1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./cdef_simd.h"
#include "./od_dering.h"
/* partial A is a 16-bit vector of the form:
[x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form:
[0 y1 y2 y3 y4 y5 y6 y7].
This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ...
(x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1
and const2. */
static INLINE v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1,
v128 const2) {
v128 tmp;
/* Reverse partial B. */
partialb = v128_shuffle_8(
partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c));
/* Interleave the x and y values of identical indices and pair x8 with 0. */
tmp = partiala;
partiala = v128_ziplo_16(partialb, partiala);
partialb = v128_ziphi_16(partialb, tmp);
/* Square and add the corresponding x and y values. */
partiala = v128_madd_s16(partiala, partiala);
partialb = v128_madd_s16(partialb, partialb);
/* Multiply by constant. */
partiala = v128_mullo_s32(partiala, const1);
partialb = v128_mullo_s32(partialb, const2);
/* Sum all results. */
partiala = v128_add_32(partiala, partialb);
return partiala;
}
static INLINE v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) {
v128 t0, t1, t2, t3;
t0 = v128_ziplo_32(x1, x0);
t1 = v128_ziplo_32(x3, x2);
t2 = v128_ziphi_32(x1, x0);
t3 = v128_ziphi_32(x3, x2);
x0 = v128_ziplo_64(t1, t0);
x1 = v128_ziphi_64(t1, t0);
x2 = v128_ziplo_64(t3, t2);
x3 = v128_ziphi_64(t3, t2);
return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3));
}
/* Computes cost for directions 0, 5, 6 and 7. We can call this function again
to compute the remaining directions. */
static INLINE v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) {
v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b;
v128 partial6;
v128 tmp;
/* Partial sums for lines 0 and 1. */
partial4a = v128_shl_n_byte(lines[0], 14);
partial4b = v128_shr_n_byte(lines[0], 2);
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4));
tmp = v128_add_16(lines[0], lines[1]);
partial5a = v128_shl_n_byte(tmp, 10);
partial5b = v128_shr_n_byte(tmp, 6);
partial7a = v128_shl_n_byte(tmp, 4);
partial7b = v128_shr_n_byte(tmp, 12);
partial6 = tmp;
/* Partial sums for lines 2 and 3. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6));
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8));
tmp = v128_add_16(lines[2], lines[3]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10));
partial6 = v128_add_16(partial6, tmp);
/* Partial sums for lines 4 and 5. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10));
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12));
tmp = v128_add_16(lines[4], lines[5]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8));
partial6 = v128_add_16(partial6, tmp);
/* Partial sums for lines 6 and 7. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14));
partial4a = v128_add_16(partial4a, lines[7]);
tmp = v128_add_16(lines[6], lines[7]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6));
partial6 = v128_add_16(partial6, tmp);
/* Compute costs in terms of partial sums. */
partial4a =
fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840),
v128_from_32(105, 120, 140, 168));
partial7a =
fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0),
v128_from_32(105, 105, 105, 140));
partial5a =
fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0),
v128_from_32(105, 105, 105, 140));
partial6 = v128_madd_s16(partial6, partial6);
partial6 = v128_mullo_s32(partial6, v128_dup_32(105));
partial4a = hsum4(partial4a, partial5a, partial6, partial7a);
v128_store_unaligned(tmp_cost1, partial4a);
return partial4a;
}
/* transpose and reverse the order of the lines -- equivalent to a 90-degree
counter-clockwise rotation of the pixels. */
static INLINE void array_reverse_transpose_8x8(v128 *in, v128 *res) {
const v128 tr0_0 = v128_ziplo_16(in[1], in[0]);
const v128 tr0_1 = v128_ziplo_16(in[3], in[2]);
const v128 tr0_2 = v128_ziphi_16(in[1], in[0]);
const v128 tr0_3 = v128_ziphi_16(in[3], in[2]);
const v128 tr0_4 = v128_ziplo_16(in[5], in[4]);
const v128 tr0_5 = v128_ziplo_16(in[7], in[6]);
const v128 tr0_6 = v128_ziphi_16(in[5], in[4]);
const v128 tr0_7 = v128_ziphi_16(in[7], in[6]);
const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0);
const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4);
const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0);
const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4);
const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2);
const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6);
const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2);
const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6);
res[7] = v128_ziplo_64(tr1_1, tr1_0);
res[6] = v128_ziphi_64(tr1_1, tr1_0);
res[5] = v128_ziplo_64(tr1_3, tr1_2);
res[4] = v128_ziphi_64(tr1_3, tr1_2);
res[3] = v128_ziplo_64(tr1_5, tr1_4);
res[2] = v128_ziphi_64(tr1_5, tr1_4);
res[1] = v128_ziplo_64(tr1_7, tr1_6);
res[0] = v128_ziphi_64(tr1_7, tr1_6);
}
int SIMD_FUNC(od_dir_find8)(const od_dering_in *img, int stride, int32_t *var,
int coeff_shift) {
int i;
int32_t cost[8];
int32_t best_cost = 0;
int best_dir = 0;
v128 lines[8];
for (i = 0; i < 8; i++) {
lines[i] = v128_load_unaligned(&img[i * stride]);
lines[i] =
v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128));
}
#if defined(__SSE4_1__)
/* Compute "mostly vertical" directions. */
__m128i dir47 = compute_directions(lines, cost + 4);
array_reverse_transpose_8x8(lines, lines);
/* Compute "mostly horizontal" directions. */
__m128i dir03 = compute_directions(lines, cost);
__m128i max = _mm_max_epi32(dir03, dir47);
max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(1, 0, 3, 2)));
max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(2, 3, 0, 1)));
best_cost = _mm_cvtsi128_si32(max);
__m128i t =
_mm_packs_epi32(_mm_cmpeq_epi32(max, dir03), _mm_cmpeq_epi32(max, dir47));
best_dir = _mm_movemask_epi8(_mm_packs_epi16(t, t));
best_dir = get_msb(best_dir ^ (best_dir - 1)); // Count trailing zeros
#else
/* Compute "mostly vertical" directions. */
compute_directions(lines, cost + 4);
array_reverse_transpose_8x8(lines, lines);
/* Compute "mostly horizontal" directions. */
compute_directions(lines, cost);
for (i = 0; i < 8; i++) {
if (cost[i] > best_cost) {
best_cost = cost[i];
best_dir = i;
}
}
#endif
/* Difference between the optimal variance and the variance along the
orthogonal direction. Again, the sum(x^2) terms cancel out. */
*var = best_cost - cost[(best_dir + 4) & 7];
/* We'd normally divide by 840, but dividing by 1024 is close enough
for what we're going to do with this. */
*var >>= 10;
return best_dir;
}
void SIMD_FUNC(od_filter_dering_direction_4x4)(uint16_t *y, int ystride,
const uint16_t *in,
int threshold, int dir,
int damping) {
int i;
v128 p0, p1, sum, row, res;
int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0];
int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1];
if (threshold) damping -= get_msb(threshold);
for (i = 0; i < 4; i += 2) {
sum = v128_zero();
row = v128_from_v64(v64_load_aligned(&in[i * OD_FILT_BSTRIDE]),
v64_load_aligned(&in[(i + 1) * OD_FILT_BSTRIDE]));
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o1]));
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o1]));
p1 = constrain16(p1, row, threshold, damping);
// sum += 4 * (p0 + p1)
sum = v128_add_16(sum, v128_shl_n_16(v128_add_16(p0, p1), 2));
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o2]));
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o2]));
p1 = constrain16(p1, row, threshold, damping);
// sum += 1 * (p0 + p1)
sum = v128_add_16(sum, v128_add_16(p0, p1));
// res = row + ((sum + 8) >> 4)
res = v128_add_16(sum, v128_dup_16(8));
res = v128_shr_n_s16(res, 4);
res = v128_add_16(row, res);
v64_store_aligned(&y[i * ystride], v128_high_v64(res));
v64_store_aligned(&y[(i + 1) * ystride], v128_low_v64(res));
}
}
void SIMD_FUNC(od_filter_dering_direction_8x8)(uint16_t *y, int ystride,
const uint16_t *in,
int threshold, int dir,
int damping) {
int i;
v128 sum, p0, p1, row, res;
int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0];
int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1];
int o3 = OD_DIRECTION_OFFSETS_TABLE[dir][2];
if (threshold) damping -= get_msb(threshold);
for (i = 0; i < 8; i++) {
sum = v128_zero();
row = v128_load_aligned(&in[i * OD_FILT_BSTRIDE]);
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]);
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]);
p1 = constrain16(p1, row, threshold, damping);
// sum += 3 * (p0 + p1)
p0 = v128_add_16(p0, p1);
p0 = v128_add_16(p0, v128_shl_n_16(p0, 1));
sum = v128_add_16(sum, p0);
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]);
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]);
p1 = constrain16(p1, row, threshold, damping);
// sum += 2 * (p0 + p1)
p0 = v128_shl_n_16(v128_add_16(p0, p1), 1);
sum = v128_add_16(sum, p0);
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o3]);
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o3]);
p1 = constrain16(p1, row, threshold, damping);
// sum += (p0 + p1)
p0 = v128_add_16(p0, p1);
sum = v128_add_16(sum, p0);
// res = row + ((sum + 8) >> 4)
res = v128_add_16(sum, v128_dup_16(8));
res = v128_shr_n_s16(res, 4);
res = v128_add_16(row, res);
v128_store_unaligned(&y[i * ystride], res);
}
}
void SIMD_FUNC(copy_8x8_16bit_to_8bit)(uint8_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 8; i++) {
v128 row = v128_load_unaligned(&src[i * sstride]);
row = v128_pack_s16_u8(row, row);
v64_store_unaligned(&dst[i * dstride], v128_low_v64(row));
}
}
void SIMD_FUNC(copy_4x4_16bit_to_8bit)(uint8_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 4; i++) {
v128 row = v128_load_unaligned(&src[i * sstride]);
row = v128_pack_s16_u8(row, row);
u32_store_unaligned(&dst[i * dstride], v128_low_u32(row));
}
}
void SIMD_FUNC(copy_8x8_16bit_to_16bit)(uint16_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 8; i++) {
v128 row = v128_load_unaligned(&src[i * sstride]);
v128_store_unaligned(&dst[i * dstride], row);
}
}
void SIMD_FUNC(copy_4x4_16bit_to_16bit)(uint16_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 4; i++) {
v64 row = v64_load_unaligned(&src[i * sstride]);
v64_store_unaligned(&dst[i * dstride], row);
}
}
void SIMD_FUNC(copy_rect8_8bit_to_16bit)(uint16_t *dst, int dstride,
const uint8_t *src, int sstride, int v,
int h) {
int i, j;
for (i = 0; i < v; i++) {
for (j = 0; j < (h & ~0x7); j += 8) {
v64 row = v64_load_unaligned(&src[i * sstride + j]);
v128_store_unaligned(&dst[i * dstride + j], v128_unpack_u8_s16(row));
}
for (; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
void SIMD_FUNC(copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride,
const uint16_t *src, int sstride,
int v, int h) {
int i, j;
for (i = 0; i < v; i++) {
for (j = 0; j < (h & ~0x7); j += 8) {
v128 row = v128_load_unaligned(&src[i * sstride + j]);
v128_store_unaligned(&dst[i * dstride + j], row);
}
for (; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
|