summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/encoder/reconinter_enc.c
blob: 23d920fc32f61630cad02a749cdecaf6ee1f7bc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <stdio.h>
#include <limits.h>

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"

#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"

#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/obmc.h"
#include "av1/encoder/reconinter_enc.h"

static INLINE void calc_subpel_params(
    MACROBLOCKD *xd, const struct scale_factors *const sf, const MV mv,
    int plane, const int pre_x, const int pre_y, int x, int y,
    struct buf_2d *const pre_buf, uint8_t **pre, SubpelParams *subpel_params,
    int bw, int bh) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const int is_scaled = av1_is_scaled(sf);
  if (is_scaled) {
    int ssx = pd->subsampling_x;
    int ssy = pd->subsampling_y;
    int orig_pos_y = (pre_y + y) << SUBPEL_BITS;
    orig_pos_y += mv.row * (1 << (1 - ssy));
    int orig_pos_x = (pre_x + x) << SUBPEL_BITS;
    orig_pos_x += mv.col * (1 << (1 - ssx));
    int pos_y = sf->scale_value_y(orig_pos_y, sf);
    int pos_x = sf->scale_value_x(orig_pos_x, sf);
    pos_x += SCALE_EXTRA_OFF;
    pos_y += SCALE_EXTRA_OFF;

    const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
    const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
    const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
                       << SCALE_SUBPEL_BITS;
    const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
    pos_y = clamp(pos_y, top, bottom);
    pos_x = clamp(pos_x, left, right);

    *pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
           (pos_x >> SCALE_SUBPEL_BITS);
    subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
    subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
    subpel_params->xs = sf->x_step_q4;
    subpel_params->ys = sf->y_step_q4;
  } else {
    const MV mv_q4 = clamp_mv_to_umv_border_sb(
        xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
    subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
    subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
    subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
    *pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride +
           (x + (mv_q4.col >> SUBPEL_BITS));
  }
}

static INLINE void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                          int plane, const MB_MODE_INFO *mi,
                                          int build_for_obmc, int bw, int bh,
                                          int mi_x, int mi_y) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  int is_compound = has_second_ref(mi);
  int ref;
  const int is_intrabc = is_intrabc_block(mi);
  assert(IMPLIES(is_intrabc, !is_compound));
  int is_global[2] = { 0, 0 };
  for (ref = 0; ref < 1 + is_compound; ++ref) {
    const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
    is_global[ref] = is_global_mv_block(mi, wm->wmtype);
  }

  const BLOCK_SIZE bsize = mi->sb_type;
  const int ss_x = pd->subsampling_x;
  const int ss_y = pd->subsampling_y;
  int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) ||
                     (block_size_high[bsize] < 8 && ss_y);

  if (is_intrabc) sub8x8_inter = 0;

  // For sub8x8 chroma blocks, we may be covering more than one luma block's
  // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
  // the top-left corner of the prediction source - the correct top-left corner
  // is at (pre_x, pre_y).
  const int row_start =
      (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0;
  const int col_start =
      (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0;
  const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
  const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;

  sub8x8_inter = sub8x8_inter && !build_for_obmc;
  if (sub8x8_inter) {
    for (int row = row_start; row <= 0 && sub8x8_inter; ++row) {
      for (int col = col_start; col <= 0; ++col) {
        const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
        if (!is_inter_block(this_mbmi)) sub8x8_inter = 0;
        if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0;
      }
    }
  }

  if (sub8x8_inter) {
    // block size
    const int b4_w = block_size_wide[bsize] >> ss_x;
    const int b4_h = block_size_high[bsize] >> ss_y;
    const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
    const int b8_w = block_size_wide[plane_bsize] >> ss_x;
    const int b8_h = block_size_high[plane_bsize] >> ss_y;
    assert(!is_compound);

    const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] };

    int row = row_start;
    for (int y = 0; y < b8_h; y += b4_h) {
      int col = col_start;
      for (int x = 0; x < b8_w; x += b4_w) {
        MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
        is_compound = has_second_ref(this_mbmi);
        int tmp_dst_stride = 8;
        assert(bw < 8 || bh < 8);
        ConvolveParams conv_params = get_conv_params_no_round(
            0, plane, xd->tmp_conv_dst, tmp_dst_stride, is_compound, xd->bd);
        conv_params.use_jnt_comp_avg = 0;
        struct buf_2d *const dst_buf = &pd->dst;
        uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;

        ref = 0;
        const RefBuffer *ref_buf =
            &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME];

        pd->pre[ref].buf0 =
            (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer;
        pd->pre[ref].buf =
            pd->pre[ref].buf0 + scaled_buffer_offset(pre_x, pre_y,
                                                     ref_buf->buf->uv_stride,
                                                     &ref_buf->sf);
        pd->pre[ref].width = ref_buf->buf->uv_crop_width;
        pd->pre[ref].height = ref_buf->buf->uv_crop_height;
        pd->pre[ref].stride = ref_buf->buf->uv_stride;

        const struct scale_factors *const sf =
            is_intrabc ? &cm->sf_identity : &ref_buf->sf;
        struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];

        const MV mv = this_mbmi->mv[ref].as_mv;

        uint8_t *pre;
        SubpelParams subpel_params;
        WarpTypesAllowed warp_types;
        warp_types.global_warp_allowed = is_global[ref];
        warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL;

        calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre,
                           &subpel_params, bw, bh);
        conv_params.do_average = ref;
        if (is_masked_compound_type(mi->interinter_comp.type)) {
          // masked compound type has its own average mechanism
          conv_params.do_average = 0;
        }

        av1_make_inter_predictor(
            pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf,
            b4_w, b4_h, &conv_params, this_mbmi->interp_filters, &warp_types,
            (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y,
            plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion);

        ++col;
      }
      ++row;
    }

    for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref];
    return;
  }

  {
    ConvolveParams conv_params = get_conv_params_no_round(
        0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
    av1_jnt_comp_weight_assign(cm, mi, 0, &conv_params.fwd_offset,
                               &conv_params.bck_offset,
                               &conv_params.use_jnt_comp_avg, is_compound);

    struct buf_2d *const dst_buf = &pd->dst;
    uint8_t *const dst = dst_buf->buf;
    for (ref = 0; ref < 1 + is_compound; ++ref) {
      const struct scale_factors *const sf =
          is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf;
      struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
      const MV mv = mi->mv[ref].as_mv;

      uint8_t *pre;
      SubpelParams subpel_params;
      calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, 0, 0, pre_buf, &pre,
                         &subpel_params, bw, bh);

      WarpTypesAllowed warp_types;
      warp_types.global_warp_allowed = is_global[ref];
      warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;

      if (ref && is_masked_compound_type(mi->interinter_comp.type)) {
        // masked compound type has its own average mechanism
        conv_params.do_average = 0;
        av1_make_masked_inter_predictor(
            pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw,
            bh, &conv_params, mi->interp_filters, plane, &warp_types,
            mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, ref, xd,
            cm->allow_warped_motion);
      } else {
        conv_params.do_average = ref;
        av1_make_inter_predictor(
            pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw,
            bh, &conv_params, mi->interp_filters, &warp_types,
            mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref,
            mi, build_for_obmc, xd, cm->allow_warped_motion);
      }
    }
  }
}

static void build_inter_predictors_for_planes(const AV1_COMMON *cm,
                                              MACROBLOCKD *xd, BLOCK_SIZE bsize,
                                              int mi_row, int mi_col,
                                              int plane_from, int plane_to) {
  int plane;
  const int mi_x = mi_col * MI_SIZE;
  const int mi_y = mi_row * MI_SIZE;
  for (plane = plane_from; plane <= plane_to; ++plane) {
    const struct macroblockd_plane *pd = &xd->plane[plane];
    const int bw = pd->width;
    const int bh = pd->height;

    if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
                             pd->subsampling_y))
      continue;

    build_inter_predictors(cm, xd, plane, xd->mi[0], 0, bw, bh, mi_x, mi_y);
  }
}

void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                    int mi_row, int mi_col, BUFFER_SET *ctx,
                                    BLOCK_SIZE bsize) {
  av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize, 0);
}

void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                     int mi_row, int mi_col, BUFFER_SET *ctx,
                                     BLOCK_SIZE bsize) {
  for (int plane_idx = 1; plane_idx < MAX_MB_PLANE; plane_idx++) {
    av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize,
                                   plane_idx);
  }
}

void av1_build_inter_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                    int mi_row, int mi_col, BUFFER_SET *ctx,
                                    BLOCK_SIZE bsize, int plane_idx) {
  build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, plane_idx,
                                    plane_idx);

  if (is_interintra_pred(xd->mi[0])) {
    BUFFER_SET default_ctx = { { NULL, NULL, NULL }, { 0, 0, 0 } };
    if (!ctx) {
      default_ctx.plane[plane_idx] = xd->plane[plane_idx].dst.buf;
      default_ctx.stride[plane_idx] = xd->plane[plane_idx].dst.stride;
      ctx = &default_ctx;
    }
    av1_build_interintra_predictors_sbp(cm, xd, xd->plane[plane_idx].dst.buf,
                                        xd->plane[plane_idx].dst.stride, ctx,
                                        plane_idx, bsize);
  }
}

void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                   int mi_row, int mi_col, BUFFER_SET *ctx,
                                   BLOCK_SIZE bsize) {
  const int num_planes = av1_num_planes(cm);
  av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize);
  if (num_planes > 1)
    av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize);
}

// TODO(sarahparker):
// av1_build_inter_predictor should be combined with
// av1_make_inter_predictor
void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
                               int dst_stride, const MV *src_mv,
                               const struct scale_factors *sf, int w, int h,
                               ConvolveParams *conv_params,
                               InterpFilters interp_filters,
                               const WarpTypesAllowed *warp_types, int p_col,
                               int p_row, int plane, int ref,
                               enum mv_precision precision, int x, int y,
                               const MACROBLOCKD *xd, int can_use_previous) {
  const int is_q4 = precision == MV_PRECISION_Q4;
  const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
                     is_q4 ? src_mv->col : src_mv->col * 2 };
  MV32 mv = av1_scale_mv(&mv_q4, x, y, sf);
  mv.col += SCALE_EXTRA_OFF;
  mv.row += SCALE_EXTRA_OFF;

  const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4,
                                       mv.col & SCALE_SUBPEL_MASK,
                                       mv.row & SCALE_SUBPEL_MASK };
  src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride +
         (mv.col >> SCALE_SUBPEL_BITS);

  av1_make_inter_predictor(src, src_stride, dst, dst_stride, &subpel_params, sf,
                           w, h, conv_params, interp_filters, warp_types, p_col,
                           p_row, plane, ref, xd->mi[0], 0, xd,
                           can_use_previous);
}

static INLINE void build_prediction_by_above_pred(
    MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
    MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) {
  struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
  const int above_mi_col = ctxt->mi_col + rel_mi_col;
  int mi_x, mi_y;
  MB_MODE_INFO backup_mbmi = *above_mbmi;

  av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, above_mi_width,
                                           above_mbmi, ctxt, num_planes);
  mi_x = above_mi_col << MI_SIZE_LOG2;
  mi_y = ctxt->mi_row << MI_SIZE_LOG2;

  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;

  for (int j = 0; j < num_planes; ++j) {
    const struct macroblockd_plane *pd = &xd->plane[j];
    int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x;
    int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
                   block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));

    if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
    build_inter_predictors(ctxt->cm, xd, j, above_mbmi, 1, bw, bh, mi_x, mi_y);
  }
  *above_mbmi = backup_mbmi;
}

void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                         int mi_row, int mi_col,
                                         uint8_t *tmp_buf[MAX_MB_PLANE],
                                         int tmp_width[MAX_MB_PLANE],
                                         int tmp_height[MAX_MB_PLANE],
                                         int tmp_stride[MAX_MB_PLANE]) {
  if (!xd->up_available) return;

  // Adjust mb_to_bottom_edge to have the correct value for the OBMC
  // prediction block. This is half the height of the original block,
  // except for 128-wide blocks, where we only use a height of 32.
  int this_height = xd->n4_h * MI_SIZE;
  int pred_height = AOMMIN(this_height / 2, 32);
  xd->mb_to_bottom_edge += (this_height - pred_height) * 8;

  struct build_prediction_ctxt ctxt = { cm,         mi_row,
                                        mi_col,     tmp_buf,
                                        tmp_width,  tmp_height,
                                        tmp_stride, xd->mb_to_right_edge };
  BLOCK_SIZE bsize = xd->mi[0]->sb_type;
  foreach_overlappable_nb_above(cm, xd, mi_col,
                                max_neighbor_obmc[mi_size_wide_log2[bsize]],
                                build_prediction_by_above_pred, &ctxt);

  xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
  xd->mb_to_right_edge = ctxt.mb_to_far_edge;
  xd->mb_to_bottom_edge -= (this_height - pred_height) * 8;
}

static INLINE void build_prediction_by_left_pred(
    MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height,
    MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) {
  struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
  const int left_mi_row = ctxt->mi_row + rel_mi_row;
  int mi_x, mi_y;
  MB_MODE_INFO backup_mbmi = *left_mbmi;

  av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, left_mi_height,
                                          left_mbmi, ctxt, num_planes);
  mi_x = ctxt->mi_col << MI_SIZE_LOG2;
  mi_y = left_mi_row << MI_SIZE_LOG2;
  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;

  for (int j = 0; j < num_planes; ++j) {
    const struct macroblockd_plane *pd = &xd->plane[j];
    int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
                   block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
    int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y;

    if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
    build_inter_predictors(ctxt->cm, xd, j, left_mbmi, 1, bw, bh, mi_x, mi_y);
  }
  *left_mbmi = backup_mbmi;
}

void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                        int mi_row, int mi_col,
                                        uint8_t *tmp_buf[MAX_MB_PLANE],
                                        int tmp_width[MAX_MB_PLANE],
                                        int tmp_height[MAX_MB_PLANE],
                                        int tmp_stride[MAX_MB_PLANE]) {
  if (!xd->left_available) return;

  // Adjust mb_to_right_edge to have the correct value for the OBMC
  // prediction block. This is half the width of the original block,
  // except for 128-wide blocks, where we only use a width of 32.
  int this_width = xd->n4_w * MI_SIZE;
  int pred_width = AOMMIN(this_width / 2, 32);
  xd->mb_to_right_edge += (this_width - pred_width) * 8;

  struct build_prediction_ctxt ctxt = { cm,         mi_row,
                                        mi_col,     tmp_buf,
                                        tmp_width,  tmp_height,
                                        tmp_stride, xd->mb_to_bottom_edge };
  BLOCK_SIZE bsize = xd->mi[0]->sb_type;
  foreach_overlappable_nb_left(cm, xd, mi_row,
                               max_neighbor_obmc[mi_size_high_log2[bsize]],
                               build_prediction_by_left_pred, &ctxt);

  xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
  xd->mb_to_right_edge -= (this_width - pred_width) * 8;
  xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
}

void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                        int mi_row, int mi_col) {
  const int num_planes = av1_num_planes(cm);
  uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
  int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };

  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    int len = sizeof(uint16_t);
    dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]);
    dst_buf1[1] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len);
    dst_buf1[2] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len);
    dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]);
    dst_buf2[1] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len);
    dst_buf2[2] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len);
  } else {
    dst_buf1[0] = xd->tmp_obmc_bufs[0];
    dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
    dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
    dst_buf2[0] = xd->tmp_obmc_bufs[1];
    dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
    dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
  }
  av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
                                      dst_width1, dst_height1, dst_stride1);
  av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
                                     dst_width2, dst_height2, dst_stride2);
  av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, get_frame_new_buffer(cm),
                       mi_row, mi_col, 0, num_planes);
  av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1,
                                  dst_buf2, dst_stride2);
}

// Builds the inter-predictor for the single ref case
// for use in the encoder to search the wedges efficiently.
static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane,
                                              int bw, int bh, int x, int y,
                                              int w, int h, int mi_x, int mi_y,
                                              int ref, uint8_t *const ext_dst,
                                              int ext_dst_stride,
                                              int can_use_previous) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const MB_MODE_INFO *mi = xd->mi[0];

  const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
  struct buf_2d *const pre_buf = &pd->pre[ref];
  uint8_t *const dst = get_buf_by_bd(xd, ext_dst) + ext_dst_stride * y + x;
  const MV mv = mi->mv[ref].as_mv;

  ConvolveParams conv_params = get_conv_params(0, plane, xd->bd);
  WarpTypesAllowed warp_types;
  const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
  warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype);
  warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
  const int pre_x = (mi_x) >> pd->subsampling_x;
  const int pre_y = (mi_y) >> pd->subsampling_y;
  uint8_t *pre;
  SubpelParams subpel_params;
  calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre,
                     &subpel_params, bw, bh);

  av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride,
                           &subpel_params, sf, w, h, &conv_params,
                           mi->interp_filters, &warp_types, pre_x + x,
                           pre_y + y, plane, ref, mi, 0, xd, can_use_previous);
}

void av1_build_inter_predictors_for_planes_single_buf(
    MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
    int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3],
    int can_use_previous) {
  int plane;
  const int mi_x = mi_col * MI_SIZE;
  const int mi_y = mi_row * MI_SIZE;
  for (plane = plane_from; plane <= plane_to; ++plane) {
    const BLOCK_SIZE plane_bsize = get_plane_block_size(
        bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y);
    const int bw = block_size_wide[plane_bsize];
    const int bh = block_size_high[plane_bsize];
    build_inter_predictors_single_buf(xd, plane, bw, bh, 0, 0, bw, bh, mi_x,
                                      mi_y, ref, ext_dst[plane],
                                      ext_dst_stride[plane], can_use_previous);
  }
}

static void build_masked_compound(
    uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride,
    const uint8_t *src1, int src1_stride,
    const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
    int w) {
  // Derive subsampling from h and w passed in. May be refactored to
  // pass in subsampling factors directly.
  const int subh = (2 << mi_size_high_log2[sb_type]) == h;
  const int subw = (2 << mi_size_wide_log2[sb_type]) == w;
  const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
  aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
                     mask, block_size_wide[sb_type], w, h, subw, subh);
}

static void build_masked_compound_highbd(
    uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride,
    const uint8_t *src1_8, int src1_stride,
    const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
    int w, int bd) {
  // Derive subsampling from h and w passed in. May be refactored to
  // pass in subsampling factors directly.
  const int subh = (2 << mi_size_high_log2[sb_type]) == h;
  const int subw = (2 << mi_size_wide_log2[sb_type]) == w;
  const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
  // const uint8_t *mask =
  //     av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type);
  aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8,
                            src1_stride, mask, block_size_wide[sb_type], w, h,
                            subw, subh, bd);
}

static void build_wedge_inter_predictor_from_buf(
    MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0,
    int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) {
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int is_compound = has_second_ref(mbmi);
  MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
  struct buf_2d *const dst_buf = &pd->dst;
  uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
  mbmi->interinter_comp.seg_mask = xd->seg_mask;
  const INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_comp;

  if (is_compound && is_masked_compound_type(comp_data->type)) {
    if (!plane && comp_data->type == COMPOUND_DIFFWTD) {
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
        av1_build_compound_diffwtd_mask_highbd(
            comp_data->seg_mask, comp_data->mask_type,
            CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
            CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd);
      else
        av1_build_compound_diffwtd_mask(
            comp_data->seg_mask, comp_data->mask_type, ext_dst0,
            ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w);
    }

    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
      build_masked_compound_highbd(
          dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
          CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data,
          mbmi->sb_type, h, w, xd->bd);
    else
      build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0,
                            ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type,
                            h, w);
  } else {
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
      aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
                               dst, dst_buf->stride, NULL, 0, NULL, 0, w, h,
                               xd->bd);
    else
      aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL,
                        0, NULL, 0, w, h);
  }
}

void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize,
                                              int plane_from, int plane_to,
                                              uint8_t *ext_dst0[3],
                                              int ext_dst_stride0[3],
                                              uint8_t *ext_dst1[3],
                                              int ext_dst_stride1[3]) {
  int plane;
  for (plane = plane_from; plane <= plane_to; ++plane) {
    const BLOCK_SIZE plane_bsize = get_plane_block_size(
        bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y);
    const int bw = block_size_wide[plane_bsize];
    const int bh = block_size_high[plane_bsize];
    build_wedge_inter_predictor_from_buf(
        xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane],
        ext_dst1[plane], ext_dst_stride1[plane]);
  }
}