summaryrefslogtreecommitdiff
path: root/gfx/2d/PathHelpers.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/2d/PathHelpers.cpp')
-rw-r--r--gfx/2d/PathHelpers.cpp243
1 files changed, 243 insertions, 0 deletions
diff --git a/gfx/2d/PathHelpers.cpp b/gfx/2d/PathHelpers.cpp
new file mode 100644
index 000000000..b9c0a3c1f
--- /dev/null
+++ b/gfx/2d/PathHelpers.cpp
@@ -0,0 +1,243 @@
+/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "PathHelpers.h"
+
+namespace mozilla {
+namespace gfx {
+
+UserDataKey sDisablePixelSnapping;
+
+void
+AppendRectToPath(PathBuilder* aPathBuilder,
+ const Rect& aRect,
+ bool aDrawClockwise)
+{
+ if (aDrawClockwise) {
+ aPathBuilder->MoveTo(aRect.TopLeft());
+ aPathBuilder->LineTo(aRect.TopRight());
+ aPathBuilder->LineTo(aRect.BottomRight());
+ aPathBuilder->LineTo(aRect.BottomLeft());
+ } else {
+ aPathBuilder->MoveTo(aRect.TopRight());
+ aPathBuilder->LineTo(aRect.TopLeft());
+ aPathBuilder->LineTo(aRect.BottomLeft());
+ aPathBuilder->LineTo(aRect.BottomRight());
+ }
+ aPathBuilder->Close();
+}
+
+void
+AppendRoundedRectToPath(PathBuilder* aPathBuilder,
+ const Rect& aRect,
+ const RectCornerRadii& aRadii,
+ bool aDrawClockwise)
+{
+ // For CW drawing, this looks like:
+ //
+ // ...******0** 1 C
+ // ****
+ // *** 2
+ // **
+ // *
+ // *
+ // 3
+ // *
+ // *
+ //
+ // Where 0, 1, 2, 3 are the control points of the Bezier curve for
+ // the corner, and C is the actual corner point.
+ //
+ // At the start of the loop, the current point is assumed to be
+ // the point adjacent to the top left corner on the top
+ // horizontal. Note that corner indices start at the top left and
+ // continue clockwise, whereas in our loop i = 0 refers to the top
+ // right corner.
+ //
+ // When going CCW, the control points are swapped, and the first
+ // corner that's drawn is the top left (along with the top segment).
+ //
+ // There is considerable latitude in how one chooses the four
+ // control points for a Bezier curve approximation to an ellipse.
+ // For the overall path to be continuous and show no corner at the
+ // endpoints of the arc, points 0 and 3 must be at the ends of the
+ // straight segments of the rectangle; points 0, 1, and C must be
+ // collinear; and points 3, 2, and C must also be collinear. This
+ // leaves only two free parameters: the ratio of the line segments
+ // 01 and 0C, and the ratio of the line segments 32 and 3C. See
+ // the following papers for extensive discussion of how to choose
+ // these ratios:
+ //
+ // Dokken, Tor, et al. "Good approximation of circles by
+ // curvature-continuous Bezier curves." Computer-Aided
+ // Geometric Design 7(1990) 33--41.
+ // Goldapp, Michael. "Approximation of circular arcs by cubic
+ // polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
+ // Maisonobe, Luc. "Drawing an elliptical arc using polylines,
+ // quadratic, or cubic Bezier curves."
+ // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
+ //
+ // We follow the approach in section 2 of Goldapp (least-error,
+ // Hermite-type approximation) and make both ratios equal to
+ //
+ // 2 2 + n - sqrt(2n + 28)
+ // alpha = - * ---------------------
+ // 3 n - 4
+ //
+ // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
+ //
+ // This is the result of Goldapp's equation (10b) when the angle
+ // swept out by the arc is pi/2, and the parameter "a-bar" is the
+ // expression given immediately below equation (21).
+ //
+ // Using this value, the maximum radial error for a circle, as a
+ // fraction of the radius, is on the order of 0.2 x 10^-3.
+ // Neither Dokken nor Goldapp discusses error for a general
+ // ellipse; Maisonobe does, but his choice of control points
+ // follows different constraints, and Goldapp's expression for
+ // 'alpha' gives much smaller radial error, even for very flat
+ // ellipses, than Maisonobe's equivalent.
+ //
+ // For the various corners and for each axis, the sign of this
+ // constant changes, or it might be 0 -- it's multiplied by the
+ // appropriate multiplier from the list before using.
+
+ const Float alpha = Float(0.55191497064665766025);
+
+ typedef struct { Float a, b; } twoFloats;
+
+ twoFloats cwCornerMults[4] = { { -1, 0 }, // cc == clockwise
+ { 0, -1 },
+ { +1, 0 },
+ { 0, +1 } };
+ twoFloats ccwCornerMults[4] = { { +1, 0 }, // ccw == counter-clockwise
+ { 0, -1 },
+ { -1, 0 },
+ { 0, +1 } };
+
+ twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
+
+ Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
+ aRect.BottomRight(), aRect.BottomLeft() };
+
+ Point pc, p0, p1, p2, p3;
+
+ if (aDrawClockwise) {
+ aPathBuilder->MoveTo(Point(aRect.X() + aRadii[RectCorner::TopLeft].width,
+ aRect.Y()));
+ } else {
+ aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aRadii[RectCorner::TopRight].width,
+ aRect.Y()));
+ }
+
+ for (int i = 0; i < 4; ++i) {
+ // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
+ int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);
+
+ // i+2 and i+3 respectively. These are used to index into the corner
+ // multiplier table, and were deduced by calculating out the long form
+ // of each corner and finding a pattern in the signs and values.
+ int i2 = (i+2) % 4;
+ int i3 = (i+3) % 4;
+
+ pc = cornerCoords[c];
+
+ if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) {
+ p0.x = pc.x + cornerMults[i].a * aRadii[c].width;
+ p0.y = pc.y + cornerMults[i].b * aRadii[c].height;
+
+ p3.x = pc.x + cornerMults[i3].a * aRadii[c].width;
+ p3.y = pc.y + cornerMults[i3].b * aRadii[c].height;
+
+ p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width;
+ p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height;
+
+ p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width;
+ p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height;
+
+ aPathBuilder->LineTo(p0);
+ aPathBuilder->BezierTo(p1, p2, p3);
+ } else {
+ aPathBuilder->LineTo(pc);
+ }
+ }
+
+ aPathBuilder->Close();
+}
+
+void
+AppendEllipseToPath(PathBuilder* aPathBuilder,
+ const Point& aCenter,
+ const Size& aDimensions)
+{
+ Size halfDim = aDimensions / 2.f;
+ Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
+ RectCornerRadii radii(halfDim.width, halfDim.height);
+
+ AppendRoundedRectToPath(aPathBuilder, rect, radii);
+}
+
+bool
+SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
+ const DrawTarget& aDrawTarget)
+{
+ Matrix mat = aDrawTarget.GetTransform();
+ if (mat.HasNonTranslation()) {
+ return false;
+ }
+ if (aP1.x != aP2.x && aP1.y != aP2.y) {
+ return false; // not a horizontal or vertical line
+ }
+ Point p1 = aP1 + mat.GetTranslation(); // into device space
+ Point p2 = aP2 + mat.GetTranslation();
+ p1.Round();
+ p2.Round();
+ p1 -= mat.GetTranslation(); // back into user space
+ p2 -= mat.GetTranslation();
+ if (aP1.x == aP2.x) {
+ // snap vertical line, adding 0.5 to align it to be mid-pixel:
+ aP1 = p1 + Point(0.5, 0);
+ aP2 = p2 + Point(0.5, 0);
+ } else {
+ // snap horizontal line, adding 0.5 to align it to be mid-pixel:
+ aP1 = p1 + Point(0, 0.5);
+ aP2 = p2 + Point(0, 0.5);
+ }
+ return true;
+}
+
+void
+StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
+ const ColorPattern& aColor,
+ const StrokeOptions& aStrokeOptions)
+{
+ if (aRect.IsEmpty()) {
+ return;
+ }
+
+ Point p1 = aRect.TopLeft();
+ Point p2 = aRect.BottomLeft();
+ SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
+ aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
+
+ p1 = aRect.BottomLeft();
+ p2 = aRect.BottomRight();
+ SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
+ aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
+
+ p1 = aRect.TopLeft();
+ p2 = aRect.TopRight();
+ SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
+ aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
+
+ p1 = aRect.TopRight();
+ p2 = aRect.BottomRight();
+ SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
+ aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
+}
+
+} // namespace gfx
+} // namespace mozilla
+