summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/common/x86/cfl_ssse3.c
blob: bbf0072955b19d8162104c7ea61db9bb08f3a11d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
 * Copyright (c) 2017, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <tmmintrin.h>

#include "config/av1_rtcd.h"

#include "av1/common/cfl.h"

#include "av1/common/x86/cfl_simd.h"

// Load 32-bit integer from memory into the first element of dst.
static INLINE __m128i _mm_loadh_epi32(__m128i const *mem_addr) {
  return _mm_cvtsi32_si128(*((int *)mem_addr));
}

// Store 32-bit integer from the first element of a into memory.
static INLINE void _mm_storeh_epi32(__m128i const *mem_addr, __m128i a) {
  *((int *)mem_addr) = _mm_cvtsi128_si32(a);
}

/**
 * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
 * precise version of a box filter 4:2:0 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 */
static INLINE void cfl_luma_subsampling_420_lbd_ssse3(const uint8_t *input,
                                                      int input_stride,
                                                      uint16_t *pred_buf_q3,
                                                      int width, int height) {
  const __m128i twos = _mm_set1_epi8(2);
  __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
  const __m128i *end = pred_buf_m128i + (height >> 1) * CFL_BUF_LINE_I128;
  const int luma_stride = input_stride << 1;
  do {
    if (width == 4) {
      __m128i top = _mm_loadh_epi32((__m128i *)input);
      top = _mm_maddubs_epi16(top, twos);
      __m128i bot = _mm_loadh_epi32((__m128i *)(input + input_stride));
      bot = _mm_maddubs_epi16(bot, twos);
      const __m128i sum = _mm_add_epi16(top, bot);
      _mm_storeh_epi32(pred_buf_m128i, sum);
    } else if (width == 8) {
      __m128i top = _mm_loadl_epi64((__m128i *)input);
      top = _mm_maddubs_epi16(top, twos);
      __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride));
      bot = _mm_maddubs_epi16(bot, twos);
      const __m128i sum = _mm_add_epi16(top, bot);
      _mm_storel_epi64(pred_buf_m128i, sum);
    } else {
      __m128i top = _mm_loadu_si128((__m128i *)input);
      top = _mm_maddubs_epi16(top, twos);
      __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride));
      bot = _mm_maddubs_epi16(bot, twos);
      const __m128i sum = _mm_add_epi16(top, bot);
      _mm_storeu_si128(pred_buf_m128i, sum);
      if (width == 32) {
        __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
        __m128i bot_1 =
            _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1);
        top_1 = _mm_maddubs_epi16(top_1, twos);
        bot_1 = _mm_maddubs_epi16(bot_1, twos);
        __m128i sum_1 = _mm_add_epi16(top_1, bot_1);
        _mm_storeu_si128(pred_buf_m128i + 1, sum_1);
      }
    }
    input += luma_stride;
    pred_buf_m128i += CFL_BUF_LINE_I128;
  } while (pred_buf_m128i < end);
}

/**
 * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
 * precise version of a box filter 4:2:2 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 */
static INLINE void cfl_luma_subsampling_422_lbd_ssse3(const uint8_t *input,
                                                      int input_stride,
                                                      uint16_t *pred_buf_q3,
                                                      int width, int height) {
  const __m128i fours = _mm_set1_epi8(4);
  __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
  const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
  do {
    if (width == 4) {
      __m128i top = _mm_loadh_epi32((__m128i *)input);
      top = _mm_maddubs_epi16(top, fours);
      _mm_storeh_epi32(pred_buf_m128i, top);
    } else if (width == 8) {
      __m128i top = _mm_loadl_epi64((__m128i *)input);
      top = _mm_maddubs_epi16(top, fours);
      _mm_storel_epi64(pred_buf_m128i, top);
    } else {
      __m128i top = _mm_loadu_si128((__m128i *)input);
      top = _mm_maddubs_epi16(top, fours);
      _mm_storeu_si128(pred_buf_m128i, top);
      if (width == 32) {
        __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
        top_1 = _mm_maddubs_epi16(top_1, fours);
        _mm_storeu_si128(pred_buf_m128i + 1, top_1);
      }
    }
    input += input_stride;
    pred_buf_m128i += CFL_BUF_LINE_I128;
  } while (pred_buf_m128i < end);
}

/**
 * Multiplies the pixels by 8 (scaling in Q3).
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 */
static INLINE void cfl_luma_subsampling_444_lbd_ssse3(const uint8_t *input,
                                                      int input_stride,
                                                      uint16_t *pred_buf_q3,
                                                      int width, int height) {
  const __m128i zeros = _mm_setzero_si128();
  const int luma_stride = input_stride;
  __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
  const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
  do {
    if (width == 4) {
      __m128i row = _mm_loadh_epi32((__m128i *)input);
      row = _mm_unpacklo_epi8(row, zeros);
      _mm_storel_epi64(pred_buf_m128i, _mm_slli_epi16(row, 3));
    } else if (width == 8) {
      __m128i row = _mm_loadl_epi64((__m128i *)input);
      row = _mm_unpacklo_epi8(row, zeros);
      _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row, 3));
    } else {
      __m128i row = _mm_loadu_si128((__m128i *)input);
      const __m128i row_lo = _mm_unpacklo_epi8(row, zeros);
      const __m128i row_hi = _mm_unpackhi_epi8(row, zeros);
      _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row_lo, 3));
      _mm_storeu_si128(pred_buf_m128i + 1, _mm_slli_epi16(row_hi, 3));
      if (width == 32) {
        __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1);
        const __m128i row_1_lo = _mm_unpacklo_epi8(row_1, zeros);
        const __m128i row_1_hi = _mm_unpackhi_epi8(row_1, zeros);
        _mm_storeu_si128(pred_buf_m128i + 2, _mm_slli_epi16(row_1_lo, 3));
        _mm_storeu_si128(pred_buf_m128i + 3, _mm_slli_epi16(row_1_hi, 3));
      }
    }
    input += luma_stride;
    pred_buf_m128i += CFL_BUF_LINE_I128;
  } while (pred_buf_m128i < end);
}

/**
 * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
 * precise version of a box filter 4:2:0 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 */
static INLINE void cfl_luma_subsampling_420_hbd_ssse3(const uint16_t *input,
                                                      int input_stride,
                                                      uint16_t *pred_buf_q3,
                                                      int width, int height) {
  const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE;
  const int luma_stride = input_stride << 1;
  do {
    if (width == 4) {
      const __m128i top = _mm_loadl_epi64((__m128i *)input);
      const __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride));
      __m128i sum = _mm_add_epi16(top, bot);
      sum = _mm_hadd_epi16(sum, sum);
      *((int *)pred_buf_q3) = _mm_cvtsi128_si32(_mm_add_epi16(sum, sum));
    } else {
      const __m128i top = _mm_loadu_si128((__m128i *)input);
      const __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride));
      __m128i sum = _mm_add_epi16(top, bot);
      if (width == 8) {
        sum = _mm_hadd_epi16(sum, sum);
        _mm_storel_epi64((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum));
      } else {
        const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
        const __m128i bot_1 =
            _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1);
        sum = _mm_hadd_epi16(sum, _mm_add_epi16(top_1, bot_1));
        _mm_storeu_si128((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum));
        if (width == 32) {
          const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2);
          const __m128i bot_2 =
              _mm_loadu_si128(((__m128i *)(input + input_stride)) + 2);
          const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3);
          const __m128i bot_3 =
              _mm_loadu_si128(((__m128i *)(input + input_stride)) + 3);
          const __m128i sum_2 = _mm_add_epi16(top_2, bot_2);
          const __m128i sum_3 = _mm_add_epi16(top_3, bot_3);
          __m128i next_sum = _mm_hadd_epi16(sum_2, sum_3);
          _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1,
                           _mm_add_epi16(next_sum, next_sum));
        }
      }
    }
    input += luma_stride;
  } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
}

/**
 * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
 * precise version of a box filter 4:2:2 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 */
static INLINE void cfl_luma_subsampling_422_hbd_ssse3(const uint16_t *input,
                                                      int input_stride,
                                                      uint16_t *pred_buf_q3,
                                                      int width, int height) {
  __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
  const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
  do {
    if (width == 4) {
      const __m128i top = _mm_loadl_epi64((__m128i *)input);
      const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2);
      _mm_storeh_epi32(pred_buf_m128i, sum);
    } else {
      const __m128i top = _mm_loadu_si128((__m128i *)input);
      if (width == 8) {
        const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2);
        _mm_storel_epi64(pred_buf_m128i, sum);
      } else {
        const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
        const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top_1), 2);
        _mm_storeu_si128(pred_buf_m128i, sum);
        if (width == 32) {
          const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2);
          const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3);
          const __m128i sum_1 = _mm_slli_epi16(_mm_hadd_epi16(top_2, top_3), 2);
          _mm_storeu_si128(pred_buf_m128i + 1, sum_1);
        }
      }
    }
    pred_buf_m128i += CFL_BUF_LINE_I128;
    input += input_stride;
  } while (pred_buf_m128i < end);
}

static INLINE void cfl_luma_subsampling_444_hbd_ssse3(const uint16_t *input,
                                                      int input_stride,
                                                      uint16_t *pred_buf_q3,
                                                      int width, int height) {
  const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE;
  do {
    if (width == 4) {
      const __m128i row = _mm_slli_epi16(_mm_loadl_epi64((__m128i *)input), 3);
      _mm_storel_epi64((__m128i *)pred_buf_q3, row);
    } else {
      const __m128i row = _mm_slli_epi16(_mm_loadu_si128((__m128i *)input), 3);
      _mm_storeu_si128((__m128i *)pred_buf_q3, row);
      if (width >= 16) {
        __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1);
        row_1 = _mm_slli_epi16(row_1, 3);
        _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1, row_1);
        if (width == 32) {
          __m128i row_2 = _mm_loadu_si128(((__m128i *)input) + 2);
          row_2 = _mm_slli_epi16(row_2, 3);
          _mm_storeu_si128(((__m128i *)pred_buf_q3) + 2, row_2);
          __m128i row_3 = _mm_loadu_si128(((__m128i *)input) + 3);
          row_3 = _mm_slli_epi16(row_3, 3);
          _mm_storeu_si128(((__m128i *)pred_buf_q3) + 3, row_3);
        }
      }
    }
    input += input_stride;
    pred_buf_q3 += CFL_BUF_LINE;
  } while (pred_buf_q3 < end);
}

CFL_GET_SUBSAMPLE_FUNCTION(ssse3)

static INLINE __m128i predict_unclipped(const __m128i *input, __m128i alpha_q12,
                                        __m128i alpha_sign, __m128i dc_q0) {
  __m128i ac_q3 = _mm_loadu_si128(input);
  __m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3);
  __m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12);
  scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign);
  return _mm_add_epi16(scaled_luma_q0, dc_q0);
}

static INLINE void cfl_predict_lbd_ssse3(const int16_t *pred_buf_q3,
                                         uint8_t *dst, int dst_stride,
                                         int alpha_q3, int width, int height) {
  const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
  const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
  const __m128i dc_q0 = _mm_set1_epi16(*dst);
  __m128i *row = (__m128i *)pred_buf_q3;
  const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
  do {
    __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
    if (width < 16) {
      res = _mm_packus_epi16(res, res);
      if (width == 4)
        _mm_storeh_epi32((__m128i *)dst, res);
      else
        _mm_storel_epi64((__m128i *)dst, res);
    } else {
      __m128i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
      res = _mm_packus_epi16(res, next);
      _mm_storeu_si128((__m128i *)dst, res);
      if (width == 32) {
        res = predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0);
        next = predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0);
        res = _mm_packus_epi16(res, next);
        _mm_storeu_si128((__m128i *)(dst + 16), res);
      }
    }
    dst += dst_stride;
  } while ((row += CFL_BUF_LINE_I128) < row_end);
}

CFL_PREDICT_FN(ssse3, lbd)

static INLINE __m128i highbd_max_epi16(int bd) {
  const __m128i neg_one = _mm_set1_epi16(-1);
  // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
  return _mm_xor_si128(_mm_slli_epi16(neg_one, bd), neg_one);
}

static INLINE __m128i highbd_clamp_epi16(__m128i u, __m128i zero, __m128i max) {
  return _mm_max_epi16(_mm_min_epi16(u, max), zero);
}

static INLINE void cfl_predict_hbd_ssse3(const int16_t *pred_buf_q3,
                                         uint16_t *dst, int dst_stride,
                                         int alpha_q3, int bd, int width,
                                         int height) {
  const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
  const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
  const __m128i dc_q0 = _mm_set1_epi16(*dst);
  const __m128i max = highbd_max_epi16(bd);
  const __m128i zeros = _mm_setzero_si128();
  __m128i *row = (__m128i *)pred_buf_q3;
  const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
  do {
    __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
    res = highbd_clamp_epi16(res, zeros, max);
    if (width == 4) {
      _mm_storel_epi64((__m128i *)dst, res);
    } else {
      _mm_storeu_si128((__m128i *)dst, res);
    }
    if (width >= 16) {
      const __m128i res_1 =
          predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
      _mm_storeu_si128(((__m128i *)dst) + 1,
                       highbd_clamp_epi16(res_1, zeros, max));
    }
    if (width == 32) {
      const __m128i res_2 =
          predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0);
      _mm_storeu_si128((__m128i *)(dst + 16),
                       highbd_clamp_epi16(res_2, zeros, max));
      const __m128i res_3 =
          predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0);
      _mm_storeu_si128((__m128i *)(dst + 24),
                       highbd_clamp_epi16(res_3, zeros, max));
    }
    dst += dst_stride;
  } while ((row += CFL_BUF_LINE_I128) < row_end);
}

CFL_PREDICT_FN(ssse3, hbd)