h"
#include "VideoUtils.h"
#include "TimeUnits.h"
#include "nsDeque.h"
#include "AudioSegment.h"
#include "VideoSegment.h"
#include "ImageContainer.h"
#include "nsComponentManagerUtils.h"
#include "nsITimer.h"
#include "nsContentUtils.h"
#include "MediaShutdownManager.h"
#include "SharedThreadPool.h"
#include "MediaTaskQueue.h"
#include "nsIEventTarget.h"
#include "prenv.h"
#include "mozilla/Preferences.h"
#include "gfx2DGlue.h"
#include "nsPrintfCString.h"
#include "DOMMediaStream.h"
#include "DecodedStream.h"
#include <algorithm>
namespace mozilla {
using namespace mozilla::dom;
using namespace mozilla::gfx;
using namespace mozilla::layers;
using namespace mozilla::media;
#define NS_DispatchToMainThread(...) CompileError_UseAbstractThreadDispatchInstead
// avoid redefined macro in unified build
#undef DECODER_LOG
#undef VERBOSE_LOG
#ifdef PR_LOGGING
extern PRLogModuleInfo* gMediaDecoderLog;
#define DECODER_LOG(x, ...) \
PR_LOG(gMediaDecoderLog, PR_LOG_DEBUG, ("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__))
#define VERBOSE_LOG(x, ...) \
PR_BEGIN_MACRO \
if (!PR_GetEnv("MOZ_QUIET")) { \
DECODER_LOG(x, ##__VA_ARGS__); \
} \
PR_END_MACRO
#define SAMPLE_LOG(x, ...) \
PR_BEGIN_MACRO \
if (PR_GetEnv("MEDIA_LOG_SAMPLES")) { \
DECODER_LOG(x, ##__VA_ARGS__); \
} \
PR_END_MACRO
#else
#define DECODER_LOG(x, ...)
#define VERBOSE_LOG(x, ...)
#define SAMPLE_LOG(x, ...)
#endif
// Somehow MSVC doesn't correctly delete the comma before ##__VA_ARGS__
// when __VA_ARGS__ expands to nothing. This is a workaround for it.
#define DECODER_WARN_HELPER(a, b) NS_WARNING b
#define DECODER_WARN(x, ...) \
DECODER_WARN_HELPER(0, (nsPrintfCString("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__).get()))
// Certain constants get stored as member variables and then adjusted by various
// scale factors on a per-decoder basis. We want to make sure to avoid using these
// constants directly, so we put them in a namespace.
namespace detail {
// If audio queue has less than this many usecs of decoded audio, we won't risk
// trying to decode the video, we'll skip decoding video up to the next
// keyframe. We may increase this value for an individual decoder if we
// encounter video frames which take a long time to decode.
static const uint32_t LOW_AUDIO_USECS = 300000;
// If more than this many usecs of decoded audio is queued, we'll hold off
// decoding more audio. If we increase the low audio threshold (see
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
// less than the low audio threshold.
const int64_t AMPLE_AUDIO_USECS = 1000000;
} // namespace detail
// When we're only playing audio and we don't have a video stream, we divide
// AMPLE_AUDIO_USECS and LOW_AUDIO_USECS by the following value. This reduces
// the amount of decoded audio we buffer, reducing our memory usage. We only
// need to decode far ahead when we're decoding video using software decoding,
// as otherwise a long video decode could cause an audio underrun.
const int64_t NO_VIDEO_AMPLE_AUDIO_DIVISOR = 8;
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "prerolling video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const uint32_t LOW_VIDEO_FRAMES = 1;
// Threshold in usecs that used to check if we are low on decoded video.
// If the last video frame's end time |mDecodedVideoEndTime| doesn't exceed
// |clock time + LOW_VIDEO_THRESHOLD_USECS*mPlaybackRate| calculation in
// Advanceframe(), we are low on decoded video frames and trying to skip to next
// keyframe.
static const int32_t LOW_VIDEO_THRESHOLD_USECS = 16000;
// Arbitrary "frame duration" when playing only audio.
static const int AUDIO_DURATION_USECS = 40000;
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
// use this as a factor in all our calculations. Increasing this will cause
// us to be more likely to increase our low audio threshold, and to
// increase it by more.
static const int THRESHOLD_FACTOR = 2;
namespace detail {
// If we have less than this much undecoded data available, we'll consider
// ourselves to be running low on undecoded data. We determine how much
// undecoded data we have remaining using the reader's GetBuffered()
// implementation.
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
// the skip-to-keyframe logic can activate when we're running low on data.
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
"LOW_DATA_THRESHOLD_USECS is too small");
} // namespace detail
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 60000;
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
// normal buffering mode. This exists so that if the decode-ahead exhausts the
// downloaded data while decode/playback is just starting up (for example
// after a seek while the media is still playing, or when playing a media
// as soon as it's load started), we won't necessarily stop for 30s and wait
// for buffering. We may actually be able to playback in this case, so exit
// buffering early and try to play. If it turns out we can't play, we'll fall
// back to buffering normally.
static const uint32_t QUICK_BUFFER_THRESHOLD_USECS = 2000000;
namespace detail {
// If we're quick buffering, we'll remain in buffering mode while we have less than
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
static const uint32_t QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
// quick buffering in a timely fashion, as the decode pauses when it
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
// QUICK_BUFFERING_LOW_DATA_USECS.
static_assert(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS,
"QUICK_BUFFERING_LOW_DATA_USECS is too large");
} // namespace detail
static TimeDuration UsecsToDuration(int64_t aUsecs) {
return TimeDuration::FromMicroseconds(aUsecs);
}
static int64_t DurationToUsecs(TimeDuration aDuration) {
return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
}
static const uint32_t MIN_VIDEO_QUEUE_SIZE = 3;
static const uint32_t MAX_VIDEO_QUEUE_SIZE = 10;
static uint32_t sVideoQueueDefaultSize = MAX_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueHWAccelSize = MIN_VIDEO_QUEUE_SIZE;
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
MediaDecoderReader* aReader,
bool aRealTime) :
mDecoder(aDecoder),
mTaskQueue(new MediaTaskQueue(GetMediaThreadPool(MediaThreadType::PLAYBACK),
/* aAssertTailDispatch = */ true)),
mWatchManager(this, mTaskQueue),
mRealTime(aRealTime),
mDispatchedStateMachine(false),
mDelayedScheduler(this),
mState(DECODER_STATE_DECODING_NONE, "MediaDecoderStateMachine::mState"),
mPlayDuration(0),
mStartTime(-1),
mEndTime(-1),
mDurationSet(false),
mEstimatedDuration(mTaskQueue, NullableTimeUnit(),
"MediaDecoderStateMachine::EstimatedDuration (Mirror)"),
mExplicitDuration(mTaskQueue, Maybe<double>(),
"MediaDecoderStateMachine::mExplicitDuration (Mirror)"),
mObservedDuration(TimeUnit(), "MediaDecoderStateMachine::mObservedDuration"),
mPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_LOADING,
"MediaDecoderStateMachine::mPlayState (Mirror)"),
mNextPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_PAUSED,
"MediaDecoderStateMachine::mNextPlayState (Mirror)"),
mLogicallySeeking(mTaskQueue, false,
"MediaDecoderStateMachine::mLogicallySeeking (Mirror)"),
mNextFrameStatus(mTaskQueue, MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED,
"MediaDecoderStateMachine::mNextFrameStatus (Canonical)"),
mFragmentEndTime(-1),
mReader(aReader),
mCurrentPosition(mTaskQueue, 0, "MediaDecoderStateMachine::mCurrentPosition (Canonical)"),
mAudioStartTime(-1),
mAudioEndTime(-1),
mDecodedAudioEndTime(-1),
mVideoFrameEndTime(-1),
mDecodedVideoEndTime(-1),
mVolume(mTaskQueue, 1.0, "MediaDecoderStateMachine::mVolume (Mirror)"),
mPlaybackRate(1.0),
mLogicalPlaybackRate(mTaskQueue, 1.0, "MediaDecoderStateMachine::mLogicalPlaybackRate (Mirror)"),
mPreservesPitch(mTaskQueue, true, "MediaDecoderStateMachine::mPreservesPitch (Mirror)"),
mAmpleVideoFrames(MIN_VIDEO_QUEUE_SIZE),
mLowAudioThresholdUsecs(detail::LOW_AUDIO_USECS),
mAmpleAudioThresholdUsecs(detail::AMPLE_AUDIO_USECS),
mQuickBufferingLowDataThresholdUsecs(detail::QUICK_BUFFERING_LOW_DATA_USECS),
mIsAudioPrerolling(false),
mIsVideoPrerolling(false),
mAudioCaptured(false),
mPositionChangeQueued(false),
mAudioCompleted(false, "MediaDecoderStateMachine::mAudioCompleted"),
mGotDurationFromMetaData(false),
mDispatchedEventToDecode(false),
mStopAudioThread(true),
mQuickBuffering(false),
mMinimizePreroll(false),
mDecodeThreadWaiting(false),
mDropAudioUntilNextDiscontinuity(false),
mDropVideoUntilNextDiscontinuity(false),
mDecodeToSeekTarget(false),
mCurrentTimeBeforeSeek(0),
mCorruptFrames(30),
mDisabledHardwareAcceleration(false),
mDecodingFrozenAtStateDecoding(false),
mSentLoadedMetadataEvent(false),
mSentFirstFrameLoadedEvent(false),
mSentPlaybackEndedEvent(false)
{
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// Dispatch initialization that needs to happen on that task queue.
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(this, &MediaDecoderStateMachine::InitializationTask);
mTaskQueue->Dispatch(r.forget());
static bool sPrefCacheInit = false;
if (!sPrefCacheInit) {
sPrefCacheInit = true;
Preferences::AddUintVarCache(&sVideoQueueDefaultSize,
"media.video-queue.default-size",
MAX_VIDEO_QUEUE_SIZE);
Preferences::AddUintVarCache(&sVideoQueueHWAccelSize,
"media.video-queue.hw-accel-size",
MIN_VIDEO_QUEUE_SIZE);
}
mBufferingWait = IsRealTime() ? 0 : 15;
mLowDataThresholdUsecs = IsRealTime() ? 0 : detail::LOW_DATA_THRESHOLD_USECS;
#ifdef XP_WIN
// Ensure high precision timers are enabled on Windows, otherwise the state
// machine isn't woken up at reliable intervals to set the next frame,
// and we drop frames while painting. Note that multiple calls to this
// function per-process is OK, provided each call is matched by a corresponding
// timeEndPeriod() call.
timeBeginPeriod(1);
#endif
}
MediaDecoderStateMachine::~MediaDecoderStateMachine()
{
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
NS_ASSERTION(!mPendingWakeDecoder.get(),
"WakeDecoder should have been revoked already");
mReader = nullptr;
#ifdef XP_WIN
timeEndPeriod(1);
#endif
}
void
MediaDecoderStateMachine::InitializationTask()
{
MOZ_ASSERT(OnTaskQueue());
// Connect mirrors.
mEstimatedDuration.Connect(mDecoder->CanonicalEstimatedDuration());
mExplicitDuration.Connect(mDecoder->CanonicalExplicitDuration());
mPlayState.Connect(mDecoder->CanonicalPlayState());
mNextPlayState.Connect(mDecoder->CanonicalNextPlayState());
mLogicallySeeking.Connect(mDecoder->CanonicalLogicallySeeking());
mVolume.Connect(mDecoder->CanonicalVolume());
mLogicalPlaybackRate.Connect(mDecoder->CanonicalPlaybackRate());
mPreservesPitch.Connect(mDecoder->CanonicalPreservesPitch());
// Initialize watchers.
mWatchManager.Watch(mState, &MediaDecoderStateMachine::UpdateNextFrameStatus);
mWatchManager.Watch(mAudioCompleted, &MediaDecoderStateMachine::UpdateNextFrameStatus);
mWatchManager.Watch(mVolume, &MediaDecoderStateMachine::VolumeChanged);
mWatchManager.Watch(mLogicalPlaybackRate, &MediaDecoderStateMachine::LogicalPlaybackRateChanged);
mWatchManager.Watch(mPreservesPitch, &MediaDecoderStateMachine::PreservesPitchChanged);
mWatchManager.Watch(mEstimatedDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mExplicitDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mObservedDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mPlayState, &MediaDecoderStateMachine::PlayStateChanged);
mWatchManager.Watch(mLogicallySeeking, &MediaDecoderStateMachine::LogicallySeekingChanged);
mWatchManager.Watch(mPlayState, &MediaDecoderStateMachine::UpdateStreamBlockingForPlayState);
mWatchManager.Watch(mLogicallySeeking, &MediaDecoderStateMachine::UpdateStreamBlockingForPlayState);
}
bool MediaDecoderStateMachine::HasFutureAudio() {
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
// We've got audio ready to play if:
// 1. We've not completed playback of audio, and
// 2. we either have more than the threshold of decoded audio available, or
// we've completely decoded all audio (but not finished playing it yet
// as per 1).
return !mAudioCompleted &&
(AudioDecodedUsecs() >
mLowAudioThresholdUsecs * mPlaybackRate ||
AudioQueue().IsFinished());
}
bool MediaDecoderStateMachine::HaveNextFrameData() {
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return (!HasAudio() || HasFutureAudio()) &&
(!HasVideo() || VideoQueue().GetSize() > 0);
}
int64_t MediaDecoderStateMachine::GetDecodedAudioDuration() {
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
int64_t audioDecoded = AudioQueue().Duration();
if (mAudioEndTime != -1) {
audioDecoded += mAudioEndTime - GetMediaTime();
}
return audioDecoded;
}
void MediaDecoderStateMachine::SendStreamAudio(AudioData* aAudio,
DecodedStreamData* aStream,
AudioSegment* aOutput)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
// This logic has to mimic AudioSink closely to make sure we write
// the exact same silences
CheckedInt64 audioWrittenOffset = aStream->mAudioFramesWritten +
UsecsToFrames(mInfo.mAudio.mRate, aStream->mInitialTime + mStartTime);
CheckedInt64 frameOffset = UsecsToFrames(mInfo.mAudio.mRate, aAudio->mTime);
if (!audioWrittenOffset.isValid() ||
!frameOffset.isValid() ||
// ignore packet that we've already processed
frameOffset.value() + aAudio->mFrames <= audioWrittenOffset.value()) {
return;
}
if (audioWrittenOffset.value() < frameOffset.value()) {
int64_t silentFrames = frameOffset.value() - audioWrittenOffset.value();
// Write silence to catch up
VERBOSE_LOG("writing %lld frames of silence to MediaStream", silentFrames);
AudioSegment silence;
silence.InsertNullDataAtStart(silentFrames);
aStream->mAudioFramesWritten += silentFrames;
audioWrittenOffset += silentFrames;
aOutput->AppendFrom(&silence);
}
MOZ_ASSERT(audioWrittenOffset.value() >= frameOffset.value());
int64_t offset = audioWrittenOffset.value() - frameOffset.value();
size_t framesToWrite = aAudio->mFrames - offset;
aAudio->EnsureAudioBuffer();
nsRefPtr<SharedBuffer> buffer = aAudio->mAudioBuffer;
AudioDataValue* bufferData = static_cast<AudioDataValue*>(buffer->Data());
nsAutoTArray<const AudioDataValue*,2> channels;
for (uint32_t i = 0; i < aAudio->mChannels; ++i) {
channels.AppendElement(bufferData + i*aAudio->mFrames + offset);
}
aOutput->AppendFrames(buffer.forget(), channels, framesToWrite);
VERBOSE_LOG("writing %u frames of data to MediaStream for AudioData at %lld",
static_cast<unsigned>(framesToWrite),
aAudio->mTime);
aStream->mAudioFramesWritten += framesToWrite;
aOutput->ApplyVolume(mVolume);
aStream->mNextAudioTime = aAudio->GetEndTime();
}
static void WriteVideoToMediaStream(MediaStream* aStream,
layers::Image* aImage,
int64_t aEndMicroseconds,
int64_t aStartMicroseconds,
const IntSize& aIntrinsicSize,
VideoSegment* aOutput)
{
nsRefPtr<layers::Image> image = aImage;
StreamTime duration =
aStream->MicrosecondsToStreamTimeRoundDown(aEndMicroseconds) -
aStream->MicrosecondsToStreamTimeRoundDown(aStartMicroseconds);
aOutput->AppendFrame(image.forget(), duration, aIntrinsicSize);
}
static void
UpdateStreamBlocking(MediaStream* aStream, bool aBlocking)
{
int32_t delta = aBlocking ? 1 : -1;
if (NS_IsMainThread()) {
aStream->ChangeExplicitBlockerCount(delta);
} else {
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethodWithArg<int32_t>(
aStream, &MediaStream::ChangeExplicitBlockerCount, delta);
AbstractThread::MainThread()->Dispatch(r.forget());
}
}
void MediaDecoderStateMachine::SendStreamData()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(!mAudioSink, "Should've been stopped in RunStateMachine()");
DecodedStreamData* stream = mDecoder->GetDecodedStream();
bool finished =
(!mInfo.HasAudio() || AudioQueue().IsFinished()) &&
(!mInfo.HasVideo() || VideoQueue().IsFinished());
if (mDecoder->IsSameOriginMedia()) {
SourceMediaStream* mediaStream = stream->mStream;
StreamTime endPosition = 0;
if (!stream->mStreamInitialized) {
if (mInfo.HasAudio()) {
TrackID audioTrackId = mInfo.mAudio.mTrackId;
AudioSegment* audio = new AudioSegment();
mediaStream->AddAudioTrack(audioTrackId, mInfo.mAudio.mRate, 0, audio,
SourceMediaStream::ADDTRACK_QUEUED);
stream->mStream->DispatchWhenNotEnoughBuffered(audioTrackId,
TaskQueue(), GetWakeDecoderRunnable());
stream->mNextAudioTime = mStartTime + stream->mInitialTime;
}
if (mInfo.HasVideo()) {
TrackID videoTrackId = mInfo.mVideo.mTrackId;
VideoSegment* video = new VideoSegment();
mediaStream->AddTrack(videoTrackId, 0, video,
SourceMediaStream::ADDTRACK_QUEUED);
stream->mStream->DispatchWhenNotEnoughBuffered(videoTrackId,
TaskQueue(), GetWakeDecoderRunnable());
// TODO: We can't initialize |mNextVideoTime| until |mStartTime|
// is set. This is a good indication that DecodedStreamData is in
// deep coupling with the state machine and we should move the class
// into MediaDecoderStateMachine.
stream->mNextVideoTime = mStartTime + stream->mInitialTime;
}
mediaStream->FinishAddTracks();
stream->mStreamInitialized = true;
// Make sure stream blocking is updated before sending stream data so we
// don't 'leak' data when the stream is supposed to be blocked.
UpdateStreamBlockingForPlayState();
UpdateStreamBlockingForStateMachinePlaying();
UpdateStreamBlocking(mediaStream, false);
}
if (mInfo.HasAudio()) {
MOZ_ASSERT(stream->mNextAudioTime != -1, "Should've been initialized");
TrackID audioTrackId = mInfo.mAudio.mTrackId;
nsAutoTArray<nsRefPtr<AudioData>,10> audio;
// It's OK to hold references to the AudioData because AudioData
// is ref-counted.
AudioQueue().GetElementsAfter(stream->mNextAudioTime, &audio);
AudioSegment output;
for (uint32_t i = 0; i < audio.Length(); ++i) {
SendStreamAudio(audio[i], stream, &output);
}
// |mNextAudioTime| is updated as we process each audio sample in
// SendStreamAudio(). This is consistent with how |mNextVideoTime|
// is updated for video samples.
if (output.GetDuration() > 0) {
mediaStream->AppendToTrack(audioTrackId, &output);
}
if (AudioQueue().IsFinished() && !stream->mHaveSentFinishAudio) {
mediaStream->EndTrack(audioTrackId);
stream->mHaveSentFinishAudio = true;
}
endPosition = std::max(endPosition,
mediaStream->TicksToTimeRoundDown(mInfo.mAudio.mRate,
stream->mAudioFramesWritten));
}
if (mInfo.HasVideo()) {
MOZ_ASSERT(stream->mNextVideoTime != -1, "Should've been initialized");
TrackID videoTrackId = mInfo.mVideo.mTrackId;
nsAutoTArray<nsRefPtr<VideoData>,10> video;
// It's OK to hold references to the VideoData because VideoData
// is ref-counted.
VideoQueue().GetElementsAfter(stream->mNextVideoTime, &video);
VideoSegment output;
for (uint32_t i = 0; i < video.Length(); ++i) {
VideoData* v = video[i];
if (stream->mNextVideoTime < v->mTime) {
VERBOSE_LOG("writing last video to MediaStream %p for %lldus",
mediaStream, v->mTime - stream->mNextVideoTime);
// Write last video frame to catch up. mLastVideoImage can be null here
// which is fine, it just means there's no video.
// TODO: |mLastVideoImage| should come from the last image rendered
// by the state machine. This will avoid the black frame when capture
// happens in the middle of playback (especially in th middle of a
// video frame). E.g. if we have a video frame that is 30 sec long
// and capture happens at 15 sec, we'll have to append a black frame
// that is 15 sec long.
WriteVideoToMediaStream(mediaStream, stream->mLastVideoImage,
v->mTime, stream->mNextVideoTime, stream->mLastVideoImageDisplaySize,
&output);
stream->mNextVideoTime = v->mTime;
}
if (stream->mNextVideoTime < v->GetEndTime()) {
VERBOSE_LOG("writing video frame %lldus to MediaStream %p for %lldus",
v->mTime, mediaStream, v->GetEndTime() - stream->mNextVideoTime);
WriteVideoToMediaStream(mediaStream, v->mImage,
v->GetEndTime(), stream->mNextVideoTime, v->mDisplay,
&output);
stream->mNextVideoTime = v->GetEndTime();
stream->mLastVideoImage = v->mImage;
stream->mLastVideoImageDisplaySize = v->mDisplay;
} else {
VERBOSE_LOG("skipping writing video frame %lldus (end %lldus) to MediaStream",
v->mTime, v->GetEndTime());
}
}
if (output.GetDuration() > 0) {
mediaStream->AppendToTrack(videoTrackId, &output);
}
if (VideoQueue().IsFinished() && !stream->mHaveSentFinishVideo) {
mediaStream->EndTrack(videoTrackId);
stream->mHaveSentFinishVideo = true;
}
endPosition = std::max(endPosition,
mediaStream->MicrosecondsToStreamTimeRoundDown(
stream->mNextVideoTime - stream->mInitialTime - mStartTime));
}
if (!stream->mHaveSentFinish) {
stream->mStream->AdvanceKnownTracksTime(endPosition);
}
if (finished && !stream->mHaveSentFinish) {
stream->mHaveSentFinish = true;
stream->mStream->Finish();
}
}
const auto clockTime = GetClock();
while (true) {
const AudioData* a = AudioQueue().PeekFront();
// If we discard audio samples fed to the stream immediately, we will
// keep decoding audio samples till the end and consume a lot of memory.
// Therefore we only discard those behind the stream clock to throttle
// the decoding speed.
if (a && a->mTime <= clockTime) {
OnAudioEndTimeUpdate(std::max(mAudioEndTime, a->GetEndTime()));
nsRefPtr<AudioData> releaseMe = PopAudio();
continue;
}
break;
}
// To be consistent with AudioSink, |mAudioCompleted| is not set
// until all samples are drained.
if (finished && AudioQueue().GetSize() == 0) {
mAudioCompleted = true;
}
}
MediaDecoderStateMachine::WakeDecoderRunnable*
MediaDecoderStateMachine::GetWakeDecoderRunnable()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (!mPendingWakeDecoder.get()) {
mPendingWakeDecoder = new WakeDecoderRunnable(this);
}
return mPendingWakeDecoder.get();
}
bool MediaDecoderStateMachine::HaveEnoughDecodedAudio(int64_t aAmpleAudioUSecs)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (AudioQueue().GetSize() == 0 ||
GetDecodedAudioDuration() < aAmpleAudioUSecs) {
return false;
}
if (!mAudioCaptured) {
return true;
}
DecodedStreamData* stream = mDecoder->GetDecodedStream();
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishAudio) {
MOZ_ASSERT(mInfo.HasAudio());
TrackID audioTrackId = mInfo.mAudio.mTrackId;
if (!stream->mStream->HaveEnoughBuffered(audioTrackId)) {
return false;
}
stream->mStream->DispatchWhenNotEnoughBuffered(audioTrackId,
TaskQueue(), GetWakeDecoderRunnable());
}
return true;
}
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (static_cast<uint32_t>(VideoQueue().GetSize()) < mAmpleVideoFrames * mPlaybackRate) {
return false;
}
DecodedStreamData* stream = mDecoder->GetDecodedStream();
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishVideo) {
MOZ_ASSERT(mInfo.HasVideo());
TrackID videoTrackId = mInfo.mVideo.mTrackId;
if (!stream->mStream->HaveEnoughBuffered(videoTrackId)) {
return false;
}
stream->mStream->DispatchWhenNotEnoughBuffered(videoTrackId,
TaskQueue(), GetWakeDecoderRunnable());
}
return true;
}
bool
MediaDecoderStateMachine::NeedToDecodeVideo()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return IsVideoDecoding() &&
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
(mState == DECODER_STATE_DECODING_FIRSTFRAME &&
IsVideoDecoding() && VideoQueue().GetSize() == 0) ||
(!mMinimizePreroll && !HaveEnoughDecodedVideo()));
}
bool
MediaDecoderStateMachine::NeedToSkipToNextKeyframe()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mState == DECODER_STATE_DECODING_FIRSTFRAME) {
return false;
}
MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
mState == DECODER_STATE_BUFFERING ||
mState == DECODER_STATE_SEEKING);
// We are in seeking or buffering states, don't skip frame.
if (!IsVideoDecoding() || mState == DECODER_STATE_BUFFERING ||
mState == DECODER_STATE_SEEKING) {
return false;
}
// Don't skip frame for video-only decoded stream because the clock time of
// the stream relies on the video frame.
if (mAudioCaptured && !HasAudio()) {
return false;
}
// We'll skip the video decode to the nearest keyframe if we're low on
// audio, or if we're low on video, provided we're not running low on
// data to decode. If we're running low on downloaded data to decode,
// we won't start keyframe skipping, as we'll be pausing playback to buffer
// soon anyway and we'll want to be able to display frames immediately
// after buffering finishes. We ignore the low audio calculations for
// readers that are async, as since their audio decode runs on a different
// task queue it should never run low and skipping won't help their decode.
bool isLowOnDecodedAudio = !mReader->IsAsync() &&
!mIsAudioPrerolling && IsAudioDecoding() &&
(GetDecodedAudioDuration() <
mLowAudioThresholdUsecs * mPlaybackRate);
bool isLowOnDecodedVideo = !mIsVideoPrerolling &&
(mDecodedVideoEndTime - GetClock() <
LOW_VIDEO_THRESHOLD_USECS * mPlaybackRate);
bool lowUndecoded = HasLowUndecodedData();
if ((isLowOnDecodedAudio || isLowOnDecodedVideo) && !lowUndecoded) {
DECODER_LOG("Skipping video decode to the next keyframe lowAudio=%d lowVideo=%d lowUndecoded=%d async=%d",
isLowOnDecodedAudio, isLowOnDecodedVideo, lowUndecoded, mReader->IsAsync());
return true;
}
return false;
}
bool
MediaDecoderStateMachine::NeedToDecodeAudio()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("NeedToDecodeAudio() isDec=%d decToTar=%d minPrl=%d seek=%d enufAud=%d",
IsAudioDecoding(), mDecodeToSeekTarget, mMinimizePreroll,
mState == DECODER_STATE_SEEKING,
HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate));
return IsAudioDecoding() &&
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
(mState == DECODER_STATE_DECODING_FIRSTFRAME &&
IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
(!mMinimizePreroll &&
!HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate) &&
(mState != DECODER_STATE_SEEKING || mDecodeToSeekTarget)));
}
bool
MediaDecoderStateMachine::IsAudioSeekComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("IsAudioSeekComplete() curTarVal=%d mAudDis=%d aqFin=%d aqSz=%d",
mCurrentSeek.Exists(), mDropAudioUntilNextDiscontinuity, AudioQueue().IsFinished(), AudioQueue().GetSize());
return
!HasAudio() ||
(mCurrentSeek.Exists() &&
!mDropAudioUntilNextDiscontinuity &&
(AudioQueue().IsFinished() || AudioQueue().GetSize() > 0));
}
bool
MediaDecoderStateMachine::IsVideoSeekComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("IsVideoSeekComplete() curTarVal=%d mVidDis=%d vqFin=%d vqSz=%d",
mCurrentSeek.Exists(), mDropVideoUntilNextDiscontinuity, VideoQueue().IsFinished(), VideoQueue().GetSize());
return
!HasVideo() ||
(mCurrentSeek.Exists() &&
!mDropVideoUntilNextDiscontinuity &&
(VideoQueue().IsFinished() || VideoQueue().GetSize() > 0));
}
void
MediaDecoderStateMachine::OnAudioDecoded(AudioData* aAudioSample)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
nsRefPtr<AudioData> audio(aAudioSample);
MOZ_ASSERT(audio);
mAudioDataRequest.Complete();
mDecodedAudioEndTime = audio->GetEndTime();
SAMPLE_LOG("OnAudioDecoded [%lld,%lld] disc=%d",
(audio ? audio->mTime : -1),
(audio ? audio->GetEndTime() : -1),
(audio ? audio->mDiscontinuity : 0));
switch (mState) {
case DECODER_STATE_DECODING_FIRSTFRAME: {
Push(audio);
MaybeFinishDecodeFirstFrame();
return;
}
case DECODER_STATE_BUFFERING: {
// If we're buffering, this may be the sample we need to stop buffering.
// Save it and schedule the state machine.
Push(audio);
ScheduleStateMachine();
return;
}
case DECODER_STATE_DECODING: {
Push(audio);
if (mIsAudioPrerolling && DonePrerollingAudio()) {
StopPrerollingAudio();
}
// Schedule the state machine to send stream data as soon as possible.
if (mAudioCaptured) {
ScheduleStateMachine();
}
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeek.Exists()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (audio->mDiscontinuity) {
mDropAudioUntilNextDiscontinuity = false;
}
if (!mDropAudioUntilNextDiscontinuity) {
// We must be after the discontinuity; we're receiving samples
// at or after the seek target.
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
audio->mTime < mCurrentTimeBeforeSeek) {
// We are doing a fastSeek, but we ended up *before* the previous
// playback position. This is surprising UX, so switch to an accurate
// seek and decode to the seek target. This is not conformant to the
// spec, fastSeek should always be fast, but until we get the time to
// change all Readers to seek to the keyframe after the currentTime
// in this case, we'll just decode forward. Bug 1026330.
mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
}
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint) {
// Non-precise seek; we can stop the seek at the first sample.
Push(audio);
} else {
// We're doing an accurate seek. We must discard
// MediaData up to the one containing exact seek target.
if (NS_FAILED(DropAudioUpToSeekTarget(audio))) {
DecodeError();
return;
}
}
}
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::Push(AudioData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
AudioQueue().Push(aSample);
UpdateNextFrameStatus();
DispatchDecodeTasksIfNeeded();
mDecoder->GetReentrantMonitor().NotifyAll(); // - Still necessary?
}
void
MediaDecoderStateMachine::PushFront(AudioData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
AudioQueue().PushFront(aSample);
UpdateNextFrameStatus();
}
void
MediaDecoderStateMachine::Push(VideoData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
VideoQueue().Push(aSample);
UpdateNextFrameStatus();
DispatchDecodeTasksIfNeeded();
mDecoder->GetReentrantMonitor().NotifyAll(); // - Still necessary?
}
void
MediaDecoderStateMachine::PushFront(VideoData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
VideoQueue().PushFront(aSample);
UpdateNextFrameStatus();
}
already_AddRefed<AudioData>
MediaDecoderStateMachine::PopAudio()
{
MOZ_ASSERT(OnTaskQueue());
nsRefPtr<AudioData> sample = AudioQueue().PopFront();
UpdateNextFrameStatus();
return sample.forget();
}
already_AddRefed<VideoData>
MediaDecoderStateMachine::PopVideo()
{
MOZ_ASSERT(OnTaskQueue());
nsRefPtr<VideoData> sample = VideoQueue().PopFront();
UpdateNextFrameStatus();
return sample.forget();
}
void
MediaDecoderStateMachine::OnNotDecoded(MediaData::Type aType,
MediaDecoderReader::NotDecodedReason aReason)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
SAMPLE_LOG("OnNotDecoded (aType=%u, aReason=%u)", aType, aReason);
bool isAudio = aType == MediaData::AUDIO_DATA;
MOZ_ASSERT_IF(!isAudio, aType == MediaData::VIDEO_DATA);
if (isAudio) {
mAudioDataRequest.Complete();
} else {
mVideoDataRequest.Complete();
}
if (IsShutdown()) {
// Already shutdown;
return;
}
// If this is a decode error, delegate to the generic error path.
if (aReason == MediaDecoderReader::DECODE_ERROR) {
DecodeError();
return;
}
// If the decoder is waiting for data, we tell it to call us back when the
// data arrives.
if (aReason == MediaDecoderReader::WAITING_FOR_DATA) {
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
"Readers that send WAITING_FOR_DATA need to implement WaitForData");
nsRefPtr<MediaDecoderStateMachine> self = this;
WaitRequestRef(aType).Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::WaitForData, aType)
->Then(TaskQueue(), __func__,
[self] (MediaData::Type aType) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->WaitRequestRef(aType).Complete();
self->DispatchDecodeTasksIfNeeded();
},
[self] (WaitForDataRejectValue aRejection) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->WaitRequestRef(aRejection.mType).Complete();
}));
return;
}
if (aReason == MediaDecoderReader::CANCELED) {
DispatchDecodeTasksIfNeeded();
return;
}
// This is an EOS. Finish off the queue, and then handle things based on our
// state.
MOZ_ASSERT(aReason == MediaDecoderReader::END_OF_STREAM);
if (!isAudio && mState == DECODER_STATE_SEEKING &&
mCurrentSeek.Exists() && mFirstVideoFrameAfterSeek) {
// Null sample. Hit end of stream. If we have decoded a frame,
// insert it into the queue so that we have something to display.
// We make sure to do this before invoking VideoQueue().Finish()
// below.
Push(mFirstVideoFrameAfterSeek);
mFirstVideoFrameAfterSeek = nullptr;
}
if (isAudio) {
AudioQueue().Finish();
StopPrerollingAudio();
} else {
VideoQueue().Finish();
StopPrerollingVideo();
}
switch (mState) {
case DECODER_STATE_DECODING_FIRSTFRAME: {
MaybeFinishDecodeFirstFrame();
return;
}
case DECODER_STATE_BUFFERING:
case DECODER_STATE_DECODING: {
CheckIfDecodeComplete();
mDecoder->GetReentrantMonitor().NotifyAll();
// Schedule the state machine to notify track ended as soon as possible.
if (mAudioCaptured) {
ScheduleStateMachine();
}
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeek.Exists()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (isAudio) {
mDropAudioUntilNextDiscontinuity = false;
} else {
mDropVideoUntilNextDiscontinuity = false;
}
CheckIfSeekComplete();
return;
}
default: {
return;
}
}
}
void
MediaDecoderStateMachine::MaybeFinishDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if ((IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
(IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
return;
}
if (NS_FAILED(FinishDecodeFirstFrame())) {
DecodeError();
}
}
void
MediaDecoderStateMachine::OnVideoDecoded(VideoData* aVideoSample)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
nsRefPtr<VideoData> video(aVideoSample);
mVideoDataRequest.Complete();
mDecodedVideoEndTime = video ? video->GetEndTime() : mDecodedVideoEndTime;
SAMPLE_LOG("OnVideoDecoded [%lld,%lld] disc=%d",
(video ? video->mTime : -1),
(video ? video->GetEndTime() : -1),
(video ? video->mDiscontinuity : 0));
switch (mState) {
case DECODER_STATE_DECODING_FIRSTFRAME: {
Push(video);
MaybeFinishDecodeFirstFrame();
return;
}
case DECODER_STATE_BUFFERING: {
// If we're buffering, this may be the sample we need to stop buffering.
// Save it and schedule the state machine.
Push(video);
ScheduleStateMachine();
return;
}
case DECODER_STATE_DECODING: {
Push(video);
if (mIsVideoPrerolling && DonePrerollingVideo()) {
StopPrerollingVideo();
}
// Schedule the state machine to send stream data as soon as possible or
// the VideoQueue() is empty before the Push().
// VideoQueue() is empty implies the state machine thread doesn't have
// precise time information about video frames. Once the first video
// frame pushed in the queue, schedule the state machine as soon as
// possible to render the video frame or delay the state machine thread
// accurately.
if (mAudioCaptured || VideoQueue().GetSize() == 1) {
ScheduleStateMachine();
}
// For non async readers, if the requested video sample was slow to
// arrive, increase the amount of audio we buffer to ensure that we
// don't run out of audio. This is unnecessary for async readers,
// since they decode audio and video on different threads so they
// are unlikely to run out of decoded audio.
if (mReader->IsAsync()) {
return;
}
TimeDuration decodeTime = TimeStamp::Now() - mVideoDecodeStartTime;
if (THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > mLowAudioThresholdUsecs &&
!HasLowUndecodedData())
{
mLowAudioThresholdUsecs =
std::min(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), mAmpleAudioThresholdUsecs);
mAmpleAudioThresholdUsecs = std::max(THRESHOLD_FACTOR * mLowAudioThresholdUsecs,
mAmpleAudioThresholdUsecs);
DECODER_LOG("Slow video decode, set mLowAudioThresholdUsecs=%lld mAmpleAudioThresholdUsecs=%lld",
mLowAudioThresholdUsecs, mAmpleAudioThresholdUsecs);
}
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeek.Exists()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (mDropVideoUntilNextDiscontinuity) {
if (video->mDiscontinuity) {
mDropVideoUntilNextDiscontinuity = false;
}
}
if (!mDropVideoUntilNextDiscontinuity) {
// We must be after the discontinuity; we're receiving samples
// at or after the seek target.
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
video->mTime < mCurrentTimeBeforeSeek) {
// We are doing a fastSeek, but we ended up *before* the previous
// playback position. This is surprising UX, so switch to an accurate
// seek and decode to the seek target. This is not conformant to the
// spec, fastSeek should always be fast, but until we get the time to
// change all Readers to seek to the keyframe after the currentTime
// in this case, we'll just decode forward. Bug 1026330.
mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
}
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint) {
// Non-precise seek; we can stop the seek at the first sample.
Push(video);
} else {
// We're doing an accurate seek. We still need to discard
// MediaData up to the one containing exact seek target.
if (NS_FAILED(DropVideoUpToSeekTarget(video))) {
DecodeError();
return;
}
}
}
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::CheckIfSeekComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
const bool videoSeekComplete = IsVideoSeekComplete();
if (HasVideo() && !videoSeekComplete) {
// We haven't reached the target. Ensure we have requested another sample.
if (NS_FAILED(EnsureVideoDecodeTaskQueued())) {
DECODER_WARN("Failed to request video during seek");
DecodeError();
}
}
const bool audioSeekComplete = IsAudioSeekComplete();
if (HasAudio() && !audioSeekComplete) {
// We haven't reached the target. Ensure we have requested another sample.
if (NS_FAILED(EnsureAudioDecodeTaskQueued())) {
DECODER_WARN("Failed to request audio during seek");
DecodeError();
}
}
SAMPLE_LOG("CheckIfSeekComplete() audioSeekComplete=%d videoSeekComplete=%d",
audioSeekComplete, videoSeekComplete);
if (audioSeekComplete && videoSeekComplete) {
mDecodeToSeekTarget = false;
SeekCompleted();
}
}
bool
MediaDecoderStateMachine::IsAudioDecoding()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return HasAudio() && !AudioQueue().IsFinished();
}
bool
MediaDecoderStateMachine::IsVideoDecoding()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return HasVideo() && !VideoQueue().IsFinished();
}
void
MediaDecoderStateMachine::CheckIfDecodeComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (IsShutdown() ||
mState == DECODER_STATE_SEEKING ||
mState == DECODER_STATE_COMPLETED) {
// Don't change our state if we've already been shutdown, or we're seeking,
// since we don't want to abort the shutdown or seek processes.
return;
}
if (!IsVideoDecoding() && !IsAudioDecoding()) {
// We've finished decoding all active streams,
// so move to COMPLETED state.
SetState(DECODER_STATE_COMPLETED);
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
DECODER_LOG("CheckIfDecodeComplete %scompleted",
((mState == DECODER_STATE_COMPLETED) ? "" : "NOT "));
}
bool MediaDecoderStateMachine::IsPlaying() const
{
AssertCurrentThreadInMonitor();
return !mPlayStartTime.IsNull();
}
nsresult MediaDecoderStateMachine::Init(MediaDecoderStateMachine* aCloneDonor)
{
MOZ_ASSERT(NS_IsMainThread());
if (NS_WARN_IF(!mReader->EnsureTaskQueue())) {
return NS_ERROR_FAILURE;
}
MediaDecoderReader* cloneReader = nullptr;
if (aCloneDonor) {
cloneReader = aCloneDonor->mReader;
}
nsresult rv = mReader->Init(cloneReader);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
void MediaDecoderStateMachine::StopPlayback()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("StopPlayback()");
AssertCurrentThreadInMonitor();
mDecoder->NotifyPlaybackStopped();
if (IsPlaying()) {
mPlayDuration = GetClock() - mStartTime;
SetPlayStartTime(TimeStamp());
}
// Notify the audio sink, so that it notices that we've stopped playing,
// so it can pause audio playback.
mDecoder->GetReentrantMonitor().NotifyAll();
NS_ASSERTION(!IsPlaying(), "Should report not playing at end of StopPlayback()");
UpdateStreamBlockingForStateMachinePlaying();
DispatchDecodeTasksIfNeeded();
}
void MediaDecoderStateMachine::MaybeStartPlayback()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (IsPlaying()) {
// Logging this case is really spammy - don't do it.
return;
}
bool playStatePermits = mPlayState == MediaDecoder::PLAY_STATE_PLAYING;
bool decodeStatePermits = mState == DECODER_STATE_DECODING || mState == DECODER_STATE_COMPLETED;
if (!playStatePermits || !decodeStatePermits || mIsAudioPrerolling || mIsVideoPrerolling) {
DECODER_LOG("Not starting playback [playStatePermits: %d, decodeStatePermits: %d, "
"mIsAudioPrerolling: %d, mIsVideoPrerolling: %d]", (int) playStatePermits,
(int) decodeStatePermits, (int) mIsAudioPrerolling, (int) mIsVideoPrerolling);
return;
}
if (mDecoder->CheckDecoderCanOffloadAudio()) {
DECODER_LOG("Offloading playback");
return;
}
DECODER_LOG("MaybeStartPlayback() starting playback");
mDecoder->NotifyPlaybackStarted();
SetPlayStartTime(TimeStamp::Now());
MOZ_ASSERT(IsPlaying());
nsresult rv = StartAudioThread();
NS_ENSURE_SUCCESS_VOID(rv);
mDecoder->GetReentrantMonitor().NotifyAll();
UpdateStreamBlockingForStateMachinePlaying();
DispatchDecodeTasksIfNeeded();
}
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
SAMPLE_LOG("UpdatePlaybackPositionInternal(%lld) (mStartTime=%lld)", aTime, mStartTime);
AssertCurrentThreadInMonitor();
NS_ASSERTION(mStartTime >= 0, "Should have positive mStartTime");
mCurrentPosition = aTime - mStartTime;
NS_ASSERTION(mCurrentPosition >= 0, "CurrentTime should be positive!");
mObservedDuration = std::max(mObservedDuration.Ref(),
TimeUnit::FromMicroseconds(mCurrentPosition.Ref()));
}
void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
UpdatePlaybackPositionInternal(aTime);
bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
mMetadataManager.DispatchMetadataIfNeeded(mDecoder, aTime);
if (fragmentEnded) {
StopPlayback();
}
}
void MediaDecoderStateMachine::ClearPositionChangeFlag()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
AssertCurrentThreadInMonitor();
mPositionChangeQueued = false;
}
static const char* const gMachineStateStr[] = {
"NONE",
"DECODING_METADATA",
"WAIT_FOR_RESOURCES",
"WAIT_FOR_RESOURCES",
"DECODING_FIRSTFRAME",
"DORMANT",
"DECODING",
"SEEKING",
"BUFFERING",
"COMPLETED",
"SHUTDOWN",
"ERROR"
};
void MediaDecoderStateMachine::SetState(State aState)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mState == aState) {
return;
}
DECODER_LOG("Change machine state from %s to %s",
gMachineStateStr[mState], gMachineStateStr[aState]);
mState = aState;
// Clear state-scoped state.
mSentPlaybackEndedEvent = false;
}
void MediaDecoderStateMachine::VolumeChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mAudioSink) {
mAudioSink->SetVolume(mVolume);
}
}
bool MediaDecoderStateMachine::IsRealTime() const {
return mRealTime;
}
int64_t MediaDecoderStateMachine::GetDuration()
{
AssertCurrentThreadInMonitor();
if (mEndTime == -1 || mStartTime == -1)
return -1;
return mEndTime - mStartTime;
}
int64_t MediaDecoderStateMachine::GetEndTime()
{
if (mEndTime == -1 && mDurationSet) {
return INT64_MAX;
}
return mEndTime;
}
void MediaDecoderStateMachine::RecomputeDuration()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// We dispatch DurationChanged to the MediaDecoder when the duration changes
// sometime after initialization, unless it has already been fired by the code
// that set the new duration.
bool fireDurationChanged = false;
TimeUnit duration;
if (mExplicitDuration.Ref().isSome()) {
double d = mExplicitDuration.Ref().ref();
if (IsNaN(d)) {
// We have an explicit duration (which means that we shouldn't look at
// any other duration sources), but the duration isn't ready yet.
return;
}
// We don't fire duration changed for this case because it should have
// already been fired on the main thread when the explicit duration was set.
duration = TimeUnit::FromSeconds(d);
} else if (mEstimatedDuration.Ref().isSome()) {
duration = mEstimatedDuration.Ref().ref();
fireDurationChanged = true;
} else if (mInfo.mMetadataDuration.isSome()) {
duration = mInfo.mMetadataDuration.ref();
} else if (mInfo.mMetadataEndTime.isSome() && mStartTime >= 0) {
duration = mInfo.mMetadataEndTime.ref() - TimeUnit::FromMicroseconds(mStartTime);
} else {
return;
}
if (duration < mObservedDuration.Ref()) {
duration = mObservedDuration;
fireDurationChanged = true;
}
fireDurationChanged = fireDurationChanged && duration.ToMicroseconds() != GetDuration();
SetDuration(duration);
if (fireDurationChanged) {
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethodWithArg<TimeUnit>(mDecoder, &MediaDecoder::DurationChanged, duration);
AbstractThread::MainThread()->Dispatch(event.forget());
}
}
void MediaDecoderStateMachine::SetDuration(TimeUnit aDuration)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
MOZ_ASSERT(aDuration.ToMicroseconds() >= 0);
mDurationSet = true;
if (mStartTime == -1) {
SetStartTime(0);
}
if (aDuration.IsInfinite()) {
mEndTime = -1;
return;
}
mEndTime = mStartTime + aDuration.ToMicroseconds();
}
void MediaDecoderStateMachine::SetFragmentEndTime(int64_t aEndTime)
{
AssertCurrentThreadInMonitor();
mFragmentEndTime = aEndTime < 0 ? aEndTime : aEndTime + mStartTime;
}
bool MediaDecoderStateMachine::IsDormantNeeded()
{
return mReader->IsDormantNeeded();
}
void MediaDecoderStateMachine::SetDormant(bool aDormant)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
return;
}
if (!mReader) {
return;
}
DECODER_LOG("SetDormant=%d", aDormant);
if (aDormant) {
if (mState == DECODER_STATE_SEEKING) {
if (mQueuedSeek.Exists()) {
// Keep latest seek target
} else if (mPendingSeek.Exists()) {
mQueuedSeek.Steal(mPendingSeek);
} else if (mCurrentSeek.Exists()) {
mQueuedSeek.Steal(mCurrentSeek);
} else {
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
SeekTarget::Accurate,
MediaDecoderEventVisibility::Suppressed);
// Nobody is listening to this promise. Do we need to pass it
// back to MediaDecoder when we come out of dormant?
nsRefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
}
} else {
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
SeekTarget::Accurate,
MediaDecoderEventVisibility::Suppressed);
// Nobody is listening to this promise. Do we need to pass it
// back to MediaDecoder when we come out of dormant?
nsRefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
}
mPendingSeek.RejectIfExists(__func__);
mCurrentSeek.RejectIfExists(__func__);
SetState(DECODER_STATE_DORMANT);
Reset();
// Note that we do not wait for the decode task queue to go idle before
// queuing the ReleaseMediaResources task - instead, we disconnect promises,
// reset state, and put a ResetDecode in the decode task queue. Any tasks
// that run after ResetDecode are supposed to run with a clean slate. We rely
// on that in other places (i.e. seeking), so it seems reasonable to rely on
// it here as well.
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(mReader, &MediaDecoderReader::ReleaseMediaResources);
DecodeTaskQueue()->Dispatch(r.forget());
// There's now no possibility of mPendingWakeDecoder being needed again. Revoke it.
mPendingWakeDecoder = nullptr;
mDecoder->GetReentrantMonitor().NotifyAll();
} else if ((aDormant != true) && (mState == DECODER_STATE_DORMANT)) {
mDecodingFrozenAtStateDecoding = true;
ScheduleStateMachine();
SetState(DECODER_STATE_DECODING_NONE);
mDecoder->GetReentrantMonitor().NotifyAll();
}
}
void MediaDecoderStateMachine::Shutdown()
{
MOZ_ASSERT(OnTaskQueue());
// Once we've entered the shutdown state here there's no going back.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// Change state before issuing shutdown request to threads so those
// threads can start exiting cleanly during the Shutdown call.
ScheduleStateMachine();
SetState(DECODER_STATE_SHUTDOWN);
if (mAudioSink) {
mAudioSink->PrepareToShutdown();
}
mDecoder->GetReentrantMonitor().NotifyAll();
}
void MediaDecoderStateMachine::StartDecoding()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState == DECODER_STATE_DECODING) {
return;
}
SetState(DECODER_STATE_DECODING);
mDecodeStartTime = TimeStamp::Now();
CheckIfDecodeComplete();
if (mState == DECODER_STATE_COMPLETED) {
return;
}
// Reset other state to pristine values before starting decode.
mIsAudioPrerolling = !DonePrerollingAudio();
mIsVideoPrerolling = !DonePrerollingVideo();
// Ensure that we've got tasks enqueued to decode data if we need to.
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
void MediaDecoderStateMachine::NotifyWaitingForResourcesStatusChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState == DECODER_STATE_WAIT_FOR_RESOURCES) {
// Try again.
SetState(DECODER_STATE_DECODING_NONE);
ScheduleStateMachine();
} else if (mState == DECODER_STATE_WAIT_FOR_CDM &&
!mReader->IsWaitingOnCDMResource()) {
SetState(DECODER_STATE_DECODING_FIRSTFRAME);
EnqueueDecodeFirstFrameTask();
}
}
void MediaDecoderStateMachine::PlayStateChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// This method used to be a Play() method invoked by MediaDecoder when the
// play state became PLAY_STATE_PLAYING. As such, it doesn't have any work to
// do for other state changes. That could change.
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
return;
}
// Once we start playing, we don't want to minimize our prerolling, as we
// assume the user is likely to want to keep playing in future. This needs to
// happen before we invoke StartDecoding().
if (mMinimizePreroll) {
mMinimizePreroll = false;
DispatchDecodeTasksIfNeeded();
}
if (mDecodingFrozenAtStateDecoding) {
mDecodingFrozenAtStateDecoding = false;
DispatchDecodeTasksIfNeeded();
}
// Some state transitions still happen synchronously on the main thread. So
// if the main thread invokes Play() and then Seek(), the seek will initiate
// synchronously on the main thread, and the asynchronous PlayInternal task
// will arrive when it's no longer valid. The proper thing to do is to move
// all state transitions to the state machine task queue, but for now we just
// make sure that none of the possible main-thread state transitions (Seek(),
// SetDormant(), and Shutdown()) have not occurred.
if (mState != DECODER_STATE_DECODING && mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_COMPLETED)
{
DECODER_LOG("Unexpected state - Bailing out of PlayInternal()");
return;
}
// When asked to play, switch to decoding state only if
// we are currently buffering. In other cases, we'll start playing anyway
// when the state machine notices the decoder's state change to PLAYING.
if (mState == DECODER_STATE_BUFFERING) {
StartDecoding();
}
ScheduleStateMachine();
}
void MediaDecoderStateMachine::LogicallySeekingChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
ScheduleStateMachine();
}
void MediaDecoderStateMachine::NotifyDataArrived(const char* aBuffer,
uint32_t aLength,
int64_t aOffset)
{
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
mReader->NotifyDataArrived(aBuffer, aLength, aOffset);
// While playing an unseekable stream of unknown duration, mEndTime is
// updated (in AdvanceFrame()) as we play. But if data is being downloaded
// faster than played, mEndTime won't reflect the end of playable data
// since we haven't played the frame at the end of buffered data. So update
// mEndTime here as new data is downloaded to prevent such a lag.
//
// Make sure to only do this if we have a start time, otherwise the reader
// doesn't know how to compute GetBuffered.
if (!mDecoder->IsInfinite() || mStartTime == -1) {
return;
}
media::TimeIntervals buffered{mDecoder->GetBuffered()};
if (!buffered.IsInvalid()) {
bool exists;
media::TimeUnit end{buffered.GetEnd(&exists)};
if (exists) {
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mEndTime = std::max<int64_t>(mEndTime, end.ToMicroseconds());
}
}
}
nsRefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::Seek(SeekTarget aTarget)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mDecodingFrozenAtStateDecoding = false;
if (IsShutdown()) {
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
}
// We need to be able to seek both at a transport level and at a media level
// to seek.
if (!mDecoder->IsMediaSeekable()) {
DECODER_WARN("Seek() function should not be called on a non-seekable state machine");
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
}
NS_ASSERTION(mState > DECODER_STATE_DECODING_METADATA,
"We should have got duration already");
if (mState < DECODER_STATE_DECODING) {
DECODER_LOG("Seek() Not Enough Data to continue at this stage, queuing seek");
mQueuedSeek.RejectIfExists(__func__);
mQueuedSeek.mTarget = aTarget;
return mQueuedSeek.mPromise.Ensure(__func__);
}
mQueuedSeek.RejectIfExists(__func__);
mPendingSeek.RejectIfExists(__func__);
mPendingSeek.mTarget = aTarget;
DECODER_LOG("Changed state to SEEKING (to %lld)", mPendingSeek.mTarget.mTime);
SetState(DECODER_STATE_SEEKING);
ScheduleStateMachine();
return mPendingSeek.mPromise.Ensure(__func__);
}
void MediaDecoderStateMachine::StopAudioThread()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mStopAudioThread) {
// Audio sink is being stopped in another thread. Wait until finished.
while (mAudioSink) {
mDecoder->GetReentrantMonitor().Wait();
}
return;
}
mStopAudioThread = true;
// Wake up audio sink so that it can reach the finish line.
mDecoder->GetReentrantMonitor().NotifyAll();
if (mAudioSink) {
DECODER_LOG("Shutdown audio thread");
mAudioSink->PrepareToShutdown();
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mAudioSink->Shutdown();
}
mAudioSink = nullptr;
}
// Wake up those waiting for audio sink to finish.
mDecoder->GetReentrantMonitor().NotifyAll();
}
nsresult
MediaDecoderStateMachine::EnqueueDecodeFirstFrameTask()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mState == DECODER_STATE_DECODING_FIRSTFRAME);
nsCOMPtr<nsIRunnable> task(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::CallDecodeFirstFrame));
TaskQueue()->Dispatch(task.forget());
return NS_OK;
}
void
MediaDecoderStateMachine::SetReaderIdle()
{
MOZ_ASSERT(OnDecodeTaskQueue());
DECODER_LOG("Invoking SetReaderIdle()");
mReader->SetIdle();
}
void
MediaDecoderStateMachine::DispatchDecodeTasksIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return;
}
if (mState == DECODER_STATE_DECODING && mDecodingFrozenAtStateDecoding) {
DECODER_LOG("DispatchDecodeTasksIfNeeded return due to "
"mFreezeDecodingAtStateDecoding");
return;
}
// NeedToDecodeAudio() can go from false to true while we hold the
// monitor, but it can't go from true to false. This can happen because
// NeedToDecodeAudio() takes into account the amount of decoded audio
// that's been written to the AudioStream but not played yet. So if we
// were calling NeedToDecodeAudio() twice and we thread-context switch
// between the calls, audio can play, which can affect the return value
// of NeedToDecodeAudio() giving inconsistent results. So we cache the
// value returned by NeedToDecodeAudio(), and make decisions
// based on the cached value. If NeedToDecodeAudio() has
// returned false, and then subsequently returns true and we're not
// playing, it will probably be OK since we don't need to consume data
// anyway.
const bool needToDecodeAudio = NeedToDecodeAudio();
const bool needToDecodeVideo = NeedToDecodeVideo();
// If we're in completed state, we should not need to decode anything else.
MOZ_ASSERT(mState != DECODER_STATE_COMPLETED ||
(!needToDecodeAudio && !needToDecodeVideo));
bool needIdle = !IsLogicallyPlaying() &&
mState != DECODER_STATE_SEEKING &&
!needToDecodeAudio &&
!needToDecodeVideo &&
!IsPlaying();
SAMPLE_LOG("DispatchDecodeTasksIfNeeded needAudio=%d audioStatus=%s needVideo=%d videoStatus=%s needIdle=%d",
needToDecodeAudio, AudioRequestStatus(),
needToDecodeVideo, VideoRequestStatus(),
needIdle);
if (needToDecodeAudio) {
EnsureAudioDecodeTaskQueued();
}
if (needToDecodeVideo) {
EnsureVideoDecodeTaskQueued();
}
if (needIdle) {
DECODER_LOG("Dispatching SetReaderIdle() audioQueue=%lld videoQueue=%lld",
GetDecodedAudioDuration(),
VideoQueue().Duration());
nsCOMPtr<nsIRunnable> task = NS_NewRunnableMethod(
this, &MediaDecoderStateMachine::SetReaderIdle);
DecodeTaskQueue()->Dispatch(task.forget());
}
}
void
MediaDecoderStateMachine::InitiateSeek()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
mCurrentSeek.RejectIfExists(__func__);
mCurrentSeek.Steal(mPendingSeek);
// Bound the seek time to be inside the media range.
int64_t end = GetEndTime();
NS_ASSERTION(mStartTime != -1, "Should know start time by now");
NS_ASSERTION(end != -1, "Should know end time by now");
int64_t seekTime = mCurrentSeek.mTarget.mTime + mStartTime;
seekTime = std::min(seekTime, end);
seekTime = std::max(mStartTime, seekTime);
NS_ASSERTION(seekTime >= mStartTime && seekTime <= end,
"Can only seek in range [0,duration]");
mCurrentSeek.mTarget.mTime = seekTime;
if (mAudioCaptured) {
// TODO: We should re-create the decoded stream after seek completed as we do
// for audio thread since it is until then we know which position we seek to
// as far as fast-seek is concerned. It also fix the problem where stream
// clock seems to go backwards during seeking.
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethodWithArg<int64_t>(mDecoder, &MediaDecoder::RecreateDecodedStream,
seekTime - mStartTime);
AbstractThread::MainThread()->Dispatch(event.forget());
}
mDropAudioUntilNextDiscontinuity = HasAudio();
mDropVideoUntilNextDiscontinuity = HasVideo();
mDecoder->StopProgressUpdates();
mCurrentTimeBeforeSeek = GetMediaTime();
// Stop playback now to ensure that while we're outside the monitor
// dispatching SeekingStarted, playback doesn't advance and mess with
// mCurrentPosition that we've setting to seekTime here.
StopPlayback();
UpdatePlaybackPositionInternal(mCurrentSeek.mTarget.mTime);
nsCOMPtr<nsIRunnable> startEvent =
NS_NewRunnableMethodWithArg<MediaDecoderEventVisibility>(
mDecoder,
&MediaDecoder::SeekingStarted,
mCurrentSeek.mTarget.mEventVisibility);
AbstractThread::MainThread()->Dispatch(startEvent.forget());
// Reset our state machine and decoding pipeline before seeking.
Reset();
// Do the seek.
nsRefPtr<MediaDecoderStateMachine> self = this;
mSeekRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::Seek, mCurrentSeek.mTarget.mTime,
GetEndTime())
->Then(TaskQueue(), __func__,
[self] (int64_t) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->mSeekRequest.Complete();
// We must decode the first samples of active streams, so we can determine
// the new stream time. So dispatch tasks to do that.
self->mDecodeToSeekTarget = true;
self->DispatchDecodeTasksIfNeeded();
}, [self] (nsresult aResult) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->mSeekRequest.Complete();
MOZ_ASSERT(NS_FAILED(aResult), "Cancels should also disconnect mSeekRequest");
self->DecodeError();
}));
}
nsresult
MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (NeedToDecodeAudio()) {
return EnsureAudioDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureAudioDecodeTaskQueued()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("EnsureAudioDecodeTaskQueued isDecoding=%d status=%s",
IsAudioDecoding(), AudioRequestStatus());
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return NS_OK;
}
if (!IsAudioDecoding() || mAudioDataRequest.Exists() ||
mAudioWaitRequest.Exists() || mSeekRequest.Exists()) {
return NS_OK;
}
SAMPLE_LOG("Queueing audio task - queued=%i, decoder-queued=%o",
AudioQueue().GetSize(), mReader->SizeOfAudioQueueInFrames());
mAudioDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(),
__func__, &MediaDecoderReader::RequestAudioData)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnAudioDecoded,
&MediaDecoderStateMachine::OnAudioNotDecoded));
return NS_OK;
}
nsresult
MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (NeedToDecodeVideo()) {
return EnsureVideoDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureVideoDecodeTaskQueued()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("EnsureVideoDecodeTaskQueued isDecoding=%d status=%s",
IsVideoDecoding(), VideoRequestStatus());
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return NS_OK;
}
if (!IsVideoDecoding() || mVideoDataRequest.Exists() ||
mVideoWaitRequest.Exists() || mSeekRequest.Exists()) {
return NS_OK;
}
bool skipToNextKeyFrame = NeedToSkipToNextKeyframe();
int64_t currentTime = mState == DECODER_STATE_SEEKING ? 0 : GetMediaTime();
// Time the video decode, so that if it's slow, we can increase our low
// audio threshold to reduce the chance of an audio underrun while we're
// waiting for a video decode to complete.
mVideoDecodeStartTime = TimeStamp::Now();
SAMPLE_LOG("Queueing video task - queued=%i, decoder-queued=%o, skip=%i, time=%lld",
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames(), skipToNextKeyFrame,
currentTime);
mVideoDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::RequestVideoData,
skipToNextKeyFrame, currentTime)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnVideoDecoded,
&MediaDecoderStateMachine::OnVideoNotDecoded));
return NS_OK;
}
nsresult
MediaDecoderStateMachine::StartAudioThread()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mAudioCaptured) {
NS_ASSERTION(mStopAudioThread, "mStopAudioThread must always be true if audio is captured");
return NS_OK;
}
mStopAudioThread = false;
if (HasAudio() && !mAudioSink) {
// The audio end time should always be at least the audio start time.
mAudioEndTime = mAudioStartTime;
MOZ_ASSERT(mAudioStartTime == GetMediaTime());
mAudioCompleted = false;
mAudioSink = new AudioSink(this, mAudioStartTime,
mInfo.mAudio, mDecoder->GetAudioChannel());
// OnAudioSinkError() will be called before Init() returns if an error
// occurs during initialization.
nsresult rv = mAudioSink->Init();
NS_ENSURE_SUCCESS(rv, rv);
mAudioSink->SetVolume(mVolume);
mAudioSink->SetPlaybackRate(mPlaybackRate);
mAudioSink->SetPreservesPitch(mPreservesPitch);
}
return NS_OK;
}
int64_t MediaDecoderStateMachine::AudioDecodedUsecs()
{
MOZ_ASSERT(OnTaskQueue());
NS_ASSERTION(HasAudio(),
"Should only call AudioDecodedUsecs() when we have audio");
// The amount of audio we have decoded is the amount of audio data we've
// already decoded and pushed to the hardware, plus the amount of audio
// data waiting to be pushed to the hardware.
int64_t pushed = (mAudioEndTime != -1) ? (mAudioEndTime - GetMediaTime()) : 0;
// Currently for real time streams, AudioQueue().Duration() produce
// wrong values (Bug 1114434), so we use frame counts to calculate duration.
if (IsRealTime()) {
return pushed + FramesToUsecs(AudioQueue().FrameCount(), mInfo.mAudio.mRate).value();
}
return pushed + AudioQueue().Duration();
}
bool MediaDecoderStateMachine::HasLowDecodedData(int64_t aAudioUsecs)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mReader->UseBufferingHeuristics());
// We consider ourselves low on decoded data if we're low on audio,
// provided we've not decoded to the end of the audio stream, or
// if we're low on video frames, provided
// we've not decoded to the end of the video stream.
return ((IsAudioDecoding() && AudioDecodedUsecs() < aAudioUsecs) ||
(IsVideoDecoding() &&
static_cast<uint32_t>(VideoQueue().GetSize()) < LOW_VIDEO_FRAMES));
}
bool MediaDecoderStateMachine::OutOfDecodedAudio()
{
MOZ_ASSERT(OnTaskQueue());
return IsAudioDecoding() && !AudioQueue().IsFinished() &&
AudioQueue().GetSize() == 0 &&
(!mAudioSink || !mAudioSink->HasUnplayedFrames());
}
bool MediaDecoderStateMachine::HasLowUndecodedData()
{
MOZ_ASSERT(OnTaskQueue());
return HasLowUndecodedData(mLowDataThresholdUsecs);
}
bool MediaDecoderStateMachine::HasLowUndecodedData(int64_t aUsecs)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
NS_ASSERTION(mState > DECODER_STATE_DECODING_FIRSTFRAME,
"Must have loaded first frame for GetBuffered() to work");
// If we don't have a duration, GetBuffered is probably not going to produce
// a useful buffered range. Return false here so that we don't get stuck in
// buffering mode for live streams.
if (GetDuration() < 0) {
return false;
}
media::TimeIntervals buffered{mReader->GetBuffered()};
if (buffered.IsInvalid()) {
return false;
}
int64_t endOfDecodedVideoData = INT64_MAX;
if (HasVideo() && !VideoQueue().AtEndOfStream()) {
endOfDecodedVideoData = VideoQueue().Peek() ? VideoQueue().Peek()->GetEndTime() : mVideoFrameEndTime;
}
int64_t endOfDecodedAudioData = INT64_MAX;
if (HasAudio() && !AudioQueue().AtEndOfStream()) {
// mDecodedAudioEndTime could be -1 when no audio samples are decoded.
// But that is fine since we consider ourself as low in decoded data when
// we don't have any decoded audio samples at all.
endOfDecodedAudioData = mDecodedAudioEndTime;
}
int64_t endOfDecodedData = std::min(endOfDecodedVideoData, endOfDecodedAudioData);
if (GetDuration() < endOfDecodedData) {
// Our duration is not up to date. No point buffering.
return false;
}
media::TimeInterval interval(media::TimeUnit::FromMicroseconds(endOfDecodedData),
media::TimeUnit::FromMicroseconds(std::min(endOfDecodedData + aUsecs, GetDuration())));
return endOfDecodedData != INT64_MAX && !buffered.Contains(interval);
}
void
MediaDecoderStateMachine::DecodeError()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
// Already shutdown.
return;
}
// Change state to error, which will cause the state machine to wait until
// the MediaDecoder shuts it down.
SetState(DECODER_STATE_ERROR);
ScheduleStateMachine();
DECODER_WARN("Decode error, changed state to ERROR");
// Is anybody actually waiting on this monitor, or is it just
// a leftover from when we used to do sync dispatch for the below?
mDecoder->GetReentrantMonitor().NotifyAll();
// MediaDecoder::DecodeError notifies the owner, and then shuts down the state
// machine.
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DecodeError);
AbstractThread::MainThread()->Dispatch(event.forget());
}
void
MediaDecoderStateMachine::OnMetadataRead(MetadataHolder* aMetadata)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mMetadataRequest.Complete();
mDecoder->SetMediaSeekable(mReader->IsMediaSeekable());
mInfo = aMetadata->mInfo;
mMetadataTags = aMetadata->mTags.forget();
if (mInfo.mMetadataDuration.isSome() || mInfo.mMetadataEndTime.isSome()) {
RecomputeDuration();
}
if (HasVideo()) {
mAmpleVideoFrames = (mReader->IsAsync() && mInfo.mVideo.mIsHardwareAccelerated)
? std::max<uint32_t>(sVideoQueueHWAccelSize, MIN_VIDEO_QUEUE_SIZE)
: std::max<uint32_t>(sVideoQueueDefaultSize, MIN_VIDEO_QUEUE_SIZE);
DECODER_LOG("Video decode isAsync=%d HWAccel=%d videoQueueSize=%d",
mReader->IsAsync(),
mInfo.mVideo.mIsHardwareAccelerated,
mAmpleVideoFrames);
}
mDecoder->StartProgressUpdates();
mGotDurationFromMetaData = (GetDuration() != -1) || mDurationSet;
if (mGotDurationFromMetaData) {
// We have all the information required: duration and size
// Inform the element that we've loaded the metadata.
EnqueueLoadedMetadataEvent();
}
if (mReader->IsWaitingOnCDMResource()) {
// Metadata parsing was successful but we're still waiting for CDM caps
// to become available so that we can build the correct decryptor/decoder.
SetState(DECODER_STATE_WAIT_FOR_CDM);
return;
}
SetState(DECODER_STATE_DECODING_FIRSTFRAME);
EnqueueDecodeFirstFrameTask();
ScheduleStateMachine();
}
void
MediaDecoderStateMachine::OnMetadataNotRead(ReadMetadataFailureReason aReason)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mMetadataRequest.Complete();
if (aReason == ReadMetadataFailureReason::WAITING_FOR_RESOURCES) {
SetState(DECODER_STATE_WAIT_FOR_RESOURCES);
} else {
MOZ_ASSERT(aReason == ReadMetadataFailureReason::METADATA_ERROR);
DECODER_WARN("Decode metadata failed, shutting down decoder");
DecodeError();
}
}
void
MediaDecoderStateMachine::EnqueueLoadedMetadataEvent()
{
MOZ_ASSERT(OnTaskQueue());
nsAutoPtr<MediaInfo> info(new MediaInfo());
*info = mInfo;
MediaDecoderEventVisibility visibility = mSentLoadedMetadataEvent?
MediaDecoderEventVisibility::Suppressed :
MediaDecoderEventVisibility::Observable;
nsCOMPtr<nsIRunnable> metadataLoadedEvent =
new MetadataEventRunner(mDecoder, info, mMetadataTags, visibility);
AbstractThread::MainThread()->Dispatch(metadataLoadedEvent.forget());
mSentLoadedMetadataEvent = true;
}
void
MediaDecoderStateMachine::EnqueueFirstFrameLoadedEvent()
{
MOZ_ASSERT(OnTaskQueue());
nsAutoPtr<MediaInfo> info(new MediaInfo());
*info = mInfo;
MediaDecoderEventVisibility visibility = mSentFirstFrameLoadedEvent?
MediaDecoderEventVisibility::Suppressed :
MediaDecoderEventVisibility::Observable;
nsCOMPtr<nsIRunnable> event =
new FirstFrameLoadedEventRunner(mDecoder, info, visibility);
AbstractThread::MainThread()->Dispatch(event.forget());
mSentFirstFrameLoadedEvent = true;
}
void
MediaDecoderStateMachine::CallDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState != DECODER_STATE_DECODING_FIRSTFRAME) {
return;
}
if (NS_FAILED(DecodeFirstFrame())) {
DECODER_WARN("Decode failed to start, shutting down decoder");
DecodeError();
}
}
nsresult
MediaDecoderStateMachine::DecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mState == DECODER_STATE_DECODING_FIRSTFRAME);
DECODER_LOG("DecodeFirstFrame started");
if (HasAudio()) {
RefPtr<nsIRunnable> decodeTask(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded));
AudioQueue().AddPopListener(decodeTask, TaskQueue());
}
if (HasVideo()) {
RefPtr<nsIRunnable> decodeTask(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded));
VideoQueue().AddPopListener(decodeTask, TaskQueue());
}
if (IsRealTime()) {
SetStartTime(0);
nsresult res = FinishDecodeFirstFrame();
NS_ENSURE_SUCCESS(res, res);
} else if (mSentFirstFrameLoadedEvent) {
// We're resuming from dormant state, so we don't need to request
// the first samples in order to determine the media start time,
// we have the start time from last time we loaded.
SetStartTime(mStartTime);
nsresult res = FinishDecodeFirstFrame();
NS_ENSURE_SUCCESS(res, res);
} else {
if (HasAudio()) {
mAudioDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(),
__func__, &MediaDecoderReader::RequestAudioData)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnAudioDecoded,
&MediaDecoderStateMachine::OnAudioNotDecoded));
}
if (HasVideo()) {
mVideoDecodeStartTime = TimeStamp::Now();
mVideoDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(),
__func__, &MediaDecoderReader::RequestVideoData, false,
int64_t(0))
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnVideoDecoded,
&MediaDecoderStateMachine::OnVideoNotDecoded));
}
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::FinishDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
DECODER_LOG("FinishDecodeFirstFrame");
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (!IsRealTime() && !mSentFirstFrameLoadedEvent) {
const VideoData* v = VideoQueue().PeekFront();
const AudioData* a = AudioQueue().PeekFront();
SetStartTime(mReader->ComputeStartTime(v, a));
if (VideoQueue().GetSize()) {
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
RenderVideoFrame(VideoQueue().PeekFront(), TimeStamp::Now());
}
}
NS_ASSERTION(mStartTime != -1, "Must have start time");
MOZ_ASSERT(!(mDecoder->IsMediaSeekable() && mDecoder->IsTransportSeekable()) ||
(GetDuration() != -1) || mDurationSet,
"Seekable media should have duration");
DECODER_LOG("Media goes from %lld to %lld (duration %lld) "
"transportSeekable=%d, mediaSeekable=%d",
mStartTime, mEndTime, GetDuration(),
mDecoder->IsTransportSeekable(), mDecoder->IsMediaSeekable());
if (HasAudio() && !HasVideo()) {
// We're playing audio only. We don't need to worry about slow video
// decodes causing audio underruns, so don't buffer so much audio in
// order to reduce memory usage.
mAmpleAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
mLowAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
mQuickBufferingLowDataThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
}
// Get potentially updated metadata
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mReader->ReadUpdatedMetadata(&mInfo);
}
nsAutoPtr<MediaInfo> info(new MediaInfo());
*info = mInfo;
if (!mGotDurationFromMetaData) {
// We now have a duration, we can fire the LoadedMetadata and
// FirstFrame event.
EnqueueLoadedMetadataEvent();
EnqueueFirstFrameLoadedEvent();
} else {
// Inform the element that we've loaded the first frame.
EnqueueFirstFrameLoadedEvent();
}
if (mState == DECODER_STATE_DECODING_FIRSTFRAME) {
StartDecoding();
}
// For very short media the first frame decode can decode the entire media.
// So we need to check if this has occurred, else our decode pipeline won't
// run (since it doesn't need to) and we won't detect end of stream.
CheckIfDecodeComplete();
MaybeStartPlayback();
if (mQueuedSeek.Exists()) {
mPendingSeek.Steal(mQueuedSeek);
SetState(DECODER_STATE_SEEKING);
ScheduleStateMachine();
}
return NS_OK;
}
void
MediaDecoderStateMachine::SeekCompleted()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
int64_t seekTime = mCurrentSeek.mTarget.mTime;
int64_t newCurrentTime = seekTime;
// Setup timestamp state.
nsRefPtr<VideoData> video = VideoQueue().PeekFront();
if (seekTime == mEndTime) {
newCurrentTime = mAudioStartTime = seekTime;
} else if (HasAudio()) {
AudioData* audio = AudioQueue().PeekFront();
newCurrentTime = mAudioStartTime = audio ? audio->mTime : seekTime;
} else {
newCurrentTime = video ? video->mTime : seekTime;
}
mPlayDuration = newCurrentTime - mStartTime;
mDecoder->StartProgressUpdates();
// Change state to DECODING or COMPLETED now. SeekingStopped will
// call MediaDecoderStateMachine::Seek to reset our state to SEEKING
// if we need to seek again.
bool isLiveStream = mDecoder->GetResource()->IsLiveStream();
if (mPendingSeek.Exists()) {
// A new seek target came in while we were processing the old one. No rest
// for the seeking.
DECODER_LOG("A new seek came along while we were finishing the old one - staying in SEEKING");
SetState(DECODER_STATE_SEEKING);
} else if (GetMediaTime() == mEndTime && !isLiveStream) {
// Seeked to end of media, move to COMPLETED state. Note we don't do
// this if we're playing a live stream, since the end of media will advance
// once we download more data!
DECODER_LOG("Changed state from SEEKING (to %lld) to COMPLETED", seekTime);
// Explicitly set our state so we don't decode further, and so
// we report playback ended to the media element.
SetState(DECODER_STATE_COMPLETED);
DispatchDecodeTasksIfNeeded();
} else {
DECODER_LOG("Changed state from SEEKING (to %lld) to DECODING", seekTime);
StartDecoding();
}
// Ensure timestamps are up to date.
UpdatePlaybackPositionInternal(newCurrentTime);
// Try to decode another frame to detect if we're at the end...
DECODER_LOG("Seek completed, mCurrentPosition=%lld", mCurrentPosition.Ref());
// Reset quick buffering status. This ensures that if we began the
// seek while quick-buffering, we won't bypass quick buffering mode
// if we need to buffer after the seek.
mQuickBuffering = false;
mCurrentSeek.Resolve(mState == DECODER_STATE_COMPLETED, __func__);
ScheduleStateMachine();
if (video) {
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
RenderVideoFrame(video, TimeStamp::Now());
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::Invalidate);
AbstractThread::MainThread()->Dispatch(event.forget());
}
}
class DecoderDisposer
{
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(DecoderDisposer)
DecoderDisposer(MediaDecoder* aDecoder, MediaDecoderStateMachine* aStateMachine)
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
void OnTaskQueueShutdown()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mStateMachine);
MOZ_ASSERT(mDecoder);
mStateMachine->BreakCycles();
mDecoder->BreakCycles();
mStateMachine = nullptr;
mDecoder = nullptr;
}
private:
virtual ~DecoderDisposer() {}
nsRefPtr<MediaDecoder> mDecoder;
nsRefPtr<MediaDecoderStateMachine> mStateMachine;
};
void
MediaDecoderStateMachine::ShutdownReader()
{
MOZ_ASSERT(OnDecodeTaskQueue());
mReader->Shutdown()->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::FinishShutdown,
&MediaDecoderStateMachine::FinishShutdown);
}
void
MediaDecoderStateMachine::FinishShutdown()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// The reader's listeners hold references to the state machine,
// creating a cycle which keeps the state machine and its shared
// thread pools alive. So break it here.
AudioQueue().ClearListeners();
VideoQueue().ClearListeners();
// Now that those threads are stopped, there's no possibility of
// mPendingWakeDecoder being needed again. Revoke it.
mPendingWakeDecoder = nullptr;
// Disconnect canonicals and mirrors before shutting down our task queue.
mEstimatedDuration.DisconnectIfConnected();
mExplicitDuration.DisconnectIfConnected();
mPlayState.DisconnectIfConnected();
mNextPlayState.DisconnectIfConnected();
mLogicallySeeking.DisconnectIfConnected();
mVolume.DisconnectIfConnected();
mLogicalPlaybackRate.DisconnectIfConnected();
mPreservesPitch.DisconnectIfConnected();
mNextFrameStatus.DisconnectAll();
mCurrentPosition.DisconnectAll();
// Shut down the watch manager before shutting down our task queue.
mWatchManager.Shutdown();
MOZ_ASSERT(mState == DECODER_STATE_SHUTDOWN,
"How did we escape from the shutdown state?");
// We must daisy-chain these events to destroy the decoder. We must
// destroy the decoder on the main thread, but we can't destroy the
// decoder while this thread holds the decoder monitor. We can't
// dispatch an event to the main thread to destroy the decoder from
// here, as the event may run before the dispatch returns, and we
// hold the decoder monitor here. We also want to guarantee that the
// state machine is destroyed on the main thread, and so the
// event runner running this function (which holds a reference to the
// state machine) needs to finish and be released in order to allow
// that. So we dispatch an event to run after this event runner has
// finished and released its monitor/references. That event then will
// dispatch an event to the main thread to release the decoder and
// state machine.
DECODER_LOG("Shutting down state machine task queue");
RefPtr<DecoderDisposer> disposer = new DecoderDisposer(mDecoder, this);
TaskQueue()->BeginShutdown()->Then(AbstractThread::MainThread(), __func__,
disposer.get(),
&DecoderDisposer::OnTaskQueueShutdown,
&DecoderDisposer::OnTaskQueueShutdown);
}
nsresult MediaDecoderStateMachine::RunStateMachine()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mDelayedScheduler.Reset(); // Must happen on state machine task queue.
mDispatchedStateMachine = false;
// If audio is being captured, stop the audio sink if it's running
if (mAudioCaptured) {
StopAudioThread();
}
MediaResource* resource = mDecoder->GetResource();
NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);
switch (mState) {
case DECODER_STATE_ERROR: {
// Just wait for MediaDecoder::DecodeError to shut us down.
return NS_OK;
}
case DECODER_STATE_SHUTDOWN: {
mQueuedSeek.RejectIfExists(__func__);
mPendingSeek.RejectIfExists(__func__);
mCurrentSeek.RejectIfExists(__func__);
if (IsPlaying()) {
StopPlayback();
}
Reset();
// Put a task in the decode queue to shutdown the reader.
// the queue to spin down.
nsCOMPtr<nsIRunnable> task
= NS_NewRunnableMethod(this, &MediaDecoderStateMachine::ShutdownReader);
DecodeTaskQueue()->Dispatch(task.forget());
DECODER_LOG("Shutdown started");
return NS_OK;
}
case DECODER_STATE_DORMANT: {
return NS_OK;
}
case DECODER_STATE_WAIT_FOR_CDM:
case DECODER_STATE_WAIT_FOR_RESOURCES: {
return NS_OK;
}
case DECODER_STATE_DECODING_NONE: {
SetState(DECODER_STATE_DECODING_METADATA);
ScheduleStateMachine();
return NS_OK;
}
case DECODER_STATE_DECODING_METADATA: {
if (!mMetadataRequest.Exists()) {
DECODER_LOG("Dispatching AsyncReadMetadata");
mMetadataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::AsyncReadMetadata)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnMetadataRead,
&MediaDecoderStateMachine::OnMetadataNotRead));
}
return NS_OK;
}
case DECODER_STATE_DECODING_FIRSTFRAME: {
// DECODER_STATE_DECODING_FIRSTFRAME will be started by OnMetadataRead.
return NS_OK;
}
case DECODER_STATE_DECODING: {
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying())
{
// We're playing, but the element/decoder is in paused state. Stop
// playing!
StopPlayback();
}
// Start playback if necessary so that the clock can be properly queried.
MaybeStartPlayback();
AdvanceFrame();
NS_ASSERTION(mPlayState != MediaDecoder::PLAY_STATE_PLAYING ||
mLogicallySeeking ||
IsStateMachineScheduled() ||
mPlaybackRate == 0.0, "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_BUFFERING: {
TimeStamp now = TimeStamp::Now();
NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");
// With buffering heuristics we will remain in the buffering state if
// we've not decoded enough data to begin playback, or if we've not
// downloaded a reasonable amount of data inside our buffering time.
if (mReader->UseBufferingHeuristics()) {
TimeDuration elapsed = now - mBufferingStart;
bool isLiveStream = resource->IsLiveStream();
if ((isLiveStream || !mDecoder->CanPlayThrough()) &&
elapsed < TimeDuration::FromSeconds(mBufferingWait * mPlaybackRate) &&
(mQuickBuffering ? HasLowDecodedData(mQuickBufferingLowDataThresholdUsecs)
: HasLowUndecodedData(mBufferingWait * USECS_PER_S)) &&
mDecoder->IsExpectingMoreData())
{
DECODER_LOG("Buffering: wait %ds, timeout in %.3lfs %s",
mBufferingWait, mBufferingWait - elapsed.ToSeconds(),
(mQuickBuffering ? "(quick exit)" : ""));
ScheduleStateMachineIn(USECS_PER_S);
return NS_OK;
}
} else if (OutOfDecodedAudio() || OutOfDecodedVideo()) {
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
"Don't yet have a strategy for non-heuristic + non-WaitForData");
DispatchDecodeTasksIfNeeded();
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedAudio(), mAudioDataRequest.Exists() || mAudioWaitRequest.Exists());
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedVideo(), mVideoDataRequest.Exists() || mVideoWaitRequest.Exists());
DECODER_LOG("In buffering mode, waiting to be notified: outOfAudio: %d, "
"mAudioStatus: %s, outOfVideo: %d, mVideoStatus: %s",
OutOfDecodedAudio(), AudioRequestStatus(),
OutOfDecodedVideo(), VideoRequestStatus());
return NS_OK;
}
DECODER_LOG("Changed state from BUFFERING to DECODING");
DECODER_LOG("Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
StartDecoding();
// Notify to allow blocked decoder thread to continue
mDecoder->GetReentrantMonitor().NotifyAll();
MaybeStartPlayback();
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_SEEKING: {
if (mPendingSeek.Exists()) {
InitiateSeek();
}
return NS_OK;
}
case DECODER_STATE_COMPLETED: {
// Play the remaining media. We want to run AdvanceFrame() at least
// once to ensure the current playback position is advanced to the
// end of the media, and so that we update the readyState.
if (VideoQueue().GetSize() > 0 ||
(HasAudio() && !mAudioCompleted) ||
(mAudioCaptured && !mDecoder->GetDecodedStream()->IsFinished()))
{
AdvanceFrame();
NS_ASSERTION(mPlayState != MediaDecoder::PLAY_STATE_PLAYING ||
mLogicallySeeking ||
mPlaybackRate == 0 || IsStateMachineScheduled(),
"Must have timer scheduled");
return NS_OK;
}
// StopPlayback in order to reset the IsPlaying() state so audio
// is restarted correctly.
StopPlayback();
if (mState != DECODER_STATE_COMPLETED) {
// While we're presenting a frame we can change state. Whatever changed
// our state should have scheduled another state machine run.
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
StopAudioThread();
if (mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
!mSentPlaybackEndedEvent)
{
int64_t clockTime = std::max(mAudioEndTime, mVideoFrameEndTime);
clockTime = std::max(int64_t(0), std::max(clockTime, mEndTime));
UpdatePlaybackPosition(clockTime);
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackEnded);
AbstractThread::MainThread()->Dispatch(event.forget());
mSentPlaybackEndedEvent = true;
}
return NS_OK;
}
}
return NS_OK;
}
void
MediaDecoderStateMachine::Reset()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
DECODER_LOG("MediaDecoderStateMachine::Reset");
// We should be resetting because we're seeking, shutting down, or entering
// dormant state. We could also be in the process of going dormant, and have
// just switched to exiting dormant before we finished entering dormant,
// hence the DECODING_NONE case below.
MOZ_ASSERT(mState == DECODER_STATE_SEEKING ||
mState == DECODER_STATE_SHUTDOWN ||
mState == DECODER_STATE_DORMANT ||
mState == DECODER_STATE_DECODING_NONE);
// Stop the audio thread. Otherwise, AudioSink might be accessing AudioQueue
// outside of the decoder monitor while we are clearing the queue and causes
// crash for no samples to be popped.
StopAudioThread();
mVideoFrameEndTime = -1;
mDecodedVideoEndTime = -1;
mAudioStartTime = -1;
mAudioEndTime = -1;
mDecodedAudioEndTime = -1;
mAudioCompleted = false;
AudioQueue().Reset();
VideoQueue().Reset();
mFirstVideoFrameAfterSeek = nullptr;
mDropAudioUntilNextDiscontinuity = true;
mDropVideoUntilNextDiscontinuity = true;
mDecodeToSeekTarget = false;
mMetadataRequest.DisconnectIfExists();
mAudioDataRequest.DisconnectIfExists();
mAudioWaitRequest.DisconnectIfExists();
mVideoDataRequest.DisconnectIfExists();
mVideoWaitRequest.DisconnectIfExists();
mSeekRequest.DisconnectIfExists();
nsCOMPtr<nsIRunnable> resetTask =
NS_NewRunnableMethod(mReader, &MediaDecoderReader::ResetDecode);
DecodeTaskQueue()->Dispatch(resetTask.forget());
}
void MediaDecoderStateMachine::RenderVideoFrame(VideoData* aData,
TimeStamp aTarget)
{
MOZ_ASSERT(OnTaskQueue());
mDecoder->GetReentrantMonitor().AssertNotCurrentThreadIn();
if (aData->mDuplicate) {
return;
}
VERBOSE_LOG("playing video frame %lld (queued=%i, state-machine=%i, decoder-queued=%i)",
aData->mTime, VideoQueue().GetSize() + mReader->SizeOfVideoQueueInFrames(),
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames());
VideoFrameContainer* container = mDecoder->GetVideoFrameContainer();
if (container) {
if (aData->mImage && !aData->mImage->IsValid()) {
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
frameStats.NotifyCorruptFrame();
// If more than 10% of the last 30 frames have been corrupted, then try disabling
// hardware acceleration. We use 10 as the corrupt value because RollingMean<>
// only supports integer types.
mCorruptFrames.insert(10);
if (!mDisabledHardwareAcceleration &&
frameStats.GetPresentedFrames() > 30 &&
mCorruptFrames.mean() >= 1 /* 10% */) {
nsCOMPtr<nsIRunnable> task =
NS_NewRunnableMethod(mReader, &MediaDecoderReader::DisableHardwareAcceleration);
DecodeTaskQueue()->Dispatch(task.forget());
mDisabledHardwareAcceleration = true;
}
} else {
mCorruptFrames.insert(0);
}
container->SetCurrentFrame(ThebesIntSize(aData->mDisplay), aData->mImage,
aTarget);
MOZ_ASSERT(container->GetFrameDelay() >= 0 || IsRealTime());
}
}
void MediaDecoderStateMachine::ResyncAudioClock()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (IsPlaying()) {
SetPlayStartTime(TimeStamp::Now());
mPlayDuration = GetAudioClock() - mStartTime;
}
}
int64_t
MediaDecoderStateMachine::GetAudioClock() const
{
MOZ_ASSERT(OnTaskQueue());
// We must hold the decoder monitor while using the audio stream off the
// audio sink to ensure that it doesn't get destroyed on the audio sink
// while we're using it.
AssertCurrentThreadInMonitor();
MOZ_ASSERT(HasAudio() && !mAudioCompleted);
return mAudioStartTime +
(mAudioSink ? mAudioSink->GetPosition() : 0);
}
int64_t MediaDecoderStateMachine::GetVideoStreamPosition() const
{
AssertCurrentThreadInMonitor();
if (!IsPlaying()) {
return mPlayDuration + mStartTime;
}
// Time elapsed since we started playing.
int64_t delta = DurationToUsecs(TimeStamp::Now() - mPlayStartTime);
// Take playback rate into account.
delta *= mPlaybackRate;
return mStartTime + mPlayDuration + delta;
}
int64_t MediaDecoderStateMachine::GetClock() const
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
// Determine the clock time. If we've got audio, and we've not reached
// the end of the audio, use the audio clock. However if we've finished
// audio, or don't have audio, use the system clock. If our output is being
// fed to a MediaStream, use that stream as the source of the clock.
int64_t clock_time = -1;
if (!IsPlaying()) {
clock_time = mPlayDuration + mStartTime;
} else {
if (mAudioCaptured) {
clock_time = mStartTime + mDecoder->GetDecodedStream()->GetClock();
} else if (HasAudio() && !mAudioCompleted) {
clock_time = GetAudioClock();
} else {
// Audio is disabled on this system. Sync to the system clock.
clock_time = GetVideoStreamPosition();
}
// Ensure the clock can never go backwards.
// Note we allow clock going backwards in capture mode during seeking.
NS_ASSERTION(GetMediaTime() <= clock_time ||
mPlaybackRate <= 0 ||
(mAudioCaptured && mState == DECODER_STATE_SEEKING),
"Clock should go forwards.");
}
return clock_time;
}
void MediaDecoderStateMachine::AdvanceFrame()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
NS_ASSERTION(!HasAudio() || mAudioStartTime != -1,
"Should know audio start time if we have audio.");
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING || mLogicallySeeking) {
return;
}
// If playbackRate is 0.0, we should stop the progress, but not be in paused
// state, per spec.
if (mPlaybackRate == 0.0) {
return;
}
if (mAudioCaptured) {
SendStreamData();
}
const int64_t clock_time = GetClock();
TimeStamp nowTime = TimeStamp::Now();
// Skip frames up to the frame at the playback position, and figure out
// the time remaining until it's time to display the next frame.
int64_t remainingTime = AUDIO_DURATION_USECS;
NS_ASSERTION(clock_time >= mStartTime, "Should have positive clock time.");
nsRefPtr<VideoData> currentFrame;
if (VideoQueue().GetSize() > 0) {
VideoData* frame = VideoQueue().PeekFront();
#ifdef PR_LOGGING
int32_t droppedFrames = 0;
#endif
while (IsRealTime() || clock_time >= frame->mTime) {
mVideoFrameEndTime = frame->GetEndTime();
if (currentFrame) {
mDecoder->NotifyDecodedFrames(0, 0, 1);
#ifdef PR_LOGGING
VERBOSE_LOG("discarding video frame mTime=%lld clock_time=%lld (%d so far)",
currentFrame->mTime, clock_time, ++droppedFrames);
#endif
}
currentFrame = frame;
nsRefPtr<VideoData> releaseMe = PopVideo();
// Notify the decode thread that the video queue's buffers may have
// free'd up space for more frames.
mDecoder->GetReentrantMonitor().NotifyAll();
OnPlaybackOffsetUpdate(frame->mOffset);
if (VideoQueue().GetSize() == 0)
break;
frame = VideoQueue().PeekFront();
}
// Current frame has already been presented, wait until it's time to
// present the next frame.
if (frame && !currentFrame) {
remainingTime = frame->mTime - clock_time;
}
}
// Check to see if we don't have enough data to play up to the next frame.
// If we don't, switch to buffering mode.
if (mState == DECODER_STATE_DECODING &&
mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
mDecoder->IsExpectingMoreData()) {
bool shouldBuffer;
if (mReader->UseBufferingHeuristics()) {
shouldBuffer = HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_USECS) &&
(JustExitedQuickBuffering() || HasLowUndecodedData());
} else {
MOZ_ASSERT(mReader->IsWaitForDataSupported());
shouldBuffer = (OutOfDecodedAudio() && mAudioWaitRequest.Exists()) ||
(OutOfDecodedVideo() && mVideoWaitRequest.Exists());
}
if (shouldBuffer) {
if (currentFrame) {
PushFront(currentFrame);
}
StartBuffering();
// Don't go straight back to the state machine loop since that might
// cause us to start decoding again and we could flip-flop between
// decoding and quick-buffering.
ScheduleStateMachineIn(USECS_PER_S);
return;
}
}
// We've got enough data to keep playing until at least the next frame.
// Start playing now if need be.
if ((mFragmentEndTime >= 0 && clock_time < mFragmentEndTime) || mFragmentEndTime < 0) {
MaybeStartPlayback();
}
// Cap the current time to the larger of the audio and video end time.
// This ensures that if we're running off the system clock, we don't
// advance the clock to after the media end time.
if (mVideoFrameEndTime != -1 || mAudioEndTime != -1) {
// These will be non -1 if we've displayed a video frame, or played an audio frame.
int64_t t = std::min(clock_time, std::max(mVideoFrameEndTime, mAudioEndTime));
if (t > GetMediaTime()) {
UpdatePlaybackPosition(t);
}
}
// Note we have to update playback position before releasing the monitor.
// Otherwise, MediaDecoder::AddOutputStream could kick in when we are outside
// the monitor and get a staled value from GetCurrentTimeUs() which hits the
// assertion in GetClock().
if (currentFrame) {
// Decode one frame and display it.
int64_t delta = currentFrame->mTime - clock_time;
TimeStamp presTime = nowTime + TimeDuration::FromMicroseconds(delta / mPlaybackRate);
NS_ASSERTION(currentFrame->mTime >= mStartTime, "Should have positive frame time");
// Filter out invalid frames by checking the frame time. FrameTime could be
// zero if it's a initial frame.
int64_t frameTime = currentFrame->mTime - mStartTime;
if (frameTime > 0 || (frameTime == 0 && mPlayDuration == 0) ||
IsRealTime()) {
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
// If we have video, we want to increment the clock in steps of the frame
// duration.
RenderVideoFrame(currentFrame, presTime);
}
// If we're no longer playing after dropping and reacquiring the lock,
// playback must've been stopped on the decode thread (by a seek, for
// example). In that case, the current frame is probably out of date.
if (!IsPlaying()) {
ScheduleStateMachine();
return;
}
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
frameStats.NotifyPresentedFrame();
remainingTime = currentFrame->GetEndTime() - clock_time;
currentFrame = nullptr;
}
// The remainingTime is negative (include zero):
// 1. When the clock_time is larger than the latest video frame's endtime.
// All the video frames should be rendered or dropped, nothing left in
// VideoQueue. And since the VideoQueue is empty, we don't need to wake up
// statemachine thread immediately, so set the remainingTime to default value.
// 2. Current frame's endtime is smaller than clock_time but there still exist
// newer frames in queue. Re-calculate the remainingTime.
if (remainingTime <= 0) {
VideoData* nextFrame = VideoQueue().PeekFront();
if (nextFrame) {
remainingTime = nextFrame->mTime - clock_time;
} else {
remainingTime = AUDIO_DURATION_USECS;
}
}
int64_t delay = remainingTime / mPlaybackRate;
if (delay > 0) {
ScheduleStateMachineIn(delay);
} else {
ScheduleStateMachine();
}
}
nsresult
MediaDecoderStateMachine::DropVideoUpToSeekTarget(VideoData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
nsRefPtr<VideoData> video(aSample);
MOZ_ASSERT(video);
DECODER_LOG("DropVideoUpToSeekTarget() frame [%lld, %lld] dup=%d",
video->mTime, video->GetEndTime(), video->mDuplicate);
MOZ_ASSERT(mCurrentSeek.Exists());
const int64_t target = mCurrentSeek.mTarget.mTime;
// Duplicate handling: if we're dropping frames up the seek target, we must
// be wary of Theora duplicate frames. They don't have an image, so if the
// target frame is in a run of duplicates, we won't have an image to draw
// after the seek. So store the last frame encountered while dropping, and
// copy its Image forward onto duplicate frames, so that every frame has
// an Image.
if (video->mDuplicate &&
mFirstVideoFrameAfterSeek &&
!mFirstVideoFrameAfterSeek->mDuplicate) {
nsRefPtr<VideoData> temp =
VideoData::ShallowCopyUpdateTimestampAndDuration(mFirstVideoFrameAfterSeek,
video->mTime,
video->mDuration);
video = temp;
}
// If the frame end time is less than the seek target, we won't want
// to display this frame after the seek, so discard it.
if (target >= video->GetEndTime()) {
DECODER_LOG("DropVideoUpToSeekTarget() pop video frame [%lld, %lld] target=%lld",
video->mTime, video->GetEndTime(), target);
mFirstVideoFrameAfterSeek = video;
} else {
if (target >= video->mTime && video->GetEndTime() >= target) {
// The seek target lies inside this frame's time slice. Adjust the frame's
// start time to match the seek target. We do this by replacing the
// first frame with a shallow copy which has the new timestamp.
nsRefPtr<VideoData> temp = VideoData::ShallowCopyUpdateTimestamp(video, target);
video = temp;
}
mFirstVideoFrameAfterSeek = nullptr;
DECODER_LOG("DropVideoUpToSeekTarget() found video frame [%lld, %lld] containing target=%lld",
video->mTime, video->GetEndTime(), target);
PushFront(video);
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::DropAudioUpToSeekTarget(AudioData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
nsRefPtr<AudioData> audio(aSample);
MOZ_ASSERT(audio &&
mCurrentSeek.Exists() &&
mCurrentSeek.mTarget.mType == SeekTarget::Accurate);
CheckedInt64 sampleDuration =
FramesToUsecs(audio->mFrames, mInfo.mAudio.mRate);
if (!sampleDuration.isValid()) {
return NS_ERROR_FAILURE;
}
if (audio->mTime + sampleDuration.value() <= mCurrentSeek.mTarget.mTime) {
// Our seek target lies after the frames in this AudioData. Don't
// push it onto the audio queue, and keep decoding forwards.
return NS_OK;
}
if (audio->mTime > mCurrentSeek.mTarget.mTime) {
// The seek target doesn't lie in the audio block just after the last
// audio frames we've seen which were before the seek target. This
// could have been the first audio data we've seen after seek, i.e. the
// seek terminated after the seek target in the audio stream. Just
// abort the audio decode-to-target, the state machine will play
// silence to cover the gap. Typically this happens in poorly muxed
// files.
DECODER_WARN("Audio not synced after seek, maybe a poorly muxed file?");
Push(audio);
return NS_OK;
}
// The seek target lies somewhere in this AudioData's frames, strip off
// any frames which lie before the seek target, so we'll begin playback
// exactly at the seek target.
NS_ASSERTION(mCurrentSeek.mTarget.mTime >= audio->mTime,
"Target must at or be after data start.");
NS_ASSERTION(mCurrentSeek.mTarget.mTime < audio->mTime + sampleDuration.value(),
"Data must end after target.");
CheckedInt64 framesToPrune =
UsecsToFrames(mCurrentSeek.mTarget.mTime - audio->mTime, mInfo.mAudio.mRate);
if (!framesToPrune.isValid()) {
return NS_ERROR_FAILURE;
}
if (framesToPrune.value() > audio->mFrames) {
// We've messed up somehow. Don't try to trim frames, the |frames|
// variable below will overflow.
DECODER_WARN("Can't prune more frames that we have!");
return NS_ERROR_FAILURE;
}
uint32_t frames = audio->mFrames - static_cast<uint32_t>(framesToPrune.value());
uint32_t channels = audio->mChannels;
nsAutoArrayPtr<AudioDataValue> audioData(new AudioDataValue[frames * channels]);
memcpy(audioData.get(),
audio->mAudioData.get() + (framesToPrune.value() * channels),
frames * channels * sizeof(AudioDataValue));
CheckedInt64 duration = FramesToUsecs(frames, mInfo.mAudio.mRate);
if (!duration.isValid()) {
return NS_ERROR_FAILURE;
}
nsRefPtr<AudioData> data(new AudioData(audio->mOffset,
mCurrentSeek.mTarget.mTime,
duration.value(),
frames,
audioData.forget(),
channels,
audio->mRate));
PushFront(data);
return NS_OK;
}
void MediaDecoderStateMachine::SetStartTime(int64_t aStartTimeUsecs)
{
AssertCurrentThreadInMonitor();
DECODER_LOG("SetStartTime(%lld)", aStartTimeUsecs);
mStartTime = 0;
if (aStartTimeUsecs != 0) {
mStartTime = aStartTimeUsecs;
if (mGotDurationFromMetaData && GetEndTime() != INT64_MAX) {
NS_ASSERTION(mEndTime != -1,
"We should have mEndTime as supplied duration here");
// We were specified a duration from a Content-Duration HTTP header.
// Adjust mEndTime so that mEndTime-mStartTime matches the specified
// duration.
mEndTime = mStartTime + mEndTime;
}
}
// Pass along this immutable value to the reader so that it can make
// calculations independently of the state machine.
mReader->SetStartTime(mStartTime);
// Set the audio start time to be start of media. If this lies before the
// first actual audio frame we have, we'll inject silence during playback
// to ensure the audio starts at the correct time.
mAudioStartTime = mStartTime;
DECODER_LOG("Set media start time to %lld", mStartTime);
RecomputeDuration();
}
void MediaDecoderStateMachine::UpdateNextFrameStatus()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
MediaDecoderOwner::NextFrameStatus status;
const char* statusString;
if (mState <= DECODER_STATE_DECODING_FIRSTFRAME) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
statusString = "NEXT_FRAME_UNAVAILABLE";
} else if (IsBuffering()) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING;
statusString = "NEXT_FRAME_UNAVAILABLE_BUFFERING";
} else if (IsSeeking()) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING;
statusString = "NEXT_FRAME_UNAVAILABLE_SEEKING";
} else if (HaveNextFrameData()) {
status = MediaDecoderOwner::NEXT_FRAME_AVAILABLE;
statusString = "NEXT_FRAME_AVAILABLE";
} else {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
statusString = "NEXT_FRAME_UNAVAILABLE";
}
if (status != mNextFrameStatus) {
DECODER_LOG("Changed mNextFrameStatus to %s", statusString);
}
mNextFrameStatus = status;
}
bool MediaDecoderStateMachine::JustExitedQuickBuffering()
{
MOZ_ASSERT(OnTaskQueue());
return !mDecodeStartTime.IsNull() &&
mQuickBuffering &&
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromMicroseconds(QUICK_BUFFER_THRESHOLD_USECS);
}
void MediaDecoderStateMachine::StartBuffering()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState != DECODER_STATE_DECODING) {
// We only move into BUFFERING state if we're actually decoding.
// If we're currently doing something else, we don't need to buffer,
// and more importantly, we shouldn't overwrite mState to interrupt
// the current operation, as that could leave us in an inconsistent
// state!
return;
}
if (IsPlaying()) {
StopPlayback();
}
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
// Go into quick buffering mode provided we've not just left buffering using
// a "quick exit". This stops us flip-flopping between playing and buffering
// when the download speed is similar to the decode speed.
mQuickBuffering =
!JustExitedQuickBuffering() &&
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
mBufferingStart = TimeStamp::Now();
SetState(DECODER_STATE_BUFFERING);
DECODER_LOG("Changed state from DECODING to BUFFERING, decoded for %.3lfs",
decodeDuration.ToSeconds());
#ifdef PR_LOGGING
MediaDecoder::Statistics stats = mDecoder->GetStatistics();
DECODER_LOG("Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)");
#endif
}
void MediaDecoderStateMachine::SetPlayStartTime(const TimeStamp& aTimeStamp)
{
AssertCurrentThreadInMonitor();
mPlayStartTime = aTimeStamp;
if (!mAudioSink) {
return;
}
if (!mPlayStartTime.IsNull()) {
mAudioSink->StartPlayback();
} else {
mAudioSink->StopPlayback();
}
}
void MediaDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
DispatchAudioDecodeTaskIfNeeded();
DispatchVideoDecodeTaskIfNeeded();
}
void
MediaDecoderStateMachine::ScheduleStateMachine() {
AssertCurrentThreadInMonitor();
if (mState == DECODER_STATE_SHUTDOWN) {
NS_WARNING("Refusing to schedule shutdown state machine");
return;
}
if (mDispatchedStateMachine) {
return;
}
mDispatchedStateMachine = true;
nsCOMPtr<nsIRunnable> task =
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::RunStateMachine);
TaskQueue()->Dispatch(task.forget());
}
void
MediaDecoderStateMachine::ScheduleStateMachineIn(int64_t aMicroseconds)
{
AssertCurrentThreadInMonitor();
MOZ_ASSERT(OnTaskQueue()); // mDelayedScheduler.Ensure() may Disconnect()
// the promise, which must happen on the state
// machine task queue.
MOZ_ASSERT(aMicroseconds > 0);
if (mState == DECODER_STATE_SHUTDOWN) {
NS_WARNING("Refusing to schedule shutdown state machine");
return;
}
if (mDispatchedStateMachine) {
return;
}
// Real-time weirdness.
if (IsRealTime()) {
aMicroseconds = std::min(aMicroseconds, int64_t(40000));
}
TimeStamp now = TimeStamp::Now();
TimeStamp target = now + TimeDuration::FromMicroseconds(aMicroseconds);
SAMPLE_LOG("Scheduling state machine for %lf ms from now", (target - now).ToMilliseconds());
mDelayedScheduler.Ensure(target);
}
bool MediaDecoderStateMachine::OnDecodeTaskQueue() const
{
return !DecodeTaskQueue() || DecodeTaskQueue()->IsCurrentThreadIn();
}
bool MediaDecoderStateMachine::OnTaskQueue() const
{
return TaskQueue()->IsCurrentThreadIn();
}
bool MediaDecoderStateMachine::IsStateMachineScheduled() const
{
return mDispatchedStateMachine || mDelayedScheduler.IsScheduled();
}
void
MediaDecoderStateMachine::LogicalPlaybackRateChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mLogicalPlaybackRate == 0) {
// This case is handled in MediaDecoder by pausing playback.
return;
}
// AudioStream will handle playback rate change when we have audio.
// Do nothing while we are not playing. Change in playback rate will
// take effect next time we start playing again.
if (!HasAudio() && IsPlaying()) {
// Remember how much time we've spent in playing the media
// for playback rate will change from now on.
mPlayDuration = GetVideoStreamPosition() - mStartTime;
SetPlayStartTime(TimeStamp::Now());
}
mPlaybackRate = mLogicalPlaybackRate;
if (mAudioSink) {
mAudioSink->SetPlaybackRate(mPlaybackRate);
}
}
void MediaDecoderStateMachine::PreservesPitchChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mAudioSink) {
mAudioSink->SetPreservesPitch(mPreservesPitch);
}
}
bool MediaDecoderStateMachine::IsShutdown()
{
AssertCurrentThreadInMonitor();
return mState == DECODER_STATE_ERROR ||
mState == DECODER_STATE_SHUTDOWN;
}
void MediaDecoderStateMachine::QueueMetadata(int64_t aPublishTime,
nsAutoPtr<MediaInfo> aInfo,
nsAutoPtr<MetadataTags> aTags)
{
MOZ_ASSERT(OnDecodeTaskQueue());
AssertCurrentThreadInMonitor();
TimedMetadata* metadata = new TimedMetadata;
metadata->mPublishTime = aPublishTime;
metadata->mInfo = aInfo.forget();
metadata->mTags = aTags.forget();
mMetadataManager.QueueMetadata(metadata);
}
void MediaDecoderStateMachine::OnAudioEndTimeUpdate(int64_t aAudioEndTime)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
MOZ_ASSERT(aAudioEndTime >= mAudioEndTime);
mAudioEndTime = aAudioEndTime;
}
void MediaDecoderStateMachine::OnPlaybackOffsetUpdate(int64_t aPlaybackOffset)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mDecoder->UpdatePlaybackOffset(aPlaybackOffset);
}
void MediaDecoderStateMachine::OnAudioSinkComplete()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mAudioCaptured) {
return;
}
ResyncAudioClock();
mAudioCompleted = true;
// Kick the decode thread; it may be sleeping waiting for this to finish.
mDecoder->GetReentrantMonitor().NotifyAll();
}
void MediaDecoderStateMachine::OnAudioSinkError()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// AudioSink not used with captured streams, so ignore errors in this case.
if (mAudioCaptured) {
return;
}
ResyncAudioClock();
mAudioCompleted = true;
// Make the best effort to continue playback when there is video.
if (HasVideo()) {
return;
}
// Otherwise notify media decoder/element about this error for it makes
// no sense to play an audio-only file without sound output.
DecodeError();
}
void MediaDecoderStateMachine::DispatchAudioCaptured()
{
nsRefPtr<MediaDecoderStateMachine> self = this;
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction([self] () -> void
{
MOZ_ASSERT(self->OnTaskQueue());
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
if (!self->mAudioCaptured) {
self->mAudioCaptured = true;
self->ScheduleStateMachine();
}
});
TaskQueue()->Dispatch(r.forget());
}
void MediaDecoderStateMachine::UpdateStreamBlockingForPlayState()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
auto stream = mDecoder->GetDecodedStream();
if (!stream) {
return;
}
bool blocking = mPlayState != MediaDecoder::PLAY_STATE_PLAYING ||
mLogicallySeeking;
if (blocking != stream->mHaveBlockedForPlayState) {
stream->mHaveBlockedForPlayState = blocking;
UpdateStreamBlocking(stream->mStream, blocking);
}
}
void MediaDecoderStateMachine::UpdateStreamBlockingForStateMachinePlaying()
{
AssertCurrentThreadInMonitor();
auto stream = mDecoder->GetDecodedStream();
if (!stream) {
return;
}
bool blocking = !IsPlaying();
if (blocking != stream->mHaveBlockedForStateMachineNotPlaying) {
stream->mHaveBlockedForStateMachineNotPlaying = blocking;
UpdateStreamBlocking(stream->mStream, blocking);
}
}
} // namespace mozilla
// avoid redefined macro in unified build
#undef DECODER_LOG
#undef VERBOSE_LOG
#undef DECODER_WARN
#undef DECODER_WARN_HELPER
#undef NS_DispatchToMainThread
|