summaryrefslogtreecommitdiff
path: root/third_party/aom/test/aom_integer_test.cc
blob: fe88a54e9e400858dae1ab20b0dedb1cec082527 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "aom/aom_integer.h"
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"

namespace {
const uint64_t kMaximumLeb128CodedSize = 8;
const uint8_t kLeb128PadByte = 0x80;  // Binary: 10000000
const uint64_t kMaximumLeb128Value = UINT32_MAX;
const uint32_t kSizeTestNumValues = 6;
const uint32_t kSizeTestExpectedSizes[kSizeTestNumValues] = {
  1, 1, 2, 3, 4, 5
};
const uint64_t kSizeTestInputs[kSizeTestNumValues] = {
  0, 0x7f, 0x3fff, 0x1fffff, 0xffffff, 0x10000000
};

const uint8_t kOutOfRangeLeb128Value[5] = { 0x80, 0x80, 0x80, 0x80,
                                            0x10 };  // UINT32_MAX + 1
}  // namespace

TEST(AomLeb128, DecodeTest) {
  const size_t num_leb128_bytes = 3;
  const uint8_t leb128_bytes[num_leb128_bytes] = { 0xE5, 0x8E, 0x26 };
  const uint64_t expected_value = 0x98765;  // 624485
  const size_t expected_length = 3;
  uint64_t value = ~0ULL;  // make sure value is cleared by the function
  size_t length;
  ASSERT_EQ(
      aom_uleb_decode(&leb128_bytes[0], num_leb128_bytes, &value, &length), 0);
  ASSERT_EQ(expected_value, value);
  ASSERT_EQ(expected_length, length);

  // Make sure the decoder stops on the last marked LEB128 byte.
  aom_uleb_decode(&leb128_bytes[0], num_leb128_bytes + 1, &value, &length);
  ASSERT_EQ(expected_value, value);
  ASSERT_EQ(expected_length, length);
}

TEST(AomLeb128, EncodeTest) {
  const uint32_t test_value = 0x98765;  // 624485
  const uint8_t expected_bytes[3] = { 0xE5, 0x8E, 0x26 };
  const size_t kWriteBufferSize = 4;
  uint8_t write_buffer[kWriteBufferSize] = { 0 };
  size_t bytes_written = 0;
  ASSERT_EQ(aom_uleb_encode(test_value, kWriteBufferSize, &write_buffer[0],
                            &bytes_written),
            0);
  ASSERT_EQ(bytes_written, 3u);
  for (size_t i = 0; i < bytes_written; ++i) {
    ASSERT_EQ(write_buffer[i], expected_bytes[i]);
  }
}

TEST(AomLeb128, EncodeDecodeTest) {
  const uint32_t value = 0x98765;  // 624485
  const size_t kWriteBufferSize = 4;
  uint8_t write_buffer[kWriteBufferSize] = { 0 };
  size_t bytes_written = 0;
  ASSERT_EQ(aom_uleb_encode(value, kWriteBufferSize, &write_buffer[0],
                            &bytes_written),
            0);
  ASSERT_EQ(bytes_written, 3u);
  uint64_t decoded_value;
  size_t decoded_length;
  aom_uleb_decode(&write_buffer[0], bytes_written, &decoded_value,
                  &decoded_length);
  ASSERT_EQ(value, decoded_value);
  ASSERT_EQ(bytes_written, decoded_length);
}

TEST(AomLeb128, FixedSizeEncodeTest) {
  const uint32_t test_value = 0x123;
  const uint8_t expected_bytes[4] = { 0xa3, 0x82, 0x80, 0x00 };
  const size_t kWriteBufferSize = 4;
  uint8_t write_buffer[kWriteBufferSize] = { 0 };
  size_t bytes_written = 0;
  ASSERT_EQ(0, aom_uleb_encode_fixed_size(test_value, kWriteBufferSize,
                                          kWriteBufferSize, &write_buffer[0],
                                          &bytes_written));
  ASSERT_EQ(kWriteBufferSize, bytes_written);
  for (size_t i = 0; i < bytes_written; ++i) {
    ASSERT_EQ(write_buffer[i], expected_bytes[i]);
  }
}

TEST(AomLeb128, FixedSizeEncodeDecodeTest) {
  const uint32_t value = 0x1;
  const size_t kWriteBufferSize = 4;
  uint8_t write_buffer[kWriteBufferSize] = { 0 };
  size_t bytes_written = 0;
  ASSERT_EQ(
      aom_uleb_encode_fixed_size(value, kWriteBufferSize, kWriteBufferSize,
                                 &write_buffer[0], &bytes_written),
      0);
  ASSERT_EQ(bytes_written, 4u);
  uint64_t decoded_value;
  size_t decoded_length;
  aom_uleb_decode(&write_buffer[0], bytes_written, &decoded_value,
                  &decoded_length);
  ASSERT_EQ(value, decoded_value);
  ASSERT_EQ(bytes_written, decoded_length);
}

TEST(AomLeb128, SizeTest) {
  for (size_t i = 0; i < kSizeTestNumValues; ++i) {
    ASSERT_EQ(kSizeTestExpectedSizes[i],
              aom_uleb_size_in_bytes(kSizeTestInputs[i]));
  }
}

TEST(AomLeb128, DecodeFailTest) {
  // Input buffer containing what would be a valid 9 byte LEB128 encoded
  // unsigned integer.
  const uint8_t kAllPadBytesBuffer[kMaximumLeb128CodedSize + 1] = {
    kLeb128PadByte, kLeb128PadByte, kLeb128PadByte,
    kLeb128PadByte, kLeb128PadByte, kLeb128PadByte,
    kLeb128PadByte, kLeb128PadByte, 0
  };
  uint64_t decoded_value;

  // Test that decode fails when result would be valid 9 byte integer.
  ASSERT_EQ(aom_uleb_decode(&kAllPadBytesBuffer[0], kMaximumLeb128CodedSize + 1,
                            &decoded_value, NULL),
            -1);

  // Test that encoded value missing terminator byte within available buffer
  // range causes decode error.
  ASSERT_EQ(aom_uleb_decode(&kAllPadBytesBuffer[0], kMaximumLeb128CodedSize,
                            &decoded_value, NULL),
            -1);

  // Test that LEB128 input that decodes to a value larger than 32-bits fails.
  size_t value_size = 0;
  ASSERT_EQ(aom_uleb_decode(&kOutOfRangeLeb128Value[0],
                            sizeof(kOutOfRangeLeb128Value), &decoded_value,
                            &value_size),
            -1);
}

TEST(AomLeb128, EncodeFailTest) {
  const size_t kWriteBufferSize = 4;
  const uint32_t kValidTestValue = 1;
  uint8_t write_buffer[kWriteBufferSize] = { 0 };
  size_t coded_size = 0;
  ASSERT_EQ(
      aom_uleb_encode(kValidTestValue, kWriteBufferSize, NULL, &coded_size),
      -1);
  ASSERT_EQ(aom_uleb_encode(kValidTestValue, kWriteBufferSize, &write_buffer[0],
                            NULL),
            -1);

  const uint32_t kValueOutOfRangeForBuffer = 0xFFFFFFFF;
  ASSERT_EQ(aom_uleb_encode(kValueOutOfRangeForBuffer, kWriteBufferSize,
                            &write_buffer[0], &coded_size),
            -1);

  const uint64_t kValueOutOfRange = kMaximumLeb128Value + 1;
  ASSERT_EQ(aom_uleb_encode(kValueOutOfRange, kWriteBufferSize,
                            &write_buffer[0], &coded_size),
            -1);

  const size_t kPadSizeOutOfRange = 5;
  ASSERT_EQ(aom_uleb_encode_fixed_size(kValidTestValue, kWriteBufferSize,
                                       kPadSizeOutOfRange, &write_buffer[0],
                                       &coded_size),
            -1);
}