1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_CFL_H_
#define AV1_COMMON_CFL_H_
#include "av1/common/blockd.h"
#include "av1/common/onyxc_int.h"
// Can we use CfL for the current block?
static INLINE CFL_ALLOWED_TYPE is_cfl_allowed(const MACROBLOCKD *xd) {
const MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
assert(bsize < BLOCK_SIZES_ALL);
if (xd->lossless[mbmi->segment_id]) {
// In lossless, CfL is available when the partition size is equal to the
// transform size.
const int ssx = xd->plane[AOM_PLANE_U].subsampling_x;
const int ssy = xd->plane[AOM_PLANE_U].subsampling_y;
const int plane_bsize = get_plane_block_size(bsize, ssx, ssy);
return (CFL_ALLOWED_TYPE)(plane_bsize == BLOCK_4X4);
}
// Spec: CfL is available to luma partitions lesser than or equal to 32x32
return (CFL_ALLOWED_TYPE)(block_size_wide[bsize] <= 32 &&
block_size_high[bsize] <= 32);
}
// Do we need to save the luma pixels from the current block,
// for a possible future CfL prediction?
static INLINE CFL_ALLOWED_TYPE store_cfl_required(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
const MB_MODE_INFO *mbmi = xd->mi[0];
if (cm->seq_params.monochrome) return CFL_DISALLOWED;
if (!xd->cfl.is_chroma_reference) {
// For non-chroma-reference blocks, we should always store the luma pixels,
// in case the corresponding chroma-reference block uses CfL.
// Note that this can only happen for block sizes which are <8 on
// their shortest side, as otherwise they would be chroma reference
// blocks.
return CFL_ALLOWED;
}
// If this block has chroma information, we know whether we're
// actually going to perform a CfL prediction
return (CFL_ALLOWED_TYPE)(!is_inter_block(mbmi) &&
mbmi->uv_mode == UV_CFL_PRED);
}
static INLINE int get_scaled_luma_q0(int alpha_q3, int16_t pred_buf_q3) {
int scaled_luma_q6 = alpha_q3 * pred_buf_q3;
return ROUND_POWER_OF_TWO_SIGNED(scaled_luma_q6, 6);
}
static INLINE CFL_PRED_TYPE get_cfl_pred_type(PLANE_TYPE plane) {
assert(plane > 0);
return (CFL_PRED_TYPE)(plane - 1);
}
void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
TX_SIZE tx_size, int plane);
void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size);
void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size,
BLOCK_SIZE bsize);
void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input,
CFL_PRED_TYPE pred_plane, int width);
void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
TX_SIZE tx_size, CFL_PRED_TYPE pred_plane);
// Null function used for invalid tx_sizes
void cfl_subsample_lbd_null(const uint8_t *input, int input_stride,
uint16_t *output_q3);
// Null function used for invalid tx_sizes
void cfl_subsample_hbd_null(const uint16_t *input, int input_stride,
uint16_t *output_q3);
// Allows the CFL_SUBSAMPLE function to switch types depending on the bitdepth.
#define CFL_lbd_TYPE uint8_t *cfl_type
#define CFL_hbd_TYPE uint16_t *cfl_type
// Declare a size-specific wrapper for the size-generic function. The compiler
// will inline the size generic function in here, the advantage is that the size
// will be constant allowing for loop unrolling and other constant propagated
// goodness.
#define CFL_SUBSAMPLE(arch, sub, bd, width, height) \
void subsample_##bd##_##sub##_##width##x##height##_##arch( \
const CFL_##bd##_TYPE, int input_stride, uint16_t *output_q3) { \
cfl_luma_subsampling_##sub##_##bd##_##arch(cfl_type, input_stride, \
output_q3, width, height); \
}
// Declare size-specific wrappers for all valid CfL sizes.
#define CFL_SUBSAMPLE_FUNCTIONS(arch, sub, bd) \
CFL_SUBSAMPLE(arch, sub, bd, 4, 4) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 8) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 32, 32) \
CFL_SUBSAMPLE(arch, sub, bd, 4, 8) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 4) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 8) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 32) \
CFL_SUBSAMPLE(arch, sub, bd, 32, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 4, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 4) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 32) \
CFL_SUBSAMPLE(arch, sub, bd, 32, 8) \
cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_##arch( \
TX_SIZE tx_size) { \
CFL_SUBSAMPLE_FUNCTION_ARRAY(arch, sub, bd) \
return subfn_##sub[tx_size]; \
}
// Declare an architecture-specific array of function pointers for size-specific
// wrappers.
#define CFL_SUBSAMPLE_FUNCTION_ARRAY(arch, sub, bd) \
static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \
subsample_##bd##_##sub##_4x4_##arch, /* 4x4 */ \
subsample_##bd##_##sub##_8x8_##arch, /* 8x8 */ \
subsample_##bd##_##sub##_16x16_##arch, /* 16x16 */ \
subsample_##bd##_##sub##_32x32_##arch, /* 32x32 */ \
cfl_subsample_##bd##_null, /* 64x64 (invalid CFL size) */ \
subsample_##bd##_##sub##_4x8_##arch, /* 4x8 */ \
subsample_##bd##_##sub##_8x4_##arch, /* 8x4 */ \
subsample_##bd##_##sub##_8x16_##arch, /* 8x16 */ \
subsample_##bd##_##sub##_16x8_##arch, /* 16x8 */ \
subsample_##bd##_##sub##_16x32_##arch, /* 16x32 */ \
subsample_##bd##_##sub##_32x16_##arch, /* 32x16 */ \
cfl_subsample_##bd##_null, /* 32x64 (invalid CFL size) */ \
cfl_subsample_##bd##_null, /* 64x32 (invalid CFL size) */ \
subsample_##bd##_##sub##_4x16_##arch, /* 4x16 */ \
subsample_##bd##_##sub##_16x4_##arch, /* 16x4 */ \
subsample_##bd##_##sub##_8x32_##arch, /* 8x32 */ \
subsample_##bd##_##sub##_32x8_##arch, /* 32x8 */ \
cfl_subsample_##bd##_null, /* 16x64 (invalid CFL size) */ \
cfl_subsample_##bd##_null, /* 64x16 (invalid CFL size) */ \
};
// The RTCD script does not support passing in an array, so we wrap it in this
// function.
#define CFL_GET_SUBSAMPLE_FUNCTION(arch) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 420, lbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 422, lbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 444, lbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 420, hbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 422, hbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 444, hbd)
// Null function used for invalid tx_sizes
static INLINE void cfl_subtract_average_null(const uint16_t *src,
int16_t *dst) {
(void)dst;
(void)src;
assert(0);
}
// Declare a size-specific wrapper for the size-generic function. The compiler
// will inline the size generic function in here, the advantage is that the size
// will be constant allowing for loop unrolling and other constant propagated
// goodness.
#define CFL_SUB_AVG_X(arch, width, height, round_offset, num_pel_log2) \
void subtract_average_##width##x##height##_##arch(const uint16_t *src, \
int16_t *dst) { \
subtract_average_##arch(src, dst, width, height, round_offset, \
num_pel_log2); \
}
// Declare size-specific wrappers for all valid CfL sizes.
#define CFL_SUB_AVG_FN(arch) \
CFL_SUB_AVG_X(arch, 4, 4, 8, 4) \
CFL_SUB_AVG_X(arch, 4, 8, 16, 5) \
CFL_SUB_AVG_X(arch, 4, 16, 32, 6) \
CFL_SUB_AVG_X(arch, 8, 4, 16, 5) \
CFL_SUB_AVG_X(arch, 8, 8, 32, 6) \
CFL_SUB_AVG_X(arch, 8, 16, 64, 7) \
CFL_SUB_AVG_X(arch, 8, 32, 128, 8) \
CFL_SUB_AVG_X(arch, 16, 4, 32, 6) \
CFL_SUB_AVG_X(arch, 16, 8, 64, 7) \
CFL_SUB_AVG_X(arch, 16, 16, 128, 8) \
CFL_SUB_AVG_X(arch, 16, 32, 256, 9) \
CFL_SUB_AVG_X(arch, 32, 8, 128, 8) \
CFL_SUB_AVG_X(arch, 32, 16, 256, 9) \
CFL_SUB_AVG_X(arch, 32, 32, 512, 10) \
cfl_subtract_average_fn get_subtract_average_fn_##arch(TX_SIZE tx_size) { \
static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { \
subtract_average_4x4_##arch, /* 4x4 */ \
subtract_average_8x8_##arch, /* 8x8 */ \
subtract_average_16x16_##arch, /* 16x16 */ \
subtract_average_32x32_##arch, /* 32x32 */ \
cfl_subtract_average_null, /* 64x64 (invalid CFL size) */ \
subtract_average_4x8_##arch, /* 4x8 */ \
subtract_average_8x4_##arch, /* 8x4 */ \
subtract_average_8x16_##arch, /* 8x16 */ \
subtract_average_16x8_##arch, /* 16x8 */ \
subtract_average_16x32_##arch, /* 16x32 */ \
subtract_average_32x16_##arch, /* 32x16 */ \
cfl_subtract_average_null, /* 32x64 (invalid CFL size) */ \
cfl_subtract_average_null, /* 64x32 (invalid CFL size) */ \
subtract_average_4x16_##arch, /* 4x16 (invalid CFL size) */ \
subtract_average_16x4_##arch, /* 16x4 (invalid CFL size) */ \
subtract_average_8x32_##arch, /* 8x32 (invalid CFL size) */ \
subtract_average_32x8_##arch, /* 32x8 (invalid CFL size) */ \
cfl_subtract_average_null, /* 16x64 (invalid CFL size) */ \
cfl_subtract_average_null, /* 64x16 (invalid CFL size) */ \
}; \
/* Modulo TX_SIZES_ALL to ensure that an attacker won't be able to */ \
/* index the function pointer array out of bounds. */ \
return sub_avg[tx_size % TX_SIZES_ALL]; \
}
// For VSX SIMD optimization, the C versions of width == 4 subtract are
// faster than the VSX. As such, the VSX code calls the C versions.
void subtract_average_4x4_c(const uint16_t *src, int16_t *dst);
void subtract_average_4x8_c(const uint16_t *src, int16_t *dst);
void subtract_average_4x16_c(const uint16_t *src, int16_t *dst);
#define CFL_PREDICT_lbd(arch, width, height) \
void predict_lbd_##width##x##height##_##arch(const int16_t *pred_buf_q3, \
uint8_t *dst, int dst_stride, \
int alpha_q3) { \
cfl_predict_lbd_##arch(pred_buf_q3, dst, dst_stride, alpha_q3, width, \
height); \
}
#define CFL_PREDICT_hbd(arch, width, height) \
void predict_hbd_##width##x##height##_##arch(const int16_t *pred_buf_q3, \
uint16_t *dst, int dst_stride, \
int alpha_q3, int bd) { \
cfl_predict_hbd_##arch(pred_buf_q3, dst, dst_stride, alpha_q3, bd, width, \
height); \
}
// This wrapper exists because clang format does not like calling macros with
// lowercase letters.
#define CFL_PREDICT_X(arch, width, height, bd) \
CFL_PREDICT_##bd(arch, width, height)
// Null function used for invalid tx_sizes
void cfl_predict_lbd_null(const int16_t *pred_buf_q3, uint8_t *dst,
int dst_stride, int alpha_q3);
// Null function used for invalid tx_sizes
void cfl_predict_hbd_null(const int16_t *pred_buf_q3, uint16_t *dst,
int dst_stride, int alpha_q3, int bd);
#define CFL_PREDICT_FN(arch, bd) \
CFL_PREDICT_X(arch, 4, 4, bd) \
CFL_PREDICT_X(arch, 4, 8, bd) \
CFL_PREDICT_X(arch, 4, 16, bd) \
CFL_PREDICT_X(arch, 8, 4, bd) \
CFL_PREDICT_X(arch, 8, 8, bd) \
CFL_PREDICT_X(arch, 8, 16, bd) \
CFL_PREDICT_X(arch, 8, 32, bd) \
CFL_PREDICT_X(arch, 16, 4, bd) \
CFL_PREDICT_X(arch, 16, 8, bd) \
CFL_PREDICT_X(arch, 16, 16, bd) \
CFL_PREDICT_X(arch, 16, 32, bd) \
CFL_PREDICT_X(arch, 32, 8, bd) \
CFL_PREDICT_X(arch, 32, 16, bd) \
CFL_PREDICT_X(arch, 32, 32, bd) \
cfl_predict_##bd##_fn get_predict_##bd##_fn_##arch(TX_SIZE tx_size) { \
static const cfl_predict_##bd##_fn pred[TX_SIZES_ALL] = { \
predict_##bd##_4x4_##arch, /* 4x4 */ \
predict_##bd##_8x8_##arch, /* 8x8 */ \
predict_##bd##_16x16_##arch, /* 16x16 */ \
predict_##bd##_32x32_##arch, /* 32x32 */ \
cfl_predict_##bd##_null, /* 64x64 (invalid CFL size) */ \
predict_##bd##_4x8_##arch, /* 4x8 */ \
predict_##bd##_8x4_##arch, /* 8x4 */ \
predict_##bd##_8x16_##arch, /* 8x16 */ \
predict_##bd##_16x8_##arch, /* 16x8 */ \
predict_##bd##_16x32_##arch, /* 16x32 */ \
predict_##bd##_32x16_##arch, /* 32x16 */ \
cfl_predict_##bd##_null, /* 32x64 (invalid CFL size) */ \
cfl_predict_##bd##_null, /* 64x32 (invalid CFL size) */ \
predict_##bd##_4x16_##arch, /* 4x16 */ \
predict_##bd##_16x4_##arch, /* 16x4 */ \
predict_##bd##_8x32_##arch, /* 8x32 */ \
predict_##bd##_32x8_##arch, /* 32x8 */ \
cfl_predict_##bd##_null, /* 16x64 (invalid CFL size) */ \
cfl_predict_##bd##_null, /* 64x16 (invalid CFL size) */ \
}; \
/* Modulo TX_SIZES_ALL to ensure that an attacker won't be able to */ \
/* index the function pointer array out of bounds. */ \
return pred[tx_size % TX_SIZES_ALL]; \
}
#endif // AV1_COMMON_CFL_H_
|