summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/encoder/encodemb.c
blob: c450244b1cb1adaef85497121ae1c1d5eb6b263c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"

#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"

#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"

#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"

#if CONFIG_PVQ
#include "av1/encoder/encint.h"
#include "av1/common/partition.h"
#include "av1/encoder/pvq_encoder.h"
#endif

#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif

// Check if one needs to use c version subtraction.
static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; }

static void subtract_block(const MACROBLOCKD *xd, int rows, int cols,
                           int16_t *diff, ptrdiff_t diff_stride,
                           const uint8_t *src8, ptrdiff_t src_stride,
                           const uint8_t *pred8, ptrdiff_t pred_stride) {
#if !CONFIG_HIGHBITDEPTH
  (void)xd;
#endif

  if (check_subtract_block_size(rows, cols)) {
#if CONFIG_HIGHBITDEPTH
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8,
                                  src_stride, pred8, pred_stride, xd->bd);
      return;
    }
#endif  // CONFIG_HIGHBITDEPTH
    aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8,
                         pred_stride);

    return;
  }

#if CONFIG_HIGHBITDEPTH
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
                              pred8, pred_stride, xd->bd);
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
                     pred_stride);
}

void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
                      int blk_col, int blk_row, TX_SIZE tx_size) {
  MACROBLOCKD *const xd = &x->e_mbd;
  struct macroblock_plane *const p = &x->plane[plane];
  const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
  const int diff_stride = block_size_wide[plane_bsize];
  const int src_stride = p->src.stride;
  const int dst_stride = pd->dst.stride;
  const int tx1d_width = tx_size_wide[tx_size];
  const int tx1d_height = tx_size_high[tx_size];
  uint8_t *dst =
      &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
  uint8_t *src =
      &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
  int16_t *src_diff =
      &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
  subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
                 src_stride, dst, dst_stride);
}

void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
  struct macroblock_plane *const p = &x->plane[plane];
  const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
  const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
  const int bw = block_size_wide[plane_bsize];
  const int bh = block_size_high[plane_bsize];
  const MACROBLOCKD *xd = &x->e_mbd;

  subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
                 pd->dst.buf, pd->dst.stride);
}

// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
#if CONFIG_EC_ADAPT
  { 10, 7 }, { 8, 5 },
#else
  { 10, 6 }, { 8, 5 },
#endif
};

#define UPDATE_RD_COST()                             \
  {                                                  \
    rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
    rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
  }

static INLINE int64_t
get_token_bit_costs(unsigned int token_costs[2][COEFF_CONTEXTS][ENTROPY_TOKENS],
                    int skip_eob, int ctx, int token) {
#if CONFIG_NEW_TOKENSET
  (void)skip_eob;
  return token_costs[token == ZERO_TOKEN || token == EOB_TOKEN][ctx][token];
#else
  return token_costs[skip_eob][ctx][token];
#endif
}

#define USE_GREEDY_OPTIMIZE_B 0

#if USE_GREEDY_OPTIMIZE_B

typedef struct av1_token_state {
  int16_t token;
  tran_low_t qc;
  tran_low_t dqc;
} av1_token_state;

int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block,
                   TX_SIZE tx_size, int ctx) {
#if !CONFIG_PVQ
  MACROBLOCKD *const xd = &mb->e_mbd;
  struct macroblock_plane *const p = &mb->plane[plane];
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const int ref = is_inter_block(&xd->mi[0]->mbmi);
  av1_token_state tokens[MAX_TX_SQUARE + 1][2];
  uint8_t token_cache[MAX_TX_SQUARE];
  const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
  tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
  const int eob = p->eobs[block];
  const PLANE_TYPE plane_type = pd->plane_type;
  const int16_t *const dequant_ptr = pd->dequant;
  const uint8_t *const band_translate = get_band_translate(tx_size);
  TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
  const SCAN_ORDER *const scan_order =
      get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
  const int16_t *const scan = scan_order->scan;
  const int16_t *const nb = scan_order->neighbors;
  int dqv;
  const int shift = av1_get_tx_scale(tx_size);
#if CONFIG_AOM_QM
  int seg_id = xd->mi[0]->mbmi.segment_id;
  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
#endif
#if CONFIG_NEW_QUANT
  int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
  const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#elif !CONFIG_AOM_QM
  const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
#endif  // CONFIG_NEW_QUANT
  int sz = 0;
  const int64_t rddiv = mb->rddiv;
  int64_t rd_cost0, rd_cost1;
  int16_t t0, t1;
  int i, final_eob;
#if CONFIG_HIGHBITDEPTH
  const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
#else
  const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, 8);
#endif
  unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
      mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
  const int default_eob = tx_size_2d[tx_size];

  assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));

  assert((!plane_type && !plane) || (plane_type && plane));
  assert(eob <= default_eob);

  int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
/* CpuSpeedTest uses "--min-q=0 --max-q=0" and expects 100dB psnr
* This creates conflict with search for a better EOB position
* The line below is to make sure EOB search is disabled at this corner case.
*/
#if !CONFIG_NEW_QUANT && !CONFIG_AOM_QM
  if (dq_step[1] <= 4) {
    rdmult = 1;
  }
#endif

  int64_t rate0, rate1;
  for (i = 0; i < eob; i++) {
    const int rc = scan[i];
    int x = qcoeff[rc];
    t0 = av1_get_token(x);

    tokens[i][0].qc = x;
    tokens[i][0].token = t0;
    tokens[i][0].dqc = dqcoeff[rc];

    token_cache[rc] = av1_pt_energy_class[t0];
  }
  tokens[eob][0].token = EOB_TOKEN;
  tokens[eob][0].qc = 0;
  tokens[eob][0].dqc = 0;
  tokens[eob][1] = tokens[eob][0];

  unsigned int(*token_costs_ptr)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
      token_costs;

  final_eob = 0;

  int64_t eob_cost0, eob_cost1;

  const int ctx0 = ctx;
  /* Record the r-d cost */
  int64_t accu_rate = 0;
  int64_t accu_error = 0;

  rate0 = get_token_bit_costs(*(token_costs_ptr + band_translate[0]), 0, ctx0,
                              EOB_TOKEN);
  int64_t best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error);

  // int64_t best_block_rd_cost_all0 = best_block_rd_cost;

  int x_prev = 1;

  for (i = 0; i < eob; i++) {
    const int rc = scan[i];
    int x = qcoeff[rc];
    sz = -(x < 0);

    int band_cur = band_translate[i];
    int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i);
    int token_tree_sel_cur = (x_prev == 0);

    if (x == 0) {
      // no need to search when x == 0
      rate0 =
          get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur,
                              ctx_cur, tokens[i][0].token);
      accu_rate += rate0;
      x_prev = 0;
      // accu_error does not change when x==0
    } else {
      /*  Computing distortion
       */
      // compute the distortion for the first candidate
      // and the distortion for quantizing to 0.
      int dx0 = (-coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        dx0 >>= xd->bd - 8;
      }
#endif
      int64_t d0 = (int64_t)dx0 * dx0;

      int x_a = x - 2 * sz - 1;
      int64_t d2, d2_a;

      int dx;

#if CONFIG_AOM_QM
      int iwt = iqmatrix[rc];
      dqv = dequant_ptr[rc != 0];
      dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#else
      dqv = dequant_ptr[rc != 0];
#endif

      dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        dx >>= xd->bd - 8;
      }
#endif  // CONFIG_HIGHBITDEPTH
      d2 = (int64_t)dx * dx;

      /* compute the distortion for the second candidate
       * x_a = x - 2 * sz + 1;
       */
      if (x_a != 0) {
#if CONFIG_NEW_QUANT
        dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
             (coeff[rc] << shift);
#if CONFIG_HIGHBITDEPTH
        if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
          dx >>= xd->bd - 8;
        }
#endif  // CONFIG_HIGHBITDEPTH
#else   // CONFIG_NEW_QUANT
#if CONFIG_HIGHBITDEPTH
        if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
          dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
        } else {
          dx -= (dqv + sz) ^ sz;
        }
#else
        dx -= (dqv + sz) ^ sz;
#endif  // CONFIG_HIGHBITDEPTH
#endif  // CONFIG_NEW_QUANT
        d2_a = (int64_t)dx * dx;
      } else {
        d2_a = d0;
      }
      /*  Computing rates and r-d cost
       */

      int best_x, best_eob_x;
      int64_t base_bits, next_bits0, next_bits1;
      int64_t next_eob_bits0, next_eob_bits1;

      // rate cost of x
      base_bits = av1_get_token_cost(x, &t0, cat6_bits);
      rate0 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
                                              token_tree_sel_cur, ctx_cur, t0);

      base_bits = av1_get_token_cost(x_a, &t1, cat6_bits);
      rate1 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
                                              token_tree_sel_cur, ctx_cur, t1);

      next_bits0 = 0;
      next_bits1 = 0;
      next_eob_bits0 = 0;
      next_eob_bits1 = 0;

      if (i < default_eob - 1) {
        int ctx_next, token_tree_sel_next;
        int band_next = band_translate[i + 1];

        token_cache[rc] = av1_pt_energy_class[t0];
        ctx_next = get_coef_context(nb, token_cache, i + 1);
        token_tree_sel_next = (x == 0);

        next_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next),
                                         token_tree_sel_next, ctx_next,
                                         tokens[i + 1][0].token);
        next_eob_bits0 =
            get_token_bit_costs(*(token_costs_ptr + band_next),
                                token_tree_sel_next, ctx_next, EOB_TOKEN);

        token_cache[rc] = av1_pt_energy_class[t1];
        ctx_next = get_coef_context(nb, token_cache, i + 1);
        token_tree_sel_next = (x_a == 0);

        next_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next),
                                         token_tree_sel_next, ctx_next,
                                         tokens[i + 1][0].token);

        if (x_a != 0) {
          next_eob_bits1 =
              get_token_bit_costs(*(token_costs_ptr + band_next),
                                  token_tree_sel_next, ctx_next, EOB_TOKEN);
        }
      }

      rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), d2);
      rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), d2_a);

      best_x = (rd_cost1 < rd_cost0);

      eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0),
                         (accu_error + d2 - d0));
      eob_cost1 = eob_cost0;
      if (x_a != 0) {
        eob_cost1 = RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1),
                           (accu_error + d2_a - d0));
        best_eob_x = (eob_cost1 < eob_cost0);
      } else {
        best_eob_x = 0;
      }

      int dqc, dqc_a = 0;

      dqc = dqcoeff[rc];
      if (best_x + best_eob_x) {
        if (x_a != 0) {
#if CONFIG_NEW_QUANT
          dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv,
                                           dequant_val[band_translate[i]]);
          dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a;
          if (sz) dqc_a = -dqc_a;
#else
// The 32x32 transform coefficient uses half quantization step size.
// Account for the rounding difference in the dequantized coefficeint
// value when the quantization index is dropped from an even number
// to an odd number.

#if CONFIG_AOM_QM
          tran_low_t offset = dqv >> shift;
#else
          tran_low_t offset = dq_step[rc != 0];
#endif
          if (shift & x_a) offset += (dqv & 0x01);

          if (sz == 0)
            dqc_a = dqcoeff[rc] - offset;
          else
            dqc_a = dqcoeff[rc] + offset;
#endif  // CONFIG_NEW_QUANT
        } else {
          dqc_a = 0;
        }  // if (x_a != 0)
      }

      // record the better quantized value
      if (best_x) {
        qcoeff[rc] = x_a;
        dqcoeff[rc] = dqc_a;

        accu_rate += rate1;
        accu_error += d2_a - d0;
        assert(d2_a <= d0);

        token_cache[rc] = av1_pt_energy_class[t1];
      } else {
        accu_rate += rate0;
        accu_error += d2 - d0;
        assert(d2 <= d0);

        token_cache[rc] = av1_pt_energy_class[t0];
      }

      x_prev = qcoeff[rc];

      // determine whether to move the eob position to i+1
      int64_t best_eob_cost_i = eob_cost0;

      tokens[i][1].token = t0;
      tokens[i][1].qc = x;
      tokens[i][1].dqc = dqc;

      if ((x_a != 0) && (best_eob_x)) {
        best_eob_cost_i = eob_cost1;

        tokens[i][1].token = t1;
        tokens[i][1].qc = x_a;
        tokens[i][1].dqc = dqc_a;
      }

      if (best_eob_cost_i < best_block_rd_cost) {
        best_block_rd_cost = best_eob_cost_i;
        final_eob = i + 1;
      }
    }  // if (x==0)
  }    // for (i)

  assert(final_eob <= eob);
  if (final_eob > 0) {
    assert(tokens[final_eob - 1][1].qc != 0);
    i = final_eob - 1;
    int rc = scan[i];
    qcoeff[rc] = tokens[i][1].qc;
    dqcoeff[rc] = tokens[i][1].dqc;
  }

  for (i = final_eob; i < eob; i++) {
    int rc = scan[i];
    qcoeff[rc] = 0;
    dqcoeff[rc] = 0;
  }

  mb->plane[plane].eobs[block] = final_eob;
  return final_eob;

#else   // !CONFIG_PVQ
  (void)cm;
  (void)tx_size;
  (void)ctx;
  struct macroblock_plane *const p = &mb->plane[plane];
  return p->eobs[block];
#endif  // !CONFIG_PVQ
}

#else  // USE_GREEDY_OPTIMIZE_B

typedef struct av1_token_state {
  int64_t error;
  int rate;
  int16_t next;
  int16_t token;
  tran_low_t qc;
  tran_low_t dqc;
  uint8_t best_index;
} av1_token_state;

int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block,
                   TX_SIZE tx_size, int ctx) {
#if !CONFIG_PVQ
  MACROBLOCKD *const xd = &mb->e_mbd;
  struct macroblock_plane *const p = &mb->plane[plane];
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const int ref = is_inter_block(&xd->mi[0]->mbmi);
  av1_token_state tokens[MAX_TX_SQUARE + 1][2];
  uint8_t token_cache[MAX_TX_SQUARE];
  const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
  tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
  const int eob = p->eobs[block];
  const PLANE_TYPE plane_type = pd->plane_type;
  const int default_eob = tx_size_2d[tx_size];
  const int16_t *const dequant_ptr = pd->dequant;
  const uint8_t *const band_translate = get_band_translate(tx_size);
  TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
  const SCAN_ORDER *const scan_order =
      get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
  const int16_t *const scan = scan_order->scan;
  const int16_t *const nb = scan_order->neighbors;
  int dqv;
  const int shift = av1_get_tx_scale(tx_size);
#if CONFIG_AOM_QM
  int seg_id = xd->mi[0]->mbmi.segment_id;
  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
#endif
#if CONFIG_NEW_QUANT
  int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
  const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#elif !CONFIG_AOM_QM
  const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
#endif  // CONFIG_NEW_QUANT
  int next = eob, sz = 0;
  const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
  const int64_t rddiv = mb->rddiv;
  int64_t rd_cost0, rd_cost1;
  int rate0, rate1;
  int64_t error0, error1;
  int16_t t0, t1;
  int best, band = (eob < default_eob) ? band_translate[eob]
                                       : band_translate[eob - 1];
  int pt, i, final_eob;
#if CONFIG_HIGHBITDEPTH
  const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
#else
  const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, 8);
#endif
  unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
      mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
  const uint16_t *band_counts = &band_count_table[tx_size][band];
  uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1;
  int shortcut = 0;
  int next_shortcut = 0;

#if CONFIG_EXT_DELTA_Q
  const int qindex = cm->seg.enabled
                         ? av1_get_qindex(&cm->seg, xd->mi[0]->mbmi.segment_id,
                                          cm->base_qindex)
                         : cm->base_qindex;
  if (qindex == 0) {
    assert((qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
  }
#else
  assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
#endif

  token_costs += band;

  assert((!plane_type && !plane) || (plane_type && plane));
  assert(eob <= default_eob);

  /* Now set up a Viterbi trellis to evaluate alternative roundings. */
  /* Initialize the sentinel node of the trellis. */
  tokens[eob][0].rate = 0;
  tokens[eob][0].error = 0;
  tokens[eob][0].next = default_eob;
  tokens[eob][0].token = EOB_TOKEN;
  tokens[eob][0].qc = 0;
  tokens[eob][1] = tokens[eob][0];

  for (i = 0; i < eob; i++) {
    const int rc = scan[i];
    tokens[i][0].rate = av1_get_token_cost(qcoeff[rc], &t0, cat6_bits);
    tokens[i][0].token = t0;
    token_cache[rc] = av1_pt_energy_class[t0];
  }

  for (i = eob; i-- > 0;) {
    int base_bits, dx;
    int64_t d2;
    const int rc = scan[i];
    int x = qcoeff[rc];
#if CONFIG_AOM_QM
    int iwt = iqmatrix[rc];
    dqv = dequant_ptr[rc != 0];
    dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#else
    dqv = dequant_ptr[rc != 0];
#endif
    next_shortcut = shortcut;

    /* Only add a trellis state for non-zero coefficients. */
    if (UNLIKELY(x)) {
      error0 = tokens[next][0].error;
      error1 = tokens[next][1].error;
      /* Evaluate the first possibility for this state. */
      rate0 = tokens[next][0].rate;
      rate1 = tokens[next][1].rate;

      if (next_shortcut) {
        /* Consider both possible successor states. */
        if (next < default_eob) {
          pt = get_coef_context(nb, token_cache, i + 1);
          rate0 +=
              get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
          rate1 +=
              get_token_bit_costs(*token_costs, 0, pt, tokens[next][1].token);
        }
        UPDATE_RD_COST();
        /* And pick the best. */
        best = rd_cost1 < rd_cost0;
      } else {
        if (next < default_eob) {
          pt = get_coef_context(nb, token_cache, i + 1);
          rate0 +=
              get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
        }
        best = 0;
      }

      dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        dx >>= xd->bd - 8;
      }
#endif  // CONFIG_HIGHBITDEPTH
      d2 = (int64_t)dx * dx;
      tokens[i][0].rate += (best ? rate1 : rate0);
      tokens[i][0].error = d2 + (best ? error1 : error0);
      tokens[i][0].next = next;
      tokens[i][0].qc = x;
      tokens[i][0].dqc = dqcoeff[rc];
      tokens[i][0].best_index = best;

      /* Evaluate the second possibility for this state. */
      rate0 = tokens[next][0].rate;
      rate1 = tokens[next][1].rate;

      // The threshold of 3 is empirically obtained.
      if (UNLIKELY(abs(x) > 3)) {
        shortcut = 0;
      } else {
#if CONFIG_NEW_QUANT
        shortcut = ((av1_dequant_abscoeff_nuq(abs(x), dqv,
                                              dequant_val[band_translate[i]]) >
                     (abs(coeff[rc]) << shift)) &&
                    (av1_dequant_abscoeff_nuq(abs(x) - 1, dqv,
                                              dequant_val[band_translate[i]]) <
                     (abs(coeff[rc]) << shift)));
#else  // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
        if ((abs(x) * dequant_ptr[rc != 0] * iwt >
             ((abs(coeff[rc]) << shift) << AOM_QM_BITS)) &&
            (abs(x) * dequant_ptr[rc != 0] * iwt <
             (((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])
              << AOM_QM_BITS)))
#else
        if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
            (abs(x) * dequant_ptr[rc != 0] <
             (abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]))
#endif  // CONFIG_AOM_QM
          shortcut = 1;
        else
          shortcut = 0;
#endif  // CONFIG_NEW_QUANT
      }

      if (shortcut) {
        sz = -(x < 0);
        x -= 2 * sz + 1;
      } else {
        tokens[i][1] = tokens[i][0];
        next = i;

        if (UNLIKELY(!(--band_left))) {
          --band_counts;
          band_left = *band_counts;
          --token_costs;
        }
        continue;
      }

      /* Consider both possible successor states. */
      if (!x) {
        /* If we reduced this coefficient to zero, check to see if
         *  we need to move the EOB back here.
         */
        t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
        t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
        base_bits = 0;
      } else {
        base_bits = av1_get_token_cost(x, &t0, cat6_bits);
        t1 = t0;
      }

      if (next_shortcut) {
        if (LIKELY(next < default_eob)) {
          if (t0 != EOB_TOKEN) {
            token_cache[rc] = av1_pt_energy_class[t0];
            pt = get_coef_context(nb, token_cache, i + 1);
            rate0 += get_token_bit_costs(*token_costs, !x, pt,
                                         tokens[next][0].token);
          }
          if (t1 != EOB_TOKEN) {
            token_cache[rc] = av1_pt_energy_class[t1];
            pt = get_coef_context(nb, token_cache, i + 1);
            rate1 += get_token_bit_costs(*token_costs, !x, pt,
                                         tokens[next][1].token);
          }
        }

        UPDATE_RD_COST();
        /* And pick the best. */
        best = rd_cost1 < rd_cost0;
      } else {
        // The two states in next stage are identical.
        if (next < default_eob && t0 != EOB_TOKEN) {
          token_cache[rc] = av1_pt_energy_class[t0];
          pt = get_coef_context(nb, token_cache, i + 1);
          rate0 +=
              get_token_bit_costs(*token_costs, !x, pt, tokens[next][0].token);
        }
        best = 0;
      }

#if CONFIG_NEW_QUANT
      dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
           (coeff[rc] << shift);
#if CONFIG_HIGHBITDEPTH
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        dx >>= xd->bd - 8;
      }
#endif  // CONFIG_HIGHBITDEPTH
#else   // CONFIG_NEW_QUANT
#if CONFIG_HIGHBITDEPTH
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
      } else {
        dx -= (dqv + sz) ^ sz;
      }
#else
      dx -= (dqv + sz) ^ sz;
#endif  // CONFIG_HIGHBITDEPTH
#endif  // CONFIG_NEW_QUANT
      d2 = (int64_t)dx * dx;

      tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
      tokens[i][1].error = d2 + (best ? error1 : error0);
      tokens[i][1].next = next;
      tokens[i][1].token = best ? t1 : t0;
      tokens[i][1].qc = x;

      if (x) {
#if CONFIG_NEW_QUANT
        tokens[i][1].dqc = av1_dequant_abscoeff_nuq(
            abs(x), dqv, dequant_val[band_translate[i]]);
        tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift)
                                 : tokens[i][1].dqc;
        if (sz) tokens[i][1].dqc = -tokens[i][1].dqc;
#else
// The 32x32 transform coefficient uses half quantization step size.
// Account for the rounding difference in the dequantized coefficeint
// value when the quantization index is dropped from an even number
// to an odd number.

#if CONFIG_AOM_QM
        tran_low_t offset = dqv >> shift;
#else
        tran_low_t offset = dq_step[rc != 0];
#endif
        if (shift & x) offset += (dqv & 0x01);

        if (sz == 0)
          tokens[i][1].dqc = dqcoeff[rc] - offset;
        else
          tokens[i][1].dqc = dqcoeff[rc] + offset;
#endif  // CONFIG_NEW_QUANT
      } else {
        tokens[i][1].dqc = 0;
      }

      tokens[i][1].best_index = best;
      /* Finally, make this the new head of the trellis. */
      next = i;
    } else {
      /* There's no choice to make for a zero coefficient, so we don't
       *  add a new trellis node, but we do need to update the costs.
       */
      t0 = tokens[next][0].token;
      t1 = tokens[next][1].token;
      pt = get_coef_context(nb, token_cache, i + 1);
      /* Update the cost of each path if we're past the EOB token. */
      if (t0 != EOB_TOKEN) {
        tokens[next][0].rate += get_token_bit_costs(*token_costs, 1, pt, t0);
        tokens[next][0].token = ZERO_TOKEN;
      }
      if (t1 != EOB_TOKEN) {
        tokens[next][1].rate += get_token_bit_costs(*token_costs, 1, pt, t1);
        tokens[next][1].token = ZERO_TOKEN;
      }
      tokens[i][0].best_index = tokens[i][1].best_index = 0;
      shortcut = (tokens[next][0].rate != tokens[next][1].rate);
      /* Don't update next, because we didn't add a new node. */
    }

    if (UNLIKELY(!(--band_left))) {
      --band_counts;
      band_left = *band_counts;
      --token_costs;
    }
  }

  /* Now pick the best path through the whole trellis. */
  rate0 = tokens[next][0].rate;
  rate1 = tokens[next][1].rate;
  error0 = tokens[next][0].error;
  error1 = tokens[next][1].error;
  t0 = tokens[next][0].token;
  t1 = tokens[next][1].token;
  rate0 += get_token_bit_costs(*token_costs, 0, ctx, t0);
  rate1 += get_token_bit_costs(*token_costs, 0, ctx, t1);
  UPDATE_RD_COST();
  best = rd_cost1 < rd_cost0;

  final_eob = -1;

  for (i = next; i < eob; i = next) {
    const int x = tokens[i][best].qc;
    const int rc = scan[i];
    if (x) final_eob = i;
    qcoeff[rc] = x;
    dqcoeff[rc] = tokens[i][best].dqc;

    next = tokens[i][best].next;
    best = tokens[i][best].best_index;
  }
  final_eob++;

  mb->plane[plane].eobs[block] = final_eob;
  assert(final_eob <= default_eob);
  return final_eob;
#else   // !CONFIG_PVQ
  (void)cm;
  (void)tx_size;
  (void)ctx;
  struct macroblock_plane *const p = &mb->plane[plane];
  return p->eobs[block];
#endif  // !CONFIG_PVQ
}

#endif  // USE_GREEDY_OPTIMIZE_B

#if !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
typedef enum QUANT_FUNC {
  QUANT_FUNC_LOWBD = 0,
  QUANT_FUNC_HIGHBD = 1,
  QUANT_FUNC_TYPES = 2
} QUANT_FUNC;

static AV1_QUANT_FACADE
    quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
      { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
      { av1_quantize_b_facade, av1_highbd_quantize_b_facade },
      { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
#else   // !CONFIG_NEW_QUANT
      { av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade },
      { av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade },
      { av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade },
#endif  // !CONFIG_NEW_QUANT
      { NULL, NULL }
    };

#else

typedef enum QUANT_FUNC {
  QUANT_FUNC_LOWBD = 0,
  QUANT_FUNC_TYPES = 1
} QUANT_FUNC;

static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES]
                                       [QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
                                         { av1_quantize_fp_facade },
                                         { av1_quantize_b_facade },
                                         { av1_quantize_dc_facade },
#else   // !CONFIG_NEW_QUANT
                                         { av1_quantize_fp_nuq_facade },
                                         { av1_quantize_b_nuq_facade },
                                         { av1_quantize_dc_nuq_facade },
#endif  // !CONFIG_NEW_QUANT
                                         { NULL }
                                       };
#endif  // CONFIG_HIGHBITDEPTH
#endif  // CONFIG_PVQ

void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
                     int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
                     TX_SIZE tx_size, int ctx,
                     AV1_XFORM_QUANT xform_quant_idx) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if !(CONFIG_PVQ || CONFIG_DAALA_DIST)
  const struct macroblock_plane *const p = &x->plane[plane];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
  struct macroblock_plane *const p = &x->plane[plane];
  struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
  PLANE_TYPE plane_type = get_plane_type(plane);
  TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
  const int is_inter = is_inter_block(mbmi);
  const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter);
  tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
  tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
  uint16_t *const eob = &p->eobs[block];
  const int diff_stride = block_size_wide[plane_bsize];
#if CONFIG_AOM_QM
  int seg_id = mbmi->segment_id;
  const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size];
  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size];
#endif

  FWD_TXFM_PARAM fwd_txfm_param;

#if CONFIG_PVQ || CONFIG_DAALA_DIST
  uint8_t *dst;
  int16_t *pred;
  const int dst_stride = pd->dst.stride;
  int tx_blk_size;
  int i, j;
#endif

#if !CONFIG_PVQ
  const int tx2d_size = tx_size_2d[tx_size];
  QUANT_PARAM qparam;
  const int16_t *src_diff;

  src_diff =
      &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
  qparam.log_scale = av1_get_tx_scale(tx_size);
#if CONFIG_NEW_QUANT
  qparam.tx_size = tx_size;
  qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
#endif  // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
  qparam.qmatrix = qmatrix;
  qparam.iqmatrix = iqmatrix;
#endif  // CONFIG_AOM_QM
#else
  tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
  int skip = 1;
  PVQ_INFO *pvq_info = NULL;
  uint8_t *src;
  int16_t *src_int16;
  const int src_stride = p->src.stride;

  (void)ctx;
  (void)scan_order;
  (void)qcoeff;

  if (x->pvq_coded) {
    assert(block < MAX_PVQ_BLOCKS_IN_SB);
    pvq_info = &x->pvq[block][plane];
  }
  src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
  src_int16 =
      &p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];

  // transform block size in pixels
  tx_blk_size = tx_size_wide[tx_size];
#if CONFIG_HIGHBITDEPTH
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    for (j = 0; j < tx_blk_size; j++)
      for (i = 0; i < tx_blk_size; i++)
        src_int16[diff_stride * j + i] =
            CONVERT_TO_SHORTPTR(src)[src_stride * j + i];
  } else {
#endif  // CONFIG_HIGHBITDEPTH
    for (j = 0; j < tx_blk_size; j++)
      for (i = 0; i < tx_blk_size; i++)
        src_int16[diff_stride * j + i] = src[src_stride * j + i];
#if CONFIG_HIGHBITDEPTH
  }
#endif  // CONFIG_HIGHBITDEPTH
#endif

#if CONFIG_PVQ || CONFIG_DAALA_DIST
  dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
  pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];

  // transform block size in pixels
  tx_blk_size = tx_size_wide[tx_size];

// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
#if CONFIG_HIGHBITDEPTH
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    for (j = 0; j < tx_blk_size; j++)
      for (i = 0; i < tx_blk_size; i++)
        pred[diff_stride * j + i] =
            CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i];
  } else {
#endif  // CONFIG_HIGHBITDEPTH
    for (j = 0; j < tx_blk_size; j++)
      for (i = 0; i < tx_blk_size; i++)
        pred[diff_stride * j + i] = dst[dst_stride * j + i];
#if CONFIG_HIGHBITDEPTH
  }
#endif  // CONFIG_HIGHBITDEPTH
#endif

  (void)ctx;

  fwd_txfm_param.tx_type = tx_type;
  fwd_txfm_param.tx_size = tx_size;
  fwd_txfm_param.lossless = xd->lossless[mbmi->segment_id];

#if !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
  fwd_txfm_param.bd = xd->bd;
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
    if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
      if (LIKELY(!x->skip_block)) {
        quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD](
            coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
      } else {
        av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
      }
    }
#if CONFIG_LV_MAP
    p->txb_entropy_ctx[block] =
        (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif  // CONFIG_LV_MAP
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  av1_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
  if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
    if (LIKELY(!x->skip_block)) {
      quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD](
          coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
    } else {
      av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
    }
  }
#if CONFIG_LV_MAP
  p->txb_entropy_ctx[block] =
      (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif  // CONFIG_LV_MAP
#else   // #if !CONFIG_PVQ
  (void)xform_quant_idx;
#if CONFIG_HIGHBITDEPTH
  fwd_txfm_param.bd = xd->bd;
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
    av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
  } else {
#endif
    av1_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
    av1_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
#if CONFIG_HIGHBITDEPTH
  }
#endif

  // PVQ for inter mode block
  if (!x->skip_block) {
    PVQ_SKIP_TYPE ac_dc_coded =
        av1_pvq_encode_helper(x,
                              coeff,        // target original vector
                              ref_coeff,    // reference vector
                              dqcoeff,      // de-quantized vector
                              eob,          // End of Block marker
                              pd->dequant,  // aom's quantizers
                              plane,        // image plane
                              tx_size,      // block size in log_2 - 2
                              tx_type,
                              &x->rate,  // rate measured
                              x->pvq_speed,
                              pvq_info);  // PVQ info for a block
    skip = ac_dc_coded == PVQ_SKIP;
  }
  x->pvq_skip[plane] = skip;

  if (!skip) mbmi->skip = 0;
#endif  // #if !CONFIG_PVQ
}

static void encode_block(int plane, int block, int blk_row, int blk_col,
                         BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
  struct encode_b_args *const args = arg;
  AV1_COMMON *cm = args->cm;
  MACROBLOCK *const x = args->x;
  MACROBLOCKD *const xd = &x->e_mbd;
  int ctx;
  struct macroblock_plane *const p = &x->plane[plane];
  struct macroblockd_plane *const pd = &xd->plane[plane];
  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
  uint8_t *dst;
#if !CONFIG_PVQ
  ENTROPY_CONTEXT *a, *l;
#endif
#if CONFIG_VAR_TX
  int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
#endif
  dst = &pd->dst
             .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];

#if !CONFIG_PVQ
  a = &args->ta[blk_col];
  l = &args->tl[blk_row];
#if CONFIG_VAR_TX
  ctx = get_entropy_context(tx_size, a, l);
#else
  ctx = combine_entropy_contexts(*a, *l);
#endif
#else
  ctx = 0;
#endif  // CONFIG_PVQ

#if CONFIG_VAR_TX
  // Assert not magic number (uninitialized).
  assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234);

  if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) {
#else
  {
#endif
    av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
                    ctx, AV1_XFORM_QUANT_FP);
  }
#if CONFIG_VAR_TX
  else {
    p->eobs[block] = 0;
  }
#endif

#if !CONFIG_PVQ
  if (p->eobs[block] && !xd->lossless[xd->mi[0]->mbmi.segment_id])
    av1_optimize_b(cm, x, plane, block, tx_size, ctx);

  av1_set_txb_context(x, plane, block, tx_size, a, l);

  if (p->eobs[block]) *(args->skip) = 0;

  if (p->eobs[block] == 0) return;
#else
  (void)ctx;
  if (!x->pvq_skip[plane]) *(args->skip) = 0;

  if (x->pvq_skip[plane]) return;
#endif
  TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
  av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst,
                              pd->dst.stride, p->eobs[block]);
}

#if CONFIG_VAR_TX
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
                               void *arg) {
  struct encode_b_args *const args = arg;
  MACROBLOCK *const x = args->x;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
  const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int tx_row = blk_row >> (1 - pd->subsampling_y);
  const int tx_col = blk_col >> (1 - pd->subsampling_x);
  TX_SIZE plane_tx_size;
  const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);

  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  plane_tx_size =
      plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
            : mbmi->inter_tx_size[tx_row][tx_col];

  if (tx_size == plane_tx_size) {
    encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
  } else {
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    // This is the square transform block partition entry point.
    int bsl = tx_size_wide_unit[sub_txs];
    int i;
    assert(bsl > 0);
    assert(tx_size < TX_SIZES_ALL);

    for (i = 0; i < 4; ++i) {
      const int offsetr = blk_row + ((i >> 1) * bsl);
      const int offsetc = blk_col + ((i & 0x01) * bsl);
      int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];

      if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;

      encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
                         arg);
      block += step;
    }
  }
}
#endif

typedef struct encode_block_pass1_args {
  AV1_COMMON *cm;
  MACROBLOCK *x;
} encode_block_pass1_args;

static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
                               void *arg) {
  encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
  AV1_COMMON *cm = args->cm;
  MACROBLOCK *const x = args->x;
  MACROBLOCKD *const xd = &x->e_mbd;
  struct macroblock_plane *const p = &x->plane[plane];
  struct macroblockd_plane *const pd = &xd->plane[plane];
  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
  uint8_t *dst;
  int ctx = 0;
  dst = &pd->dst
             .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];

  av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
                  ctx, AV1_XFORM_QUANT_B);
#if !CONFIG_PVQ
  if (p->eobs[block] > 0) {
#else
  if (!x->pvq_skip[plane]) {
    {
      int tx_blk_size;
      int i, j;
      // transform block size in pixels
      tx_blk_size = tx_size_wide[tx_size];

// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
#if CONFIG_HIGHBITDEPTH
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        for (j = 0; j < tx_blk_size; j++)
          for (i = 0; i < tx_blk_size; i++)
            CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0;
      } else {
#endif  // CONFIG_HIGHBITDEPTH
        for (j = 0; j < tx_blk_size; j++)
          for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
#if CONFIG_HIGHBITDEPTH
      }
#endif  // CONFIG_HIGHBITDEPTH
    }
#endif  // !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
        av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
                               xd->bd);
      } else {
        av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
                               xd->bd);
      }
      return;
    }
#endif  //  CONFIG_HIGHBITDEPTH
    if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
      av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
    } else {
      av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
    }
  }
}

void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
  encode_block_pass1_args args = { cm, x };
  av1_subtract_plane(x, bsize, 0);
  av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
                                         encode_block_pass1, &args);
}

void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize,
                   const int mi_row, const int mi_col) {
  MACROBLOCKD *const xd = &x->e_mbd;
  struct optimize_ctx ctx;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
  struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
  int plane;

  mbmi->skip = 1;

  if (x->skip) return;

  for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
    const int subsampling_x = xd->plane[plane].subsampling_x;
    const int subsampling_y = xd->plane[plane].subsampling_y;

    if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x,
                             subsampling_y))
      continue;

    bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y);
#else
    (void)mi_row;
    (void)mi_col;
#endif

#if CONFIG_VAR_TX
    // TODO(jingning): Clean this up.
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
    const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
    const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
    const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
    const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
    const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
    const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
    int idx, idy;
    int block = 0;
    int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
    av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]);
#else
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const TX_SIZE tx_size = get_tx_size(plane, xd);
    av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
#endif

#if !CONFIG_PVQ
    av1_subtract_plane(x, bsize, plane);
#endif
    arg.ta = ctx.ta[plane];
    arg.tl = ctx.tl[plane];

#if CONFIG_VAR_TX
    for (idy = 0; idy < mi_height; idy += bh) {
      for (idx = 0; idx < mi_width; idx += bw) {
        encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size,
                           &arg);
        block += step;
      }
    }
#else
    av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
                                           &arg);
#endif
  }
}

#if CONFIG_SUPERTX
void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
  MACROBLOCKD *const xd = &x->e_mbd;
  struct optimize_ctx ctx;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
  struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
  int plane;

  mbmi->skip = 1;
  if (x->skip) return;

  for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
    const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_VAR_TX
    const TX_SIZE tx_size = TX_4X4;
#else
    const TX_SIZE tx_size = get_tx_size(plane, xd);
#endif
    av1_subtract_plane(x, bsize, plane);
    av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
    arg.ta = ctx.ta[plane];
    arg.tl = ctx.tl[plane];
    av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
                                           &arg);
  }
}
#endif  // CONFIG_SUPERTX

#if !CONFIG_PVQ
void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
                         ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
  (void)tx_size;
  struct macroblock_plane *p = &x->plane[plane];

#if !CONFIG_LV_MAP
  *a = *l = p->eobs[block] > 0;
#else   // !CONFIG_LV_MAP
  *a = *l = p->txb_entropy_ctx[block];
#endif  // !CONFIG_LV_MAP

#if CONFIG_VAR_TX || CONFIG_LV_MAP
  int i;
  for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0];

  for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0];
#endif
}
#endif

static void encode_block_intra_and_set_context(int plane, int block,
                                               int blk_row, int blk_col,
                                               BLOCK_SIZE plane_bsize,
                                               TX_SIZE tx_size, void *arg) {
  av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
                         arg);
#if !CONFIG_PVQ
  struct encode_b_args *const args = arg;
  MACROBLOCK *x = args->x;
  ENTROPY_CONTEXT *a = &args->ta[blk_col];
  ENTROPY_CONTEXT *l = &args->tl[blk_row];
  av1_set_txb_context(x, plane, block, tx_size, a, l);
#endif
}

void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
                            BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
                            void *arg) {
  struct encode_b_args *const args = arg;
  AV1_COMMON *cm = args->cm;
  MACROBLOCK *const x = args->x;
  MACROBLOCKD *const xd = &x->e_mbd;
  struct macroblock_plane *const p = &x->plane[plane];
  struct macroblockd_plane *const pd = &xd->plane[plane];
  tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
  PLANE_TYPE plane_type = get_plane_type(plane);
  const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
  uint16_t *eob = &p->eobs[block];
  const int dst_stride = pd->dst.stride;
  uint8_t *dst =
      &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
  av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size);
  av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);

  const ENTROPY_CONTEXT *a = &args->ta[blk_col];
  const ENTROPY_CONTEXT *l = &args->tl[blk_row];
  int ctx = combine_entropy_contexts(*a, *l);
  if (args->enable_optimize_b) {
    av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
                    ctx, AV1_XFORM_QUANT_FP);
    if (p->eobs[block]) {
      av1_optimize_b(cm, x, plane, block, tx_size, ctx);
    }
  } else {
    av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
                    ctx, AV1_XFORM_QUANT_B);
  }

#if CONFIG_PVQ
  // *(args->skip) == mbmi->skip
  if (!x->pvq_skip[plane]) *(args->skip) = 0;

  if (x->pvq_skip[plane]) return;
#endif  // CONFIG_PVQ
  av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, dst_stride,
                              *eob);
#if !CONFIG_PVQ
  if (*eob) *(args->skip) = 0;
#else
// Note : *(args->skip) == mbmi->skip
#endif
#if CONFIG_CFL
  if (plane == AOM_PLANE_Y && x->cfl_store_y) {
    cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size);
  }
#endif
}

void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
                                  BLOCK_SIZE bsize, int plane,
                                  int enable_optimize_b, const int mi_row,
                                  const int mi_col) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 };
  ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 };

  struct encode_b_args arg = {
    cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b
  };

#if CONFIG_CB4X4
  if (!is_chroma_reference(mi_row, mi_col, bsize,
                           xd->plane[plane].subsampling_x,
                           xd->plane[plane].subsampling_y))
    return;
#else
  (void)mi_row;
  (void)mi_col;
#endif

  if (enable_optimize_b) {
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const TX_SIZE tx_size = get_tx_size(plane, xd);
    av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
  }
  av1_foreach_transformed_block_in_plane(
      xd, bsize, plane, encode_block_intra_and_set_context, &arg);
}

#if CONFIG_PVQ
PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff,
                                    tran_low_t *ref_coeff,
                                    tran_low_t *const dqcoeff, uint16_t *eob,
                                    const int16_t *quant, int plane,
                                    int tx_size, TX_TYPE tx_type, int *rate,
                                    int speed, PVQ_INFO *pvq_info) {
  const int tx_blk_size = tx_size_wide[tx_size];
  daala_enc_ctx *daala_enc = &x->daala_enc;
  PVQ_SKIP_TYPE ac_dc_coded;
  int coeff_shift = 3 - av1_get_tx_scale(tx_size);
  int hbd_downshift = 0;
  int rounding_mask;
  int pvq_dc_quant;
  int use_activity_masking = daala_enc->use_activity_masking;
  int tell;
  int has_dc_skip = 1;
  int i;
  int off = od_qm_offset(tx_size, plane ? 1 : 0);

  DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
  DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
  DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);

  DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
  DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
  DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);

#if CONFIG_HIGHBITDEPTH
  hbd_downshift = x->e_mbd.bd - 8;
#endif

  assert(OD_COEFF_SHIFT >= 4);
  // DC quantizer for PVQ
  if (use_activity_masking)
    pvq_dc_quant =
        OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) *
                           daala_enc->state
                               .pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >>
                       4);
  else
    pvq_dc_quant =
        OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift);

  *eob = 0;

#if CONFIG_DAALA_EC
  tell = od_ec_enc_tell_frac(&daala_enc->w.ec);
#else
#error "CONFIG_PVQ currently requires CONFIG_DAALA_EC."
#endif

  // Change coefficient ordering for pvq encoding.
  od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff,
                            tx_blk_size);
  od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff,
                            tx_blk_size);

  // copy int16 inputs to int32
  for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
    ref_int32[i] =
        AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
        hbd_downshift;
    in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
                  hbd_downshift;
  }

  if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */
    out_int32[0] = 0;
  } else {
    out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant);
  }

  ac_dc_coded =
      od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32,
                    OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >>
                                   hbd_downshift),  // scale/quantizer
                    OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >>
                                   hbd_downshift),  // scale/quantizer
                    plane,
                    tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size],
                    0,  // is_keyframe,
                    daala_enc->state.qm + off, daala_enc->state.qm_inv + off,
                    speed,  // speed
                    pvq_info);

  // Encode residue of DC coeff, if required.
  if (!has_dc_skip || out_int32[0]) {
    generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane],
                   abs(out_int32[0]) - has_dc_skip,
                   &daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2);
  }
  if (out_int32[0]) {
    aom_write_bit(&daala_enc->w, out_int32[0] < 0);
  }

  // need to save quantized residue of DC coeff
  // so that final pvq bitstream writing can know whether DC is coded.
  if (pvq_info) pvq_info->dq_dc_residue = out_int32[0];

  out_int32[0] = out_int32[0] * pvq_dc_quant;
  out_int32[0] += ref_int32[0];

  // copy int32 result back to int16
  assert(OD_COEFF_SHIFT > coeff_shift);
  rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1;
  for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
    out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift);
    dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >>
                     (OD_COEFF_SHIFT - coeff_shift);
  }

  // Back to original coefficient order
  od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq,
                            tx_blk_size);

  *eob = tx_blk_size * tx_blk_size;

#if CONFIG_DAALA_EC
  *rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell)
          << (AV1_PROB_COST_SHIFT - OD_BITRES);
#else
#error "CONFIG_PVQ currently requires CONFIG_DAALA_EC."
#endif
  assert(*rate >= 0);

  return ac_dc_coded;
}

void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k,
                            od_coeff *y, int nb_bands, const int *off,
                            int *size, int skip_rest, int skip_dir,
                            int bs) {  // block size in log_2 -2
  int i;
  const int tx_blk_size = tx_size_wide[bs];

  for (i = 0; i < nb_bands; i++) {
    pvq_info->qg[i] = qg[i];
    pvq_info->theta[i] = theta[i];
    pvq_info->k[i] = k[i];
    pvq_info->off[i] = off[i];
    pvq_info->size[i] = size[i];
  }

  memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff));

  pvq_info->nb_bands = nb_bands;
  pvq_info->skip_rest = skip_rest;
  pvq_info->skip_dir = skip_dir;
  pvq_info->bs = bs;
}
#endif