1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_CFL_H_
#define AV1_COMMON_CFL_H_
#include <assert.h>
#include "av1/common/enums.h"
// Forward declaration of AV1_COMMON, in order to avoid creating a cyclic
// dependency by importing av1/common/onyxc_int.h
typedef struct AV1Common AV1_COMMON;
// Forward declaration of MACROBLOCK, in order to avoid creating a cyclic
// dependency by importing av1/common/blockd.h
typedef struct macroblockd MACROBLOCKD;
typedef struct {
// Pixel buffer containing the luma pixels used as prediction for chroma
uint8_t y_pix[MAX_SB_SQUARE];
// Height and width of the luma prediction block currently in the pixel buffer
int y_height, y_width;
// Chroma subsampling
int subsampling_x, subsampling_y;
// CfL Performs its own block level DC_PRED for each chromatic plane
double dc_pred[CFL_PRED_PLANES];
// The rate associated with each alpha codeword
int costs[CFL_ALPHABET_SIZE];
// Count the number of TX blocks in a predicted block to know when you are at
// the last one, so you can check for skips.
// TODO(any) Is there a better way to do this?
int num_tx_blk[CFL_PRED_PLANES];
} CFL_CTX;
static const double cfl_alpha_mags[CFL_MAGS_SIZE] = {
0., 0.125, -0.125, 0.25, -0.25, 0.5, -0.5
};
static const int cfl_alpha_codes[CFL_ALPHABET_SIZE][CFL_PRED_PLANES] = {
// barrbrain's simple 1D quant ordered by subset 3 likelihood
{ 0, 0 }, { 1, 1 }, { 3, 0 }, { 3, 1 }, { 1, 0 }, { 3, 3 },
{ 0, 1 }, { 5, 5 }, { 5, 3 }, { 1, 3 }, { 5, 3 }, { 3, 5 },
{ 0, 3 }, { 5, 1 }, { 1, 5 }, { 0, 5 }
};
void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x,
int subsampling_y);
void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
static INLINE double cfl_idx_to_alpha(int alpha_idx, CFL_SIGN_TYPE alpha_sign,
CFL_PRED_TYPE pred_type) {
const int mag_idx = cfl_alpha_codes[alpha_idx][pred_type];
const double abs_alpha = cfl_alpha_mags[mag_idx];
if (alpha_sign == CFL_SIGN_POS) {
return abs_alpha;
} else {
assert(abs_alpha != 0.0);
assert(cfl_alpha_mags[mag_idx + 1] == -abs_alpha);
return -abs_alpha;
}
}
void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride,
int row, int col, TX_SIZE tx_size, double dc_pred,
double alpha);
void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row,
int col, TX_SIZE tx_size);
double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row,
int col, int width, int height);
#endif // AV1_COMMON_CFL_H_
|