1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
|
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#define _POSIX_C_SOURCE 200112L // rand_r()
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "av1/encoder/bgsprite.h"
#include "aom_mem/aom_mem.h"
#include "./aom_scale_rtcd.h"
#include "av1/common/mv.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/mathutils.h"
#include "av1/encoder/temporal_filter.h"
/* Blending Modes:
* 0 = Median
* 1 = Mean
*/
#define BGSPRITE_BLENDING_MODE 1
// Enable removal of outliers from mean blending mode.
#if BGSPRITE_BLENDING_MODE == 1
#define BGSPRITE_MEAN_REMOVE_OUTLIERS 0
#endif // BGSPRITE_BLENDING_MODE == 1
/* Interpolation for panorama alignment sampling:
* 0 = Nearest neighbor
* 1 = Bilinear
*/
#define BGSPRITE_INTERPOLATION 0
// Enable turning off bgsprite from firstpass metrics in define_gf_group.
#define BGSPRITE_ENABLE_METRICS 1
// Enable foreground/backgrond segmentation and combine with temporal filter.
#define BGSPRITE_ENABLE_SEGMENTATION 1
// Enable alignment using global motion.
#define BGSPRITE_ENABLE_GME 0
// Block size for foreground mask.
#define BGSPRITE_MASK_BLOCK_SIZE 4
typedef struct {
#if CONFIG_HIGHBITDEPTH
uint16_t y;
uint16_t u;
uint16_t v;
#else
uint8_t y;
uint8_t u;
uint8_t v;
#endif // CONFIG_HIGHBITDEPTH
uint8_t exists;
} YuvPixel;
typedef struct {
int curr_model;
double mean[2];
double var[2];
int age[2];
double u_mean[2];
double v_mean[2];
#if CONFIG_HIGHBITDEPTH
uint16_t y;
uint16_t u;
uint16_t v;
#else
uint8_t y;
uint8_t u;
uint8_t v;
#endif // CONFIG_HIGHBITDEPTH
double final_var;
} YuvPixelGaussian;
// Maps to convert from matrix form to param vector form.
static const int params_to_matrix_map[] = { 2, 3, 0, 4, 5, 1, 6, 7 };
static const int matrix_to_params_map[] = { 2, 5, 0, 1, 3, 4, 6, 7 };
// Convert the parameter array to a 3x3 matrix form.
static void params_to_matrix(const double *const params, double *target) {
for (int i = 0; i < MAX_PARAMDIM - 1; i++) {
assert(params_to_matrix_map[i] < MAX_PARAMDIM - 1);
target[i] = params[params_to_matrix_map[i]];
}
target[8] = 1;
}
// Convert a 3x3 matrix to a parameter array form.
static void matrix_to_params(const double *const matrix, double *target) {
for (int i = 0; i < MAX_PARAMDIM - 1; i++) {
assert(matrix_to_params_map[i] < MAX_PARAMDIM - 1);
target[i] = matrix[matrix_to_params_map[i]];
}
}
#define TRANSFORM_MAT_DIM 3
// Do matrix multiplication on params.
static void multiply_params(double *const m1, double *const m2,
double *target) {
double m1_matrix[MAX_PARAMDIM];
double m2_matrix[MAX_PARAMDIM];
double result[MAX_PARAMDIM];
params_to_matrix(m1, m1_matrix);
params_to_matrix(m2, m2_matrix);
multiply_mat(m2_matrix, m1_matrix, result, TRANSFORM_MAT_DIM,
TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM);
matrix_to_params(result, target);
}
// Finds x and y limits of a single transformed image.
// Width and height are the size of the input video.
static void find_frame_limit(int width, int height,
const double *const transform, int *x_min,
int *x_max, int *y_min, int *y_max) {
double transform_matrix[MAX_PARAMDIM];
double xy_matrix[3] = { 0, 0, 1 };
double uv_matrix[3] = { 0 };
// Macro used to update frame limits based on transformed coordinates.
#define UPDATELIMITS(u, v, x_min, x_max, y_min, y_max) \
{ \
if ((int)ceil(u) > *x_max) { \
*x_max = (int)ceil(u); \
} \
if ((int)floor(u) < *x_min) { \
*x_min = (int)floor(u); \
} \
if ((int)ceil(v) > *y_max) { \
*y_max = (int)ceil(v); \
} \
if ((int)floor(v) < *y_min) { \
*y_min = (int)floor(v); \
} \
}
params_to_matrix(transform, transform_matrix);
xy_matrix[0] = 0;
xy_matrix[1] = 0;
multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
TRANSFORM_MAT_DIM, 1);
*x_max = (int)ceil(uv_matrix[0]);
*x_min = (int)floor(uv_matrix[0]);
*y_max = (int)ceil(uv_matrix[1]);
*y_min = (int)floor(uv_matrix[1]);
xy_matrix[0] = width - 1;
xy_matrix[1] = 0;
multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
TRANSFORM_MAT_DIM, 1);
UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max);
xy_matrix[0] = width - 1;
xy_matrix[1] = height - 1;
multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
TRANSFORM_MAT_DIM, 1);
UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max);
xy_matrix[0] = 0;
xy_matrix[1] = height - 1;
multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
TRANSFORM_MAT_DIM, 1);
UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max);
#undef UPDATELIMITS
}
// Finds x and y limits for arrays. Also finds the overall max and minimums
static void find_limits(int width, int height, const double **const params,
int num_frames, int *x_min, int *x_max, int *y_min,
int *y_max, int *pano_x_min, int *pano_x_max,
int *pano_y_min, int *pano_y_max) {
*pano_x_max = INT_MIN;
*pano_x_min = INT_MAX;
*pano_y_max = INT_MIN;
*pano_y_min = INT_MAX;
for (int i = 0; i < num_frames; ++i) {
find_frame_limit(width, height, (const double *const)params[i], &x_min[i],
&x_max[i], &y_min[i], &y_max[i]);
if (x_max[i] > *pano_x_max) {
*pano_x_max = x_max[i];
}
if (x_min[i] < *pano_x_min) {
*pano_x_min = x_min[i];
}
if (y_max[i] > *pano_y_max) {
*pano_y_max = y_max[i];
}
if (y_min[i] < *pano_y_min) {
*pano_y_min = y_min[i];
}
}
}
// Inverts a 3x3 matrix that is in the parameter form.
static void invert_params(const double *const params, double *target) {
double temp[MAX_PARAMDIM] = { 0 };
params_to_matrix(params, temp);
// Find determinant of matrix (expansion by minors).
const double det = temp[0] * ((temp[4] * temp[8]) - (temp[5] * temp[7])) -
temp[1] * ((temp[3] * temp[8]) - (temp[5] * temp[6])) +
temp[2] * ((temp[3] * temp[7]) - (temp[4] * temp[6]));
assert(det != 0);
// inverse is transpose of cofactor * 1/det.
double inverse[MAX_PARAMDIM] = { 0 };
inverse[0] = (temp[4] * temp[8] - temp[7] * temp[5]) / det;
inverse[1] = (temp[2] * temp[7] - temp[1] * temp[8]) / det;
inverse[2] = (temp[1] * temp[5] - temp[2] * temp[4]) / det;
inverse[3] = (temp[5] * temp[6] - temp[3] * temp[8]) / det;
inverse[4] = (temp[0] * temp[8] - temp[2] * temp[6]) / det;
inverse[5] = (temp[3] * temp[2] - temp[0] * temp[5]) / det;
inverse[6] = (temp[3] * temp[7] - temp[6] * temp[4]) / det;
inverse[7] = (temp[6] * temp[1] - temp[0] * temp[7]) / det;
inverse[8] = (temp[0] * temp[4] - temp[3] * temp[1]) / det;
matrix_to_params(inverse, target);
}
static void build_image_stack(YV12_BUFFER_CONFIG **const frames,
const int num_frames, const double **const params,
const int *const x_min, const int *const x_max,
const int *const y_min, const int *const y_max,
int pano_x_min, int pano_y_min,
YuvPixel ***img_stack) {
// Re-sample images onto panorama (pre-filtering).
const int x_offset = -pano_x_min;
const int y_offset = -pano_y_min;
const int frame_width = frames[0]->y_width;
const int frame_height = frames[0]->y_height;
for (int i = 0; i < num_frames; ++i) {
// Find transforms from panorama coordinate system back to single image
// coordinate system for sampling.
int transformed_width = x_max[i] - x_min[i] + 1;
int transformed_height = y_max[i] - y_min[i] + 1;
double transform_matrix[MAX_PARAMDIM];
double transform_params[MAX_PARAMDIM - 1];
invert_params(params[i], transform_params);
params_to_matrix(transform_params, transform_matrix);
#if CONFIG_HIGHBITDEPTH
const uint16_t *y_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->y_buffer);
const uint16_t *u_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->u_buffer);
const uint16_t *v_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->v_buffer);
#endif // CONFIG_HIGHBITDEPTH
for (int y = 0; y < transformed_height; ++y) {
for (int x = 0; x < transformed_width; ++x) {
// Do transform.
double xy_matrix[3] = { x + x_min[i], y + y_min[i], 1 };
double uv_matrix[3] = { 0 };
multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
TRANSFORM_MAT_DIM, 1);
// Coordinates used for nearest neighbor interpolation.
int image_x = (int)round(uv_matrix[0]);
int image_y = (int)round(uv_matrix[1]);
// Temporary values for bilinear interpolation
double interpolated_yvalue = 0.0;
double interpolated_uvalue = 0.0;
double interpolated_vvalue = 0.0;
double interpolated_fraction = 0.0;
int interpolation_count = 0;
#if BGSPRITE_INTERPOLATION == 1
// Coordintes used for bilinear interpolation.
double x_base;
double y_base;
double x_decimal = modf(uv_matrix[0], &x_base);
double y_decimal = modf(uv_matrix[1], &y_base);
if ((x_decimal > 0.2 && x_decimal < 0.8) ||
(y_decimal > 0.2 && y_decimal < 0.8)) {
for (int u = 0; u < 2; ++u) {
for (int v = 0; v < 2; ++v) {
int interp_x = (int)x_base + u;
int interp_y = (int)y_base + v;
if (interp_x >= 0 && interp_x < frame_width && interp_y >= 0 &&
interp_y < frame_height) {
interpolation_count++;
interpolated_fraction +=
fabs(u - x_decimal) * fabs(v - y_decimal);
int ychannel_idx = interp_y * frames[i]->y_stride + interp_x;
int uvchannel_idx = (interp_y >> frames[i]->subsampling_y) *
frames[i]->uv_stride +
(interp_x >> frames[i]->subsampling_x);
#if CONFIG_HIGHBITDEPTH
if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) {
interpolated_yvalue += (1 - fabs(u - x_decimal)) *
(1 - fabs(v - y_decimal)) *
y_buffer16[ychannel_idx];
interpolated_uvalue += (1 - fabs(u - x_decimal)) *
(1 - fabs(v - y_decimal)) *
u_buffer16[uvchannel_idx];
interpolated_vvalue += (1 - fabs(u - x_decimal)) *
(1 - fabs(v - y_decimal)) *
v_buffer16[uvchannel_idx];
} else {
#endif // CONFIG_HIGHBITDEPTH
interpolated_yvalue += (1 - fabs(u - x_decimal)) *
(1 - fabs(v - y_decimal)) *
frames[i]->y_buffer[ychannel_idx];
interpolated_uvalue += (1 - fabs(u - x_decimal)) *
(1 - fabs(v - y_decimal)) *
frames[i]->u_buffer[uvchannel_idx];
interpolated_vvalue += (1 - fabs(u - x_decimal)) *
(1 - fabs(v - y_decimal)) *
frames[i]->v_buffer[uvchannel_idx];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
}
}
}
#endif // BGSPRITE_INTERPOLATION == 1
if (BGSPRITE_INTERPOLATION && interpolation_count > 2) {
if (interpolation_count != 4) {
interpolated_yvalue /= interpolated_fraction;
interpolated_uvalue /= interpolated_fraction;
interpolated_vvalue /= interpolated_fraction;
}
int pano_x = x + x_min[i] + x_offset;
int pano_y = y + y_min[i] + y_offset;
#if CONFIG_HIGHBITDEPTH
if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) {
img_stack[pano_y][pano_x][i].y = (uint16_t)interpolated_yvalue;
img_stack[pano_y][pano_x][i].u = (uint16_t)interpolated_uvalue;
img_stack[pano_y][pano_x][i].v = (uint16_t)interpolated_vvalue;
img_stack[pano_y][pano_x][i].exists = 1;
} else {
#endif // CONFIG_HIGHBITDEPTH
img_stack[pano_y][pano_x][i].y = (uint8_t)interpolated_yvalue;
img_stack[pano_y][pano_x][i].u = (uint8_t)interpolated_uvalue;
img_stack[pano_y][pano_x][i].v = (uint8_t)interpolated_vvalue;
img_stack[pano_y][pano_x][i].exists = 1;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
} else if (image_x >= 0 && image_x < frame_width && image_y >= 0 &&
image_y < frame_height) {
// Place in panorama stack.
int pano_x = x + x_min[i] + x_offset;
int pano_y = y + y_min[i] + y_offset;
int ychannel_idx = image_y * frames[i]->y_stride + image_x;
int uvchannel_idx =
(image_y >> frames[i]->subsampling_y) * frames[i]->uv_stride +
(image_x >> frames[i]->subsampling_x);
#if CONFIG_HIGHBITDEPTH
if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) {
img_stack[pano_y][pano_x][i].y = y_buffer16[ychannel_idx];
img_stack[pano_y][pano_x][i].u = u_buffer16[uvchannel_idx];
img_stack[pano_y][pano_x][i].v = v_buffer16[uvchannel_idx];
img_stack[pano_y][pano_x][i].exists = 1;
} else {
#endif // CONFIG_HIGHBITDEPTH
img_stack[pano_y][pano_x][i].y = frames[i]->y_buffer[ychannel_idx];
img_stack[pano_y][pano_x][i].u = frames[i]->u_buffer[uvchannel_idx];
img_stack[pano_y][pano_x][i].v = frames[i]->v_buffer[uvchannel_idx];
img_stack[pano_y][pano_x][i].exists = 1;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
}
}
}
}
#if BGSPRITE_BLENDING_MODE == 0
// swaps two YuvPixels.
static void swap_yuv(YuvPixel *a, YuvPixel *b) {
const YuvPixel temp = *b;
*b = *a;
*a = temp;
}
// Partitions array to find pivot index in qselect.
static int partition(YuvPixel arr[], int left, int right, int pivot_idx) {
YuvPixel pivot = arr[pivot_idx];
// Move pivot to the end.
swap_yuv(&arr[pivot_idx], &arr[right]);
int p_idx = left;
for (int i = left; i < right; ++i) {
if (arr[i].y <= pivot.y) {
swap_yuv(&arr[i], &arr[p_idx]);
p_idx++;
}
}
swap_yuv(&arr[p_idx], &arr[right]);
return p_idx;
}
// Returns the kth element in array, partially sorted in place (quickselect).
static YuvPixel qselect(YuvPixel arr[], int left, int right, int k) {
if (left >= right) {
return arr[left];
}
unsigned int seed = (int)time(NULL);
int pivot_idx = left + rand_r(&seed) % (right - left + 1);
pivot_idx = partition(arr, left, right, pivot_idx);
if (k == pivot_idx) {
return arr[k];
} else if (k < pivot_idx) {
return qselect(arr, left, pivot_idx - 1, k);
} else {
return qselect(arr, pivot_idx + 1, right, k);
}
}
// Blends image stack together using a temporal median.
static void blend_median(const int width, const int height,
const int num_frames, const YuvPixel ***image_stack,
YuvPixel **blended_img) {
// Allocate stack of pixels
YuvPixel *pixel_stack = aom_calloc(num_frames, sizeof(*pixel_stack));
// Apply median filtering using quickselect.
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
int count = 0;
for (int i = 0; i < num_frames; ++i) {
if (image_stack[y][x][i].exists) {
pixel_stack[count] = image_stack[y][x][i];
++count;
}
}
if (count == 0) {
// Just make the pixel black.
// TODO(toddnguyen): Color the pixel with nearest neighbor
blended_img[y][x].exists = 0;
} else {
const int median_idx = (int)floor(count / 2);
YuvPixel median = qselect(pixel_stack, 0, count - 1, median_idx);
// Make the median value the 0th index for UV subsampling later
blended_img[y][x] = median;
blended_img[y][x].exists = 1;
}
}
}
aom_free(pixel_stack);
}
#endif // BGSPRITE_BLENDING_MODE == 0
#if BGSPRITE_BLENDING_MODE == 1
// Blends image stack together using a temporal mean.
static void blend_mean(const int width, const int height, const int num_frames,
const YuvPixel ***image_stack, YuvPixel **blended_img,
int highbitdepth) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
// Find
uint32_t y_sum = 0;
uint32_t u_sum = 0;
uint32_t v_sum = 0;
uint32_t count = 0;
for (int i = 0; i < num_frames; ++i) {
if (image_stack[y][x][i].exists) {
y_sum += image_stack[y][x][i].y;
u_sum += image_stack[y][x][i].u;
v_sum += image_stack[y][x][i].v;
++count;
}
}
#if BGSPRITE_MEAN_REMOVE_OUTLIERS
if (count > 1) {
double stdev = 0;
double y_mean = (double)y_sum / count;
for (int i = 0; i < num_frames; ++i) {
if (image_stack[y][x][i].exists) {
stdev += pow(y_mean - image_stack[y][x][i].y, 2);
}
}
stdev = sqrt(stdev / count);
uint32_t inlier_y_sum = 0;
uint32_t inlier_u_sum = 0;
uint32_t inlier_v_sum = 0;
uint32_t inlier_count = 0;
for (int i = 0; i < num_frames; ++i) {
if (image_stack[y][x][i].exists &&
fabs(image_stack[y][x][i].y - y_mean) <= 1.5 * stdev) {
inlier_y_sum += image_stack[y][x][i].y;
inlier_u_sum += image_stack[y][x][i].u;
inlier_v_sum += image_stack[y][x][i].v;
++inlier_count;
}
}
count = inlier_count;
y_sum = inlier_y_sum;
u_sum = inlier_u_sum;
v_sum = inlier_v_sum;
}
#endif // BGSPRITE_MEAN_REMOVE_OUTLIERS
if (count != 0) {
blended_img[y][x].exists = 1;
#if CONFIG_HIGHBITDEPTH
if (highbitdepth) {
blended_img[y][x].y = (uint16_t)OD_DIVU(y_sum, count);
blended_img[y][x].u = (uint16_t)OD_DIVU(u_sum, count);
blended_img[y][x].v = (uint16_t)OD_DIVU(v_sum, count);
} else {
#endif // CONFIG_HIGHBITDEPTH
(void)highbitdepth;
blended_img[y][x].y = (uint8_t)OD_DIVU(y_sum, count);
blended_img[y][x].u = (uint8_t)OD_DIVU(u_sum, count);
blended_img[y][x].v = (uint8_t)OD_DIVU(v_sum, count);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
} else {
blended_img[y][x].exists = 0;
}
}
}
}
#endif // BGSPRITE_BLENDING_MODE == 1
#if BGSPRITE_ENABLE_SEGMENTATION
// Builds dual-mode single gaussian model from image stack.
static void build_gaussian(const YuvPixel ***image_stack, const int num_frames,
const int width, const int height,
const int x_block_width, const int y_block_height,
const int block_size, YuvPixelGaussian **gauss) {
const double initial_variance = 10.0;
const double s_theta = 2.0;
// Add images to dual-mode single gaussian model
for (int y_block = 0; y_block < y_block_height; ++y_block) {
for (int x_block = 0; x_block < x_block_width; ++x_block) {
// Process all blocks.
YuvPixelGaussian *model = &gauss[y_block][x_block];
// Process all frames.
for (int i = 0; i < num_frames; ++i) {
// Add block to the Gaussian model.
double max_variance[2] = { 0.0, 0.0 };
double temp_y_mean = 0.0;
double temp_u_mean = 0.0;
double temp_v_mean = 0.0;
// Find mean/variance of a block of pixels.
int temp_count = 0;
for (int sub_y = 0; sub_y < block_size; ++sub_y) {
for (int sub_x = 0; sub_x < block_size; ++sub_x) {
const int y = y_block * block_size + sub_y;
const int x = x_block * block_size + sub_x;
if (y < height && x < width && image_stack[y][x][i].exists) {
++temp_count;
temp_y_mean += (double)image_stack[y][x][i].y;
temp_u_mean += (double)image_stack[y][x][i].u;
temp_v_mean += (double)image_stack[y][x][i].v;
const double variance_0 =
pow((double)image_stack[y][x][i].y - model->mean[0], 2);
const double variance_1 =
pow((double)image_stack[y][x][i].y - model->mean[1], 2);
if (variance_0 > max_variance[0]) {
max_variance[0] = variance_0;
}
if (variance_1 > max_variance[1]) {
max_variance[1] = variance_1;
}
}
}
}
// If pixels exist in the block, add to the model.
if (temp_count > 0) {
assert(temp_count <= block_size * block_size);
temp_y_mean /= temp_count;
temp_u_mean /= temp_count;
temp_v_mean /= temp_count;
// Switch the background model to the oldest model.
if (model->age[0] > model->age[1]) {
model->curr_model = 0;
} else if (model->age[1] > model->age[0]) {
model->curr_model = 1;
}
// If model is empty, initialize model.
if (model->age[model->curr_model] == 0) {
model->mean[model->curr_model] = temp_y_mean;
model->u_mean[model->curr_model] = temp_u_mean;
model->v_mean[model->curr_model] = temp_v_mean;
model->var[model->curr_model] = initial_variance;
model->age[model->curr_model] = 1;
} else {
// Constants for current model and foreground model (0 or 1).
const int opposite = 1 - model->curr_model;
const int current = model->curr_model;
const double j = i;
// Put block into the appropriate model.
if (pow(temp_y_mean - model->mean[current], 2) <
s_theta * model->var[current]) {
// Add block to the current background model
model->age[current] += 1;
const double prev_weight = 1 / j;
const double curr_weight = (j - 1) / j;
model->mean[current] = prev_weight * model->mean[current] +
curr_weight * temp_y_mean;
model->u_mean[current] = prev_weight * model->u_mean[current] +
curr_weight * temp_u_mean;
model->v_mean[current] = prev_weight * model->v_mean[current] +
curr_weight * temp_v_mean;
model->var[current] = prev_weight * model->var[current] +
curr_weight * max_variance[current];
} else {
// Block does not fit into current background candidate. Add to
// foreground candidate and reinitialize if necessary.
const double var_fg = pow(temp_y_mean - model->mean[opposite], 2);
if (var_fg <= s_theta * model->var[opposite]) {
model->age[opposite] += 1;
const double prev_weight = 1 / j;
const double curr_weight = (j - 1) / j;
model->mean[opposite] = prev_weight * model->mean[opposite] +
curr_weight * temp_y_mean;
model->u_mean[opposite] =
prev_weight * model->u_mean[opposite] +
curr_weight * temp_u_mean;
model->v_mean[opposite] =
prev_weight * model->v_mean[opposite] +
curr_weight * temp_v_mean;
model->var[opposite] = prev_weight * model->var[opposite] +
curr_weight * max_variance[opposite];
} else if (model->age[opposite] == 0 ||
var_fg > s_theta * model->var[opposite]) {
model->mean[opposite] = temp_y_mean;
model->u_mean[opposite] = temp_u_mean;
model->v_mean[opposite] = temp_v_mean;
model->var[opposite] = initial_variance;
model->age[opposite] = 1;
} else {
// This case should never happen.
assert(0);
}
}
}
}
}
// Select the oldest candidate as the background model.
if (model->age[0] == 0 && model->age[1] == 0) {
model->y = 0;
model->u = 0;
model->v = 0;
model->final_var = 0;
} else if (model->age[0] > model->age[1]) {
model->y = (uint8_t)model->mean[0];
model->u = (uint8_t)model->u_mean[0];
model->v = (uint8_t)model->v_mean[0];
model->final_var = model->var[0];
} else {
model->y = (uint8_t)model->mean[1];
model->u = (uint8_t)model->u_mean[1];
model->v = (uint8_t)model->v_mean[1];
model->final_var = model->var[1];
}
}
}
}
// Builds foreground mask based on reference image and gaussian model.
// In mask[][], 1 is foreground and 0 is background.
static void build_mask(const int x_min, const int y_min, const int x_offset,
const int y_offset, const int x_block_width,
const int y_block_height, const int block_size,
const YuvPixelGaussian **gauss,
YV12_BUFFER_CONFIG *const reference,
YV12_BUFFER_CONFIG *const panorama, uint8_t **mask) {
const int crop_x_offset = x_min + x_offset;
const int crop_y_offset = y_min + y_offset;
const double d_theta = 4.0;
for (int y_block = 0; y_block < y_block_height; ++y_block) {
for (int x_block = 0; x_block < x_block_width; ++x_block) {
// Create mask to determine if ARF is background for foreground.
const YuvPixelGaussian *model = &gauss[y_block][x_block];
double temp_y_mean = 0.0;
int temp_count = 0;
for (int sub_y = 0; sub_y < block_size; ++sub_y) {
for (int sub_x = 0; sub_x < block_size; ++sub_x) {
// x and y are panorama coordinates.
const int y = y_block * block_size + sub_y;
const int x = x_block * block_size + sub_x;
const int arf_y = y - crop_y_offset;
const int arf_x = x - crop_x_offset;
if (arf_y >= 0 && arf_y < panorama->y_height && arf_x >= 0 &&
arf_x < panorama->y_width) {
++temp_count;
const int ychannel_idx = arf_y * panorama->y_stride + arf_x;
temp_y_mean += (double)reference->y_buffer[ychannel_idx];
}
}
}
if (temp_count > 0) {
assert(temp_count <= block_size * block_size);
temp_y_mean /= temp_count;
if (pow(temp_y_mean - model->y, 2) > model->final_var * d_theta) {
// Mark block as foreground.
mask[y_block][x_block] = 1;
}
}
}
}
}
#endif // BGSPRITE_ENABLE_SEGMENTATION
// Resamples blended_img into panorama, including UV subsampling.
static void resample_panorama(YuvPixel **blended_img, const int center_idx,
const int *const x_min, const int *const y_min,
int pano_x_min, int pano_x_max, int pano_y_min,
int pano_y_max, YV12_BUFFER_CONFIG *panorama) {
const int width = pano_x_max - pano_x_min + 1;
const int height = pano_y_max - pano_y_min + 1;
const int x_offset = -pano_x_min;
const int y_offset = -pano_y_min;
const int crop_x_offset = x_min[center_idx] + x_offset;
const int crop_y_offset = y_min[center_idx] + y_offset;
#if CONFIG_HIGHBITDEPTH
if (panorama->flags & YV12_FLAG_HIGHBITDEPTH) {
// Use median Y value.
uint16_t *pano_y_buffer16 = CONVERT_TO_SHORTPTR(panorama->y_buffer);
uint16_t *pano_u_buffer16 = CONVERT_TO_SHORTPTR(panorama->u_buffer);
uint16_t *pano_v_buffer16 = CONVERT_TO_SHORTPTR(panorama->v_buffer);
for (int y = 0; y < panorama->y_height; ++y) {
for (int x = 0; x < panorama->y_width; ++x) {
const int ychannel_idx = y * panorama->y_stride + x;
if (blended_img[y + crop_y_offset][x + crop_x_offset].exists) {
pano_y_buffer16[ychannel_idx] =
blended_img[y + crop_y_offset][x + crop_x_offset].y;
} else {
pano_y_buffer16[ychannel_idx] = 0;
}
}
}
// UV subsampling with median UV values
for (int y = 0; y < panorama->uv_height; ++y) {
for (int x = 0; x < panorama->uv_width; ++x) {
uint32_t avg_count = 0;
uint32_t u_sum = 0;
uint32_t v_sum = 0;
// Look at surrounding pixels for subsampling
for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) {
for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) {
int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y;
int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x;
if (y_sample > 0 && y_sample < height && x_sample > 0 &&
x_sample < width && blended_img[y_sample][x_sample].exists) {
u_sum += blended_img[y_sample][x_sample].u;
v_sum += blended_img[y_sample][x_sample].v;
avg_count++;
}
}
}
const int uvchannel_idx = y * panorama->uv_stride + x;
if (avg_count != 0) {
pano_u_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(u_sum, avg_count);
pano_v_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(v_sum, avg_count);
} else {
pano_u_buffer16[uvchannel_idx] = 0;
pano_v_buffer16[uvchannel_idx] = 0;
}
}
}
} else {
#endif // CONFIG_HIGHBITDEPTH
// Use blended Y value.
for (int y = 0; y < panorama->y_height; ++y) {
for (int x = 0; x < panorama->y_width; ++x) {
const int ychannel_idx = y * panorama->y_stride + x;
// Use filtered background.
if (blended_img[y + crop_y_offset][x + crop_x_offset].exists) {
panorama->y_buffer[ychannel_idx] =
blended_img[y + crop_y_offset][x + crop_x_offset].y;
} else {
panorama->y_buffer[ychannel_idx] = 0;
}
}
}
// UV subsampling with blended UV values.
for (int y = 0; y < panorama->uv_height; ++y) {
for (int x = 0; x < panorama->uv_width; ++x) {
uint16_t avg_count = 0;
uint16_t u_sum = 0;
uint16_t v_sum = 0;
// Look at surrounding pixels for subsampling.
for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) {
for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) {
int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y;
int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x;
if (y_sample > 0 && y_sample < height && x_sample > 0 &&
x_sample < width && blended_img[y_sample][x_sample].exists) {
u_sum += blended_img[y_sample][x_sample].u;
v_sum += blended_img[y_sample][x_sample].v;
avg_count++;
}
}
}
const int uvchannel_idx = y * panorama->uv_stride + x;
if (avg_count != 0) {
panorama->u_buffer[uvchannel_idx] =
(uint8_t)OD_DIVU(u_sum, avg_count);
panorama->v_buffer[uvchannel_idx] =
(uint8_t)OD_DIVU(v_sum, avg_count);
} else {
panorama->u_buffer[uvchannel_idx] = 0;
panorama->v_buffer[uvchannel_idx] = 0;
}
}
}
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
#if BGSPRITE_ENABLE_SEGMENTATION
// Combines temporal filter output and bgsprite output to make final ARF output
static void combine_arf(YV12_BUFFER_CONFIG *const temporal_arf,
YV12_BUFFER_CONFIG *const bgsprite,
uint8_t **const mask, const int block_size,
const int x_offset, const int y_offset,
YV12_BUFFER_CONFIG *target) {
const int height = temporal_arf->y_height;
const int width = temporal_arf->y_width;
YuvPixel **blended_img = aom_malloc(height * sizeof(*blended_img));
for (int i = 0; i < height; ++i) {
blended_img[i] = aom_malloc(width * sizeof(**blended_img));
}
const int block_2_height = (height / BGSPRITE_MASK_BLOCK_SIZE) +
(height % BGSPRITE_MASK_BLOCK_SIZE != 0 ? 1 : 0);
const int block_2_width = (width / BGSPRITE_MASK_BLOCK_SIZE) +
(width % BGSPRITE_MASK_BLOCK_SIZE != 0 ? 1 : 0);
for (int block_y = 0; block_y < block_2_height; ++block_y) {
for (int block_x = 0; block_x < block_2_width; ++block_x) {
int count = 0;
int total = 0;
for (int sub_y = 0; sub_y < BGSPRITE_MASK_BLOCK_SIZE; ++sub_y) {
for (int sub_x = 0; sub_x < BGSPRITE_MASK_BLOCK_SIZE; ++sub_x) {
const int img_y = block_y * BGSPRITE_MASK_BLOCK_SIZE + sub_y;
const int img_x = block_x * BGSPRITE_MASK_BLOCK_SIZE + sub_x;
const int mask_y = (y_offset + img_y) / block_size;
const int mask_x = (x_offset + img_x) / block_size;
if (img_y < height && img_x < width) {
if (mask[mask_y][mask_x]) {
++count;
}
++total;
}
}
}
const double threshold = 0.30;
const int amount = (int)(threshold * total);
for (int sub_y = 0; sub_y < BGSPRITE_MASK_BLOCK_SIZE; ++sub_y) {
for (int sub_x = 0; sub_x < BGSPRITE_MASK_BLOCK_SIZE; ++sub_x) {
const int y = block_y * BGSPRITE_MASK_BLOCK_SIZE + sub_y;
const int x = block_x * BGSPRITE_MASK_BLOCK_SIZE + sub_x;
if (y < height && x < width) {
blended_img[y][x].exists = 1;
const int ychannel_idx = y * temporal_arf->y_stride + x;
const int uvchannel_idx =
(y >> temporal_arf->subsampling_y) * temporal_arf->uv_stride +
(x >> temporal_arf->subsampling_x);
if (count > amount) {
// Foreground; use temporal arf.
#if CONFIG_HIGHBITDEPTH
if (temporal_arf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *pano_y_buffer16 =
CONVERT_TO_SHORTPTR(temporal_arf->y_buffer);
uint16_t *pano_u_buffer16 =
CONVERT_TO_SHORTPTR(temporal_arf->u_buffer);
uint16_t *pano_v_buffer16 =
CONVERT_TO_SHORTPTR(temporal_arf->v_buffer);
blended_img[y][x].y = pano_y_buffer16[ychannel_idx];
blended_img[y][x].u = pano_u_buffer16[uvchannel_idx];
blended_img[y][x].v = pano_v_buffer16[uvchannel_idx];
} else {
#endif // CONFIG_HIGHBITDEPTH
blended_img[y][x].y = temporal_arf->y_buffer[ychannel_idx];
blended_img[y][x].u = temporal_arf->u_buffer[uvchannel_idx];
blended_img[y][x].v = temporal_arf->v_buffer[uvchannel_idx];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
} else {
// Background; use bgsprite arf.
#if CONFIG_HIGHBITDEPTH
if (bgsprite->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *pano_y_buffer16 =
CONVERT_TO_SHORTPTR(bgsprite->y_buffer);
uint16_t *pano_u_buffer16 =
CONVERT_TO_SHORTPTR(bgsprite->u_buffer);
uint16_t *pano_v_buffer16 =
CONVERT_TO_SHORTPTR(bgsprite->v_buffer);
blended_img[y][x].y = pano_y_buffer16[ychannel_idx];
blended_img[y][x].u = pano_u_buffer16[uvchannel_idx];
blended_img[y][x].v = pano_v_buffer16[uvchannel_idx];
} else {
#endif // CONFIG_HIGHBITDEPTH
blended_img[y][x].y = bgsprite->y_buffer[ychannel_idx];
blended_img[y][x].u = bgsprite->u_buffer[uvchannel_idx];
blended_img[y][x].v = bgsprite->v_buffer[uvchannel_idx];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
}
}
}
}
}
const int x_min = 0;
const int y_min = 0;
resample_panorama(blended_img, 0, &x_min, &y_min, 0, width - 1, 0, height - 1,
target);
for (int i = 0; i < height; ++i) {
aom_free(blended_img[i]);
}
aom_free(blended_img);
}
#endif // BGSPRITE_ENABLE_SEGMENTATION
// Stitches images together to create ARF and stores it in 'panorama'.
static void stitch_images(AV1_COMP *cpi, YV12_BUFFER_CONFIG **const frames,
const int num_frames, const int distance,
const int center_idx, const double **const params,
const int *const x_min, const int *const x_max,
const int *const y_min, const int *const y_max,
int pano_x_min, int pano_x_max, int pano_y_min,
int pano_y_max, YV12_BUFFER_CONFIG *panorama) {
const int width = pano_x_max - pano_x_min + 1;
const int height = pano_y_max - pano_y_min + 1;
// Create pano_stack[y][x][num_frames] stack of pixel values
YuvPixel ***pano_stack = aom_malloc(height * sizeof(*pano_stack));
for (int i = 0; i < height; ++i) {
pano_stack[i] = aom_malloc(width * sizeof(**pano_stack));
for (int j = 0; j < width; ++j) {
pano_stack[i][j] = aom_calloc(num_frames, sizeof(***pano_stack));
}
}
build_image_stack(frames, num_frames, params, x_min, x_max, y_min, y_max,
pano_x_min, pano_y_min, pano_stack);
// Create blended_img[y][x] of combined panorama pixel values.
YuvPixel **blended_img = aom_malloc(height * sizeof(*blended_img));
for (int i = 0; i < height; ++i) {
blended_img[i] = aom_malloc(width * sizeof(**blended_img));
}
// Blending and saving result in blended_img.
#if BGSPRITE_BLENDING_MODE == 1
blend_mean(width, height, num_frames, (const YuvPixel ***)pano_stack,
blended_img, panorama->flags & YV12_FLAG_HIGHBITDEPTH);
#else // BGSPRITE_BLENDING_MODE != 1
blend_median(width, height, num_frames, (const YuvPixel ***)pano_stack,
blended_img);
#endif // BGSPRITE_BLENDING_MODE == 1
// NOTE(toddnguyen): Right now the ARF in the cpi struct is fixed size at
// the same size as the frames. For now, we crop the generated panorama.
assert(panorama->y_width <= width && panorama->y_height <= height);
// Resamples the blended_img into the panorama buffer.
YV12_BUFFER_CONFIG bgsprite;
memset(&bgsprite, 0, sizeof(bgsprite));
aom_alloc_frame_buffer(&bgsprite, frames[0]->y_width, frames[0]->y_height,
frames[0]->subsampling_x, frames[0]->subsampling_y,
#if CONFIG_HIGHBITDEPTH
frames[0]->flags & YV12_FLAG_HIGHBITDEPTH,
#endif
frames[0]->border, 0);
aom_yv12_copy_frame(frames[0], &bgsprite);
bgsprite.bit_depth = frames[0]->bit_depth;
resample_panorama(blended_img, center_idx, x_min, y_min, pano_x_min,
pano_x_max, pano_y_min, pano_y_max, &bgsprite);
#if BGSPRITE_ENABLE_SEGMENTATION
YV12_BUFFER_CONFIG temporal_bgsprite;
memset(&temporal_bgsprite, 0, sizeof(temporal_bgsprite));
aom_alloc_frame_buffer(&temporal_bgsprite, frames[0]->y_width,
frames[0]->y_height, frames[0]->subsampling_x,
frames[0]->subsampling_y,
#if CONFIG_HIGHBITDEPTH
frames[0]->flags & YV12_FLAG_HIGHBITDEPTH,
#endif
frames[0]->border, 0);
aom_yv12_copy_frame(frames[0], &temporal_bgsprite);
temporal_bgsprite.bit_depth = frames[0]->bit_depth;
av1_temporal_filter(cpi, &bgsprite, &temporal_bgsprite, distance);
// Block size constants for gaussian model.
const int N_1 = 2;
const int y_block_height = (height / N_1) + (height % N_1 != 0 ? 1 : 0);
const int x_block_width = (width / N_1) + (height % N_1 != 0 ? 1 : 0);
YuvPixelGaussian **gauss = aom_malloc(y_block_height * sizeof(*gauss));
for (int i = 0; i < y_block_height; ++i) {
gauss[i] = aom_calloc(x_block_width, sizeof(**gauss));
}
// Build Gaussian model.
build_gaussian((const YuvPixel ***)pano_stack, num_frames, width, height,
x_block_width, y_block_height, N_1, gauss);
// Select background model and build foreground mask.
uint8_t **mask = aom_malloc(y_block_height * sizeof(*mask));
for (int i = 0; i < y_block_height; ++i) {
mask[i] = aom_calloc(x_block_width, sizeof(**mask));
}
const int x_offset = -pano_x_min;
const int y_offset = -pano_y_min;
build_mask(x_min[center_idx], y_min[center_idx], x_offset, y_offset,
x_block_width, y_block_height, N_1,
(const YuvPixelGaussian **)gauss,
(YV12_BUFFER_CONFIG * const) frames[center_idx], panorama, mask);
YV12_BUFFER_CONFIG temporal_arf;
memset(&temporal_arf, 0, sizeof(temporal_arf));
aom_alloc_frame_buffer(&temporal_arf, frames[0]->y_width, frames[0]->y_height,
frames[0]->subsampling_x, frames[0]->subsampling_y,
#if CONFIG_HIGHBITDEPTH
frames[0]->flags & YV12_FLAG_HIGHBITDEPTH,
#endif
frames[0]->border, 0);
aom_yv12_copy_frame(frames[0], &temporal_arf);
temporal_arf.bit_depth = frames[0]->bit_depth;
av1_temporal_filter(cpi, NULL, &temporal_arf, distance);
combine_arf(&temporal_arf, &temporal_bgsprite, mask, N_1, x_offset, y_offset,
panorama);
aom_free_frame_buffer(&temporal_arf);
aom_free_frame_buffer(&temporal_bgsprite);
for (int i = 0; i < y_block_height; ++i) {
aom_free(gauss[i]);
aom_free(mask[i]);
}
aom_free(gauss);
aom_free(mask);
#else // !BGSPRITE_ENABLE_SEGMENTATION
av1_temporal_filter(cpi, &bgsprite, panorama, distance);
#endif // BGSPRITE_ENABLE_SEGMENTATION
aom_free_frame_buffer(&bgsprite);
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
aom_free(pano_stack[i][j]);
}
aom_free(pano_stack[i]);
aom_free(blended_img[i]);
}
aom_free(pano_stack);
aom_free(blended_img);
}
int av1_background_sprite(AV1_COMP *cpi, int distance) {
#if BGSPRITE_ENABLE_METRICS
// Do temporal filter if firstpass stats disable bgsprite.
if (!cpi->bgsprite_allowed) {
return 1;
}
#endif // BGSPRITE_ENABLE_METRICS
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
static const double identity_params[MAX_PARAMDIM - 1] = {
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
};
const int frames_after_arf =
av1_lookahead_depth(cpi->lookahead) - distance - 1;
int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
int frames_bwd;
// Define the forward and backwards filter limits for this arnr group.
if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
if (frames_fwd > distance) frames_fwd = distance;
frames_bwd = frames_fwd;
#if CONFIG_EXT_REFS
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) {
cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 1;
frames_fwd = 0;
frames_bwd = 0;
} else {
cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 0;
}
#endif // CONFIG_EXT_REFS
const int start_frame = distance + frames_fwd;
const int frames_to_stitch = frames_bwd + 1 + frames_fwd;
// Get frames to be included in background sprite.
for (int frame = 0; frame < frames_to_stitch; ++frame) {
const int which_buffer = start_frame - frame;
struct lookahead_entry *buf =
av1_lookahead_peek(cpi->lookahead, which_buffer);
frames[frames_to_stitch - 1 - frame] = &buf->img;
}
// Allocate empty arrays for parameters between frames.
double **params = aom_malloc(frames_to_stitch * sizeof(*params));
for (int i = 0; i < frames_to_stitch; ++i) {
params[i] = aom_malloc(sizeof(identity_params));
memcpy(params[i], identity_params, sizeof(identity_params));
}
// Use global motion to find affine transformations between frames.
// params[i] will have the transform from frame[i] to frame[i-1].
// params[0] will have the identity matrix (has no previous frame).
#if BGSPRITE_ENABLE_GME
TransformationType model = AFFINE;
int inliers_by_motion[RANSAC_NUM_MOTIONS];
for (int frame = 0; frame < frames_to_stitch - 1; ++frame) {
const int global_motion_ret = compute_global_motion_feature_based(
model, frames[frame + 1], frames[frame],
#if CONFIG_HIGHBITDEPTH
cpi->common.bit_depth,
#endif // CONFIG_HIGHBITDEPTH
inliers_by_motion, params[frame + 1], RANSAC_NUM_MOTIONS);
// Quit if global motion had an error.
if (global_motion_ret == 0) {
for (int i = 0; i < frames_to_stitch; ++i) {
aom_free(params[i]);
}
aom_free(params);
return 1;
}
}
#endif // BGSPRITE_ENABLE_GME
// Compound the transformation parameters.
for (int i = 1; i < frames_to_stitch; ++i) {
multiply_params(params[i - 1], params[i], params[i]);
}
// Compute frame limits for final stitched images.
int pano_x_max = INT_MIN;
int pano_x_min = INT_MAX;
int pano_y_max = INT_MIN;
int pano_y_min = INT_MAX;
int *x_max = aom_malloc(frames_to_stitch * sizeof(*x_max));
int *x_min = aom_malloc(frames_to_stitch * sizeof(*x_min));
int *y_max = aom_malloc(frames_to_stitch * sizeof(*y_max));
int *y_min = aom_malloc(frames_to_stitch * sizeof(*y_min));
find_limits(frames[0]->y_width, frames[0]->y_height,
(const double **const)params, frames_to_stitch, x_min, x_max,
y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max);
// Center panorama on the ARF.
const int center_idx = frames_bwd;
assert(center_idx >= 0 && center_idx < frames_to_stitch);
// Recompute transformations to adjust to center image.
// Invert center image's transform.
double inverse[MAX_PARAMDIM - 1] = { 0 };
invert_params(params[center_idx], inverse);
// Multiply the inverse to all transformation parameters.
for (int i = 0; i < frames_to_stitch; ++i) {
multiply_params(inverse, params[i], params[i]);
}
// Recompute frame limits for new adjusted center.
find_limits(frames[0]->y_width, frames[0]->y_height,
(const double **const)params, frames_to_stitch, x_min, x_max,
y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max);
// Stitch Images and apply bgsprite filter.
stitch_images(cpi, frames, frames_to_stitch, distance, center_idx,
(const double **const)params, x_min, x_max, y_min, y_max,
pano_x_min, pano_x_max, pano_y_min, pano_y_max,
&cpi->alt_ref_buffer);
// Free memory.
for (int i = 0; i < frames_to_stitch; ++i) {
aom_free(params[i]);
}
aom_free(params);
aom_free(x_max);
aom_free(x_min);
aom_free(y_max);
aom_free(y_min);
return 0;
}
#undef _POSIX_C_SOURCE
#undef BGSPRITE_BLENDING_MODE
#undef BGSPRITE_INTERPOLATION
#undef BGSPRITE_ENABLE_METRICS
#undef BGSPRITE_ENABLE_SEGMENTATION
#undef BGSPRITE_ENABLE_GME
#undef BGSPRITE_MASK_BLOCK_SIZE
#undef TRANSFORM_MAT_DIM
|