summaryrefslogtreecommitdiff
path: root/third_party/aom/test/av1_txfm_test.cc
blob: d5b0ce3255fae999797487d50ba5d618cc6c31ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdio.h>
#include "test/av1_txfm_test.h"

namespace libaom_test {

int get_txfm1d_size(TX_SIZE tx_size) { return tx_size_wide[tx_size]; }

void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) {
  switch (txfm2d_type) {
    case DCT_DCT:
      *type0 = TYPE_DCT;
      *type1 = TYPE_DCT;
      break;
    case ADST_DCT:
      *type0 = TYPE_ADST;
      *type1 = TYPE_DCT;
      break;
    case DCT_ADST:
      *type0 = TYPE_DCT;
      *type1 = TYPE_ADST;
      break;
    case ADST_ADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
    case FLIPADST_DCT:
      *type0 = TYPE_ADST;
      *type1 = TYPE_DCT;
      break;
    case DCT_FLIPADST:
      *type0 = TYPE_DCT;
      *type1 = TYPE_ADST;
      break;
    case FLIPADST_FLIPADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
    case ADST_FLIPADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
    case FLIPADST_ADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
    case IDTX:
      *type0 = TYPE_IDTX;
      *type1 = TYPE_IDTX;
      break;
    case H_DCT:
      *type0 = TYPE_IDTX;
      *type1 = TYPE_DCT;
      break;
    case V_DCT:
      *type0 = TYPE_DCT;
      *type1 = TYPE_IDTX;
      break;
    case H_ADST:
      *type0 = TYPE_IDTX;
      *type1 = TYPE_ADST;
      break;
    case V_ADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_IDTX;
      break;
    case H_FLIPADST:
      *type0 = TYPE_IDTX;
      *type1 = TYPE_ADST;
      break;
    case V_FLIPADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_IDTX;
      break;
    default:
      *type0 = TYPE_DCT;
      *type1 = TYPE_DCT;
      assert(0);
      break;
  }
}

double Sqrt2 = pow(2, 0.5);
double invSqrt2 = 1 / pow(2, 0.5);

double dct_matrix(double n, double k, int size) {
  return cos(M_PI * (2 * n + 1) * k / (2 * size));
}

void reference_dct_1d(const double *in, double *out, int size) {
  for (int k = 0; k < size; ++k) {
    out[k] = 0;
    for (int n = 0; n < size; ++n) {
      out[k] += in[n] * dct_matrix(n, k, size);
    }
    if (k == 0) out[k] = out[k] * invSqrt2;
  }
}

void reference_idct_1d(const double *in, double *out, int size) {
  for (int k = 0; k < size; ++k) {
    out[k] = 0;
    for (int n = 0; n < size; ++n) {
      if (n == 0)
        out[k] += invSqrt2 * in[n] * dct_matrix(k, n, size);
      else
        out[k] += in[n] * dct_matrix(k, n, size);
    }
  }
}

// TODO(any): Copied from the old 'fadst4' (same as the new 'av1_fadst4_new'
// function). Should be replaced by a proper reference function that takes
// 'double' input & output.
static void fadst4_new(const tran_low_t *input, tran_low_t *output) {
  tran_high_t x0, x1, x2, x3;
  tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;

  x0 = input[0];
  x1 = input[1];
  x2 = input[2];
  x3 = input[3];

  if (!(x0 | x1 | x2 | x3)) {
    output[0] = output[1] = output[2] = output[3] = 0;
    return;
  }

  s0 = sinpi_1_9 * x0;
  s1 = sinpi_4_9 * x0;
  s2 = sinpi_2_9 * x1;
  s3 = sinpi_1_9 * x1;
  s4 = sinpi_3_9 * x2;
  s5 = sinpi_4_9 * x3;
  s6 = sinpi_2_9 * x3;
  s7 = x0 + x1 - x3;

  x0 = s0 + s2 + s5;
  x1 = sinpi_3_9 * s7;
  x2 = s1 - s3 + s6;
  x3 = s4;

  s0 = x0 + x3;
  s1 = x1;
  s2 = x2 - x3;
  s3 = x2 - x0 + x3;

  // 1-D transform scaling factor is sqrt(2).
  output[0] = (tran_low_t)fdct_round_shift(s0);
  output[1] = (tran_low_t)fdct_round_shift(s1);
  output[2] = (tran_low_t)fdct_round_shift(s2);
  output[3] = (tran_low_t)fdct_round_shift(s3);
}

void reference_adst_1d(const double *in, double *out, int size) {
  if (size == 4) {  // Special case.
    tran_low_t int_input[4];
    for (int i = 0; i < 4; ++i) {
      int_input[i] = static_cast<tran_low_t>(round(in[i]));
    }
    tran_low_t int_output[4];
    fadst4_new(int_input, int_output);
    for (int i = 0; i < 4; ++i) {
      out[i] = int_output[i];
    }
    return;
  }

  for (int k = 0; k < size; ++k) {
    out[k] = 0;
    for (int n = 0; n < size; ++n) {
      out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
    }
  }
}

void reference_idtx_1d(const double *in, double *out, int size) {
  double scale = 0;
  if (size == 4)
    scale = Sqrt2;
  else if (size == 8)
    scale = 2;
  else if (size == 16)
    scale = 2 * Sqrt2;
  else if (size == 32)
    scale = 4;
  else if (size == 64)
    scale = 4 * Sqrt2;
  for (int k = 0; k < size; ++k) {
    out[k] = in[k] * scale;
  }
}

void reference_hybrid_1d(double *in, double *out, int size, int type) {
  if (type == TYPE_DCT)
    reference_dct_1d(in, out, size);
  else if (type == TYPE_ADST)
    reference_adst_1d(in, out, size);
  else
    reference_idtx_1d(in, out, size);
}

double get_amplification_factor(TX_TYPE tx_type, TX_SIZE tx_size) {
  TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
  av1_get_fwd_txfm_cfg(tx_type, tx_size, &fwd_txfm_flip_cfg);
  const int tx_width = tx_size_wide[fwd_txfm_flip_cfg.tx_size];
  const int tx_height = tx_size_high[fwd_txfm_flip_cfg.tx_size];
  const int8_t *shift = fwd_txfm_flip_cfg.shift;
  const int amplify_bit = shift[0] + shift[1] + shift[2];
  double amplify_factor =
      amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit));

  // For rectangular transforms, we need to multiply by an extra factor.
  const int rect_type = get_rect_tx_log_ratio(tx_width, tx_height);
  if (abs(rect_type) == 1) {
    amplify_factor *= pow(2, 0.5);
  }
  return amplify_factor;
}

void reference_hybrid_2d(double *in, double *out, TX_TYPE tx_type,
                         TX_SIZE tx_size) {
  // Get transform type and size of each dimension.
  TYPE_TXFM type0;
  TYPE_TXFM type1;
  get_txfm1d_type(tx_type, &type0, &type1);
  const int tx_width = tx_size_wide[tx_size];
  const int tx_height = tx_size_high[tx_size];

  double *const temp_in = new double[AOMMAX(tx_width, tx_height)];
  double *const temp_out = new double[AOMMAX(tx_width, tx_height)];
  double *const out_interm = new double[tx_width * tx_height];
  const int stride = tx_width;

  // Transform columns.
  for (int c = 0; c < tx_width; ++c) {
    for (int r = 0; r < tx_height; ++r) {
      temp_in[r] = in[r * stride + c];
    }
    reference_hybrid_1d(temp_in, temp_out, tx_height, type0);
    for (int r = 0; r < tx_height; ++r) {
      out_interm[r * stride + c] = temp_out[r];
    }
  }

  // Transform rows.
  for (int r = 0; r < tx_height; ++r) {
    reference_hybrid_1d(out_interm + r * stride, out + r * stride, tx_width,
                        type1);
  }

  delete[] temp_in;
  delete[] temp_out;
  delete[] out_interm;

  // These transforms use an approximate 2D DCT transform, by only keeping the
  // top-left quarter of the coefficients, and repacking them in the first
  // quarter indices.
  // TODO(urvang): Refactor this code.
  if (tx_width == 64 && tx_height == 64) {  // tx_size == TX_64X64
    // Zero out top-right 32x32 area.
    for (int row = 0; row < 32; ++row) {
      memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
    }
    // Zero out the bottom 64x32 area.
    memset(out + 32 * 64, 0, 32 * 64 * sizeof(*out));
    // Re-pack non-zero coeffs in the first 32x32 indices.
    for (int row = 1; row < 32; ++row) {
      memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
    }
  } else if (tx_width == 32 && tx_height == 64) {  // tx_size == TX_32X64
    // Zero out the bottom 32x32 area.
    memset(out + 32 * 32, 0, 32 * 32 * sizeof(*out));
    // Note: no repacking needed here.
  } else if (tx_width == 64 && tx_height == 32) {  // tx_size == TX_64X32
    // Zero out right 32x32 area.
    for (int row = 0; row < 32; ++row) {
      memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
    }
    // Re-pack non-zero coeffs in the first 32x32 indices.
    for (int row = 1; row < 32; ++row) {
      memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
    }
  } else if (tx_width == 16 && tx_height == 64) {  // tx_size == TX_16X64
    // Zero out the bottom 16x32 area.
    memset(out + 16 * 32, 0, 16 * 32 * sizeof(*out));
    // Note: no repacking needed here.
  } else if (tx_width == 64 && tx_height == 16) {  // tx_size == TX_64X16
    // Zero out right 32x16 area.
    for (int row = 0; row < 16; ++row) {
      memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
    }
    // Re-pack non-zero coeffs in the first 32x16 indices.
    for (int row = 1; row < 16; ++row) {
      memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
    }
  }

  // Apply appropriate scale.
  const double amplify_factor = get_amplification_factor(tx_type, tx_size);
  for (int c = 0; c < tx_width; ++c) {
    for (int r = 0; r < tx_height; ++r) {
      out[r * stride + c] *= amplify_factor;
    }
  }
}

template <typename Type>
void fliplr(Type *dest, int width, int height, int stride) {
  for (int r = 0; r < height; ++r) {
    for (int c = 0; c < width / 2; ++c) {
      const Type tmp = dest[r * stride + c];
      dest[r * stride + c] = dest[r * stride + width - 1 - c];
      dest[r * stride + width - 1 - c] = tmp;
    }
  }
}

template <typename Type>
void flipud(Type *dest, int width, int height, int stride) {
  for (int c = 0; c < width; ++c) {
    for (int r = 0; r < height / 2; ++r) {
      const Type tmp = dest[r * stride + c];
      dest[r * stride + c] = dest[(height - 1 - r) * stride + c];
      dest[(height - 1 - r) * stride + c] = tmp;
    }
  }
}

template <typename Type>
void fliplrud(Type *dest, int width, int height, int stride) {
  for (int r = 0; r < height / 2; ++r) {
    for (int c = 0; c < width; ++c) {
      const Type tmp = dest[r * stride + c];
      dest[r * stride + c] = dest[(height - 1 - r) * stride + width - 1 - c];
      dest[(height - 1 - r) * stride + width - 1 - c] = tmp;
    }
  }
}

template void fliplr<double>(double *dest, int width, int height, int stride);
template void flipud<double>(double *dest, int width, int height, int stride);
template void fliplrud<double>(double *dest, int width, int height, int stride);

int bd_arr[BD_NUM] = { 8, 10, 12 };

int8_t low_range_arr[BD_NUM] = { 18, 32, 32 };
int8_t high_range_arr[BD_NUM] = { 32, 32, 32 };

void txfm_stage_range_check(const int8_t *stage_range, int stage_num,
                            int8_t cos_bit, int low_range, int high_range) {
  for (int i = 0; i < stage_num; ++i) {
    EXPECT_LE(stage_range[i], low_range);
    ASSERT_LE(stage_range[i] + cos_bit, high_range) << "stage = " << i;
  }
  for (int i = 0; i < stage_num - 1; ++i) {
    // make sure there is no overflow while doing half_btf()
    ASSERT_LE(stage_range[i + 1] + cos_bit, high_range) << "stage = " << i;
  }
}
}  // namespace libaom_test