summaryrefslogtreecommitdiff
path: root/gfx/2d/image_operations.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/2d/image_operations.cpp')
-rw-r--r--gfx/2d/image_operations.cpp252
1 files changed, 47 insertions, 205 deletions
diff --git a/gfx/2d/image_operations.cpp b/gfx/2d/image_operations.cpp
index 532be2d98..59861bb9b 100644
--- a/gfx/2d/image_operations.cpp
+++ b/gfx/2d/image_operations.cpp
@@ -35,7 +35,6 @@
#include "image_operations.h"
-#include "nsAlgorithm.h"
#include "base/stack_container.h"
#include "convolver.h"
#include "skia/SkColorPriv.h"
@@ -45,184 +44,7 @@
namespace skia {
-namespace {
-
-// Returns the ceiling/floor as an integer.
-inline int CeilInt(float val) {
- return static_cast<int>(ceil(val));
-}
-inline int FloorInt(float val) {
- return static_cast<int>(floor(val));
-}
-
-// Filter function computation -------------------------------------------------
-
-// Evaluates the box filter, which goes from -0.5 to +0.5.
-float EvalBox(float x) {
- return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f;
-}
-
-// Evaluates the Lanczos filter of the given filter size window for the given
-// position.
-//
-// |filter_size| is the width of the filter (the "window"), outside of which
-// the value of the function is 0. Inside of the window, the value is the
-// normalized sinc function:
-// lanczos(x) = sinc(x) * sinc(x / filter_size);
-// where
-// sinc(x) = sin(pi*x) / (pi*x);
-float EvalLanczos(int filter_size, float x) {
- if (x <= -filter_size || x >= filter_size)
- return 0.0f; // Outside of the window.
- if (x > -std::numeric_limits<float>::epsilon() &&
- x < std::numeric_limits<float>::epsilon())
- return 1.0f; // Special case the discontinuity at the origin.
- float xpi = x * static_cast<float>(M_PI);
- return (sin(xpi) / xpi) * // sinc(x)
- sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size)
-}
-
-// Evaluates the Hamming filter of the given filter size window for the given
-// position.
-//
-// The filter covers [-filter_size, +filter_size]. Outside of this window
-// the value of the function is 0. Inside of the window, the value is sinus
-// cardinal multiplied by a recentered Hamming function. The traditional
-// Hamming formula for a window of size N and n ranging in [0, N-1] is:
-// hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1)))
-// In our case we want the function centered for x == 0 and at its minimum
-// on both ends of the window (x == +/- filter_size), hence the adjusted
-// formula:
-// hamming(x) = (0.54 -
-// 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size)))
-// = 0.54 - 0.46 * cos(pi * x / filter_size - pi)
-// = 0.54 + 0.46 * cos(pi * x / filter_size)
-float EvalHamming(int filter_size, float x) {
- if (x <= -filter_size || x >= filter_size)
- return 0.0f; // Outside of the window.
- if (x > -std::numeric_limits<float>::epsilon() &&
- x < std::numeric_limits<float>::epsilon())
- return 1.0f; // Special case the sinc discontinuity at the origin.
- const float xpi = x * static_cast<float>(M_PI);
-
- return ((sin(xpi) / xpi) * // sinc(x)
- (0.54f + 0.46f * cos(xpi / filter_size))); // hamming(x)
-}
-
-// ResizeFilter ----------------------------------------------------------------
-
-// Encapsulates computation and storage of the filters required for one complete
-// resize operation.
-class ResizeFilter {
- public:
- ResizeFilter(ImageOperations::ResizeMethod method,
- int src_full_width, int src_full_height,
- int dest_width, int dest_height,
- const SkIRect& dest_subset);
-
- // Returns the filled filter values.
- const ConvolutionFilter1D& x_filter() { return x_filter_; }
- const ConvolutionFilter1D& y_filter() { return y_filter_; }
-
- private:
- // Returns the number of pixels that the filer spans, in filter space (the
- // destination image).
- float GetFilterSupport(float scale) {
- switch (method_) {
- case ImageOperations::RESIZE_BOX:
- // The box filter just scales with the image scaling.
- return 0.5f; // Only want one side of the filter = /2.
- case ImageOperations::RESIZE_HAMMING1:
- // The Hamming filter takes as much space in the source image in
- // each direction as the size of the window = 1 for Hamming1.
- return 1.0f;
- case ImageOperations::RESIZE_LANCZOS2:
- // The Lanczos filter takes as much space in the source image in
- // each direction as the size of the window = 2 for Lanczos2.
- return 2.0f;
- case ImageOperations::RESIZE_LANCZOS3:
- // The Lanczos filter takes as much space in the source image in
- // each direction as the size of the window = 3 for Lanczos3.
- return 3.0f;
- default:
- return 1.0f;
- }
- }
-
- // Computes one set of filters either horizontally or vertically. The caller
- // will specify the "min" and "max" rather than the bottom/top and
- // right/bottom so that the same code can be re-used in each dimension.
- //
- // |src_depend_lo| and |src_depend_size| gives the range for the source
- // depend rectangle (horizontally or vertically at the caller's discretion
- // -- see above for what this means).
- //
- // Likewise, the range of destination values to compute and the scale factor
- // for the transform is also specified.
- void ComputeFilters(int src_size,
- int dest_subset_lo, int dest_subset_size,
- float scale, float src_support,
- ConvolutionFilter1D* output);
-
- // Computes the filter value given the coordinate in filter space.
- inline float ComputeFilter(float pos) {
- switch (method_) {
- case ImageOperations::RESIZE_BOX:
- return EvalBox(pos);
- case ImageOperations::RESIZE_HAMMING1:
- return EvalHamming(1, pos);
- case ImageOperations::RESIZE_LANCZOS2:
- return EvalLanczos(2, pos);
- case ImageOperations::RESIZE_LANCZOS3:
- return EvalLanczos(3, pos);
- default:
- return 0;
- }
- }
-
- ImageOperations::ResizeMethod method_;
-
- // Size of the filter support on one side only in the destination space.
- // See GetFilterSupport.
- float x_filter_support_;
- float y_filter_support_;
-
- // Subset of scaled destination bitmap to compute.
- SkIRect out_bounds_;
-
- ConvolutionFilter1D x_filter_;
- ConvolutionFilter1D y_filter_;
-
- DISALLOW_COPY_AND_ASSIGN(ResizeFilter);
-};
-
-ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
- int src_full_width, int src_full_height,
- int dest_width, int dest_height,
- const SkIRect& dest_subset)
- : method_(method),
- out_bounds_(dest_subset) {
- // method_ will only ever refer to an "algorithm method".
- SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
- (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
-
- float scale_x = static_cast<float>(dest_width) /
- static_cast<float>(src_full_width);
- float scale_y = static_cast<float>(dest_height) /
- static_cast<float>(src_full_height);
-
- x_filter_support_ = GetFilterSupport(scale_x);
- y_filter_support_ = GetFilterSupport(scale_y);
-
- // Support of the filter in source space.
- float src_x_support = x_filter_support_ / scale_x;
- float src_y_support = y_filter_support_ / scale_y;
-
- ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(),
- scale_x, src_x_support, &x_filter_);
- ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(),
- scale_y, src_y_support, &y_filter_);
-}
+namespace resize {
// TODO(egouriou): Take advantage of periods in the convolution.
// Practical resizing filters are periodic outside of the border area.
@@ -235,10 +57,16 @@ ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
// Small periods reduce computational load and improve cache usage if
// the coefficients can be shared. For periods of 1 we can consider
// loading the factors only once outside the borders.
-void ResizeFilter::ComputeFilters(int src_size,
- int dest_subset_lo, int dest_subset_size,
- float scale, float src_support,
- ConvolutionFilter1D* output) {
+void ComputeFilters(ImageOperations::ResizeMethod method,
+ int src_size, int dst_size,
+ int dest_subset_lo, int dest_subset_size,
+ ConvolutionFilter1D* output) {
+ // method_ will only ever refer to an "algorithm method".
+ SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
+ (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
+
+ float scale = static_cast<float>(dst_size) / static_cast<float>(src_size);
+
int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi)
// When we're doing a magnification, the scale will be larger than one. This
@@ -248,6 +76,8 @@ void ResizeFilter::ComputeFilters(int src_size,
// some computations.
float clamped_scale = std::min(1.0f, scale);
+ float src_support = GetFilterSupport(method, clamped_scale) / clamped_scale;
+
// Speed up the divisions below by turning them into multiplies.
float inv_scale = 1.0f / scale;
@@ -294,7 +124,7 @@ void ResizeFilter::ComputeFilters(int src_size,
float dest_filter_dist = src_filter_dist * clamped_scale;
// Compute the filter value at that location.
- float filter_value = ComputeFilter(dest_filter_dist);
+ float filter_value = ComputeFilter(method, dest_filter_dist);
filter_values->push_back(filter_value);
filter_sum += filter_value;
@@ -325,6 +155,8 @@ void ResizeFilter::ComputeFilters(int src_size,
output->PaddingForSIMD(8);
}
+}
+
ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
ImageOperations::ResizeMethod method) {
// Convert any "Quality Method" into an "Algorithm Method"
@@ -336,22 +168,24 @@ ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
// GPU-acceleration in the cases where it is possible. So now we just
// pick the appropriate software method for each resize quality.
switch (method) {
+ // Users of RESIZE_GOOD are willing to trade a lot of quality to
+ // get speed, allowing the use of linear resampling to get hardware
+ // acceleration (SRB). Hence any of our "good" software filters
+ // will be acceptable, and we use the fastest one, Hamming-1.
case ImageOperations::RESIZE_GOOD:
- // In visual tests we see that Hamming-1 is not as good as
+ // Users of RESIZE_BETTER are willing to trade some quality in order
+ // to improve performance, but are guaranteed not to devolve to a linear
+ // resampling. In visual tests we see that Hamming-1 is not as good as
// Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
// about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
- // an unacceptable trade-off between quality and speed due to the limited
- // pixel space it operates in before switching to HQ scaling becomes
- // necessary to retain fidelity of images.
+ // an acceptable trade-off between quality and speed.
case ImageOperations::RESIZE_BETTER:
- return ImageOperations::RESIZE_LANCZOS2;
+ return ImageOperations::RESIZE_HAMMING1;
default:
return ImageOperations::RESIZE_LANCZOS3;
}
}
-} // namespace
-
// Resize ----------------------------------------------------------------------
// static
@@ -405,9 +239,13 @@ SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source,
// Render into subpixels.
SkBitmap result;
- result.setConfig(SkBitmap::kARGB_8888_Config, dest_subset.width(),
- dest_subset.height());
- result.allocPixels();
+ SkImageInfo info = SkImageInfo::Make(dest_subset.width(),
+ dest_subset.height(),
+ kBGRA_8888_SkColorType,
+ kPremul_SkAlphaType);
+
+
+ result.allocPixels(info);
if (!result.readyToDraw())
return img;
@@ -467,7 +305,7 @@ SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source,
src_row += h * row_words;
dst_row += result.rowBytes() / 4;
}
- result.setIsOpaque(img.isOpaque());
+ result.setAlphaType(img.alphaType());
return result;
#else
return SkBitmap();
@@ -501,8 +339,11 @@ SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
if (!source.readyToDraw())
return SkBitmap();
- ResizeFilter filter(method, source.width(), source.height(),
- dest_width, dest_height, dest_subset);
+ ConvolutionFilter1D x_filter;
+ ConvolutionFilter1D y_filter;
+
+ resize::ComputeFilters(method, source.width(), dest_width, dest_subset.fLeft, dest_subset.width(), &x_filter);
+ resize::ComputeFilters(method, source.height(), dest_height, dest_subset.fTop, dest_subset.height(), &y_filter);
// Get a source bitmap encompassing this touched area. We construct the
// offsets and row strides such that it looks like a new bitmap, while
@@ -512,26 +353,27 @@ SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
// Convolve into the result.
SkBitmap result;
- result.setConfig(SkBitmap::kARGB_8888_Config,
- dest_subset.width(), dest_subset.height());
+ SkImageInfo info = SkImageInfo::Make(dest_subset.width(),
+ dest_subset.height(),
+ kBGRA_8888_SkColorType,
+ kPremul_SkAlphaType);
if (dest_pixels) {
- result.setPixels(dest_pixels);
+ result.installPixels(info, dest_pixels, info.minRowBytes());
} else {
- result.allocPixels();
+ result.allocPixels(info);
}
if (!result.readyToDraw())
return SkBitmap();
BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()),
- !source.isOpaque(), filter.x_filter(), filter.y_filter(),
+ !source.isOpaque(), x_filter, y_filter,
static_cast<int>(result.rowBytes()),
- static_cast<unsigned char*>(result.getPixels()),
- /* sse = */ false);
+ static_cast<unsigned char*>(result.getPixels()));
// Preserve the "opaque" flag for use as an optimization later.
- result.setIsOpaque(source.isOpaque());
+ result.setAlphaType(source.alphaType());
return result;
}