summaryrefslogtreecommitdiff
path: root/media/libtheora/lib/state.c
blob: 5e7b0ae651852ba178e13b10a77284d2ee3f9f4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
/********************************************************************
 *                                                                  *
 * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
 *                                                                  *
 * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009                *
 * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
 *                                                                  *
 ********************************************************************

  function:
    last mod: $Id: state.c 17576 2010-10-29 01:07:51Z tterribe $

 ********************************************************************/

#include <stdlib.h>
#include <string.h>
#include "state.h"
#if defined(OC_DUMP_IMAGES)
# include <stdio.h>
# include "png.h"
#endif

/*The function used to fill in the chroma plane motion vectors for a macro
   block when 4 different motion vectors are specified in the luma plane.
  This version is for use with chroma decimated in the X and Y directions
   (4:2:0).
  _cbmvs: The chroma block-level motion vectors to fill in.
  _lbmvs: The luma block-level motion vectors.*/
static void oc_set_chroma_mvs00(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
  int dx;
  int dy;
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1])
   +OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1])
   +OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,2,2),OC_DIV_ROUND_POW2(dy,2,2));
}

/*The function used to fill in the chroma plane motion vectors for a macro
   block when 4 different motion vectors are specified in the luma plane.
  This version is for use with chroma decimated in the Y direction.
  _cbmvs: The chroma block-level motion vectors to fill in.
  _lbmvs: The luma block-level motion vectors.*/
static void oc_set_chroma_mvs01(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
  int dx;
  int dy;
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[2]);
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[2]);
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
  dx=OC_MV_X(_lbmvs[1])+OC_MV_X(_lbmvs[3]);
  dy=OC_MV_Y(_lbmvs[1])+OC_MV_Y(_lbmvs[3]);
  _cbmvs[1]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
}

/*The function used to fill in the chroma plane motion vectors for a macro
   block when 4 different motion vectors are specified in the luma plane.
  This version is for use with chroma decimated in the X direction (4:2:2).
  _cbmvs: The chroma block-level motion vectors to fill in.
  _lbmvs: The luma block-level motion vectors.*/
static void oc_set_chroma_mvs10(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
  int dx;
  int dy;
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1]);
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1]);
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
  dx=OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
  dy=OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
  _cbmvs[2]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
}

/*The function used to fill in the chroma plane motion vectors for a macro
   block when 4 different motion vectors are specified in the luma plane.
  This version is for use with no chroma decimation (4:4:4).
  _cbmvs: The chroma block-level motion vectors to fill in.
  _lmbmv: The luma macro-block level motion vector to fill in for use in
           prediction.
  _lbmvs: The luma block-level motion vectors.*/
static void oc_set_chroma_mvs11(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
  _cbmvs[0]=_lbmvs[0];
  _cbmvs[1]=_lbmvs[1];
  _cbmvs[2]=_lbmvs[2];
  _cbmvs[3]=_lbmvs[3];
}

/*A table of functions used to fill in the chroma plane motion vectors for a
   macro block when 4 different motion vectors are specified in the luma
   plane.*/
const oc_set_chroma_mvs_func OC_SET_CHROMA_MVS_TABLE[TH_PF_NFORMATS]={
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs00,
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs01,
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs10,
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs11
};



/*Returns the fragment index of the top-left block in a macro block.
  This can be used to test whether or not the whole macro block is valid.
  _sb_map: The super block map.
  _quadi:  The quadrant number.
  Return: The index of the fragment of the upper left block in the macro
   block, or -1 if the block lies outside the coded frame.*/
static ptrdiff_t oc_sb_quad_top_left_frag(oc_sb_map_quad _sb_map[4],int _quadi){
  /*It so happens that under the Hilbert curve ordering described below, the
     upper-left block in each macro block is at index 0, except in macro block
     3, where it is at index 2.*/
  return _sb_map[_quadi][_quadi&_quadi<<1];
}

/*Fills in the mapping from block positions to fragment numbers for a single
   color plane.
  This function also fills in the "valid" flag of each quadrant in the super
   block flags.
  _sb_maps:  The array of super block maps for the color plane.
  _sb_flags: The array of super block flags for the color plane.
  _frag0:    The index of the first fragment in the plane.
  _hfrags:   The number of horizontal fragments in a coded frame.
  _vfrags:   The number of vertical fragments in a coded frame.*/
static void oc_sb_create_plane_mapping(oc_sb_map _sb_maps[],
 oc_sb_flags _sb_flags[],ptrdiff_t _frag0,int _hfrags,int _vfrags){
  /*Contains the (macro_block,block) indices for a 4x4 grid of
     fragments.
    The pattern is a 4x4 Hilbert space-filling curve.
    A Hilbert curve has the nice property that as the curve grows larger, its
     fractal dimension approaches 2.
    The intuition is that nearby blocks in the curve are also close spatially,
     with the previous element always an immediate neighbor, so that runs of
     blocks should be well correlated.*/
  static const int SB_MAP[4][4][2]={
    {{0,0},{0,1},{3,2},{3,3}},
    {{0,3},{0,2},{3,1},{3,0}},
    {{1,0},{1,3},{2,0},{2,3}},
    {{1,1},{1,2},{2,1},{2,2}}
  };
  ptrdiff_t  yfrag;
  unsigned   sbi;
  int        y;
  sbi=0;
  yfrag=_frag0;
  for(y=0;;y+=4){
    int imax;
    int x;
    /*Figure out how many columns of blocks in this super block lie within the
       image.*/
    imax=_vfrags-y;
    if(imax>4)imax=4;
    else if(imax<=0)break;
    for(x=0;;x+=4,sbi++){
      ptrdiff_t xfrag;
      int       jmax;
      int       quadi;
      int       i;
      /*Figure out how many rows of blocks in this super block lie within the
         image.*/
      jmax=_hfrags-x;
      if(jmax>4)jmax=4;
      else if(jmax<=0)break;
      /*By default, set all fragment indices to -1.*/
      memset(_sb_maps[sbi],0xFF,sizeof(_sb_maps[sbi]));
      /*Fill in the fragment map for this super block.*/
      xfrag=yfrag+x;
      for(i=0;i<imax;i++){
        int j;
        for(j=0;j<jmax;j++){
          _sb_maps[sbi][SB_MAP[i][j][0]][SB_MAP[i][j][1]]=xfrag+j;
        }
        xfrag+=_hfrags;
      }
      /*Mark which quadrants of this super block lie within the image.*/
      for(quadi=0;quadi<4;quadi++){
        _sb_flags[sbi].quad_valid|=
         (oc_sb_quad_top_left_frag(_sb_maps[sbi],quadi)>=0)<<quadi;
      }
    }
    yfrag+=_hfrags<<2;
  }
}

/*Fills in the Y plane fragment map for a macro block given the fragment
   coordinates of its upper-left hand corner.
  _mb_map:    The macro block map to fill.
  _fplane: The description of the Y plane.
  _xfrag0: The X location of the upper-left hand fragment in the luma plane.
  _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
static void oc_mb_fill_ymapping(oc_mb_map_plane _mb_map[3],
 const oc_fragment_plane *_fplane,int _xfrag0,int _yfrag0){
  int i;
  int j;
  for(i=0;i<2;i++)for(j=0;j<2;j++){
    _mb_map[0][i<<1|j]=(_yfrag0+i)*(ptrdiff_t)_fplane->nhfrags+_xfrag0+j;
  }
}

/*Fills in the chroma plane fragment maps for a macro block.
  This version is for use with chroma decimated in the X and Y directions
   (4:2:0).
  _mb_map:  The macro block map to fill.
  _fplanes: The descriptions of the fragment planes.
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
static void oc_mb_fill_cmapping00(oc_mb_map_plane _mb_map[3],
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
  ptrdiff_t fragi;
  _xfrag0>>=1;
  _yfrag0>>=1;
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
  _mb_map[1][0]=fragi+_fplanes[1].froffset;
  _mb_map[2][0]=fragi+_fplanes[2].froffset;
}

/*Fills in the chroma plane fragment maps for a macro block.
  This version is for use with chroma decimated in the Y direction.
  _mb_map:  The macro block map to fill.
  _fplanes: The descriptions of the fragment planes.
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
static void oc_mb_fill_cmapping01(oc_mb_map_plane _mb_map[3],
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
  ptrdiff_t fragi;
  int       j;
  _yfrag0>>=1;
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
  for(j=0;j<2;j++){
    _mb_map[1][j]=fragi+_fplanes[1].froffset;
    _mb_map[2][j]=fragi+_fplanes[2].froffset;
    fragi++;
  }
}

/*Fills in the chroma plane fragment maps for a macro block.
  This version is for use with chroma decimated in the X direction (4:2:2).
  _mb_map:  The macro block map to fill.
  _fplanes: The descriptions of the fragment planes.
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
static void oc_mb_fill_cmapping10(oc_mb_map_plane _mb_map[3],
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
  ptrdiff_t fragi;
  int       i;
  _xfrag0>>=1;
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
  for(i=0;i<2;i++){
    _mb_map[1][i<<1]=fragi+_fplanes[1].froffset;
    _mb_map[2][i<<1]=fragi+_fplanes[2].froffset;
    fragi+=_fplanes[1].nhfrags;
  }
}

/*Fills in the chroma plane fragment maps for a macro block.
  This version is for use with no chroma decimation (4:4:4).
  This uses the already filled-in luma plane values.
  _mb_map:  The macro block map to fill.
  _fplanes: The descriptions of the fragment planes.*/
static void oc_mb_fill_cmapping11(oc_mb_map_plane _mb_map[3],
 const oc_fragment_plane _fplanes[3]){
  int k;
  for(k=0;k<4;k++){
    _mb_map[1][k]=_mb_map[0][k]+_fplanes[1].froffset;
    _mb_map[2][k]=_mb_map[0][k]+_fplanes[2].froffset;
  }
}

/*The function type used to fill in the chroma plane fragment maps for a
   macro block.
  _mb_map:  The macro block map to fill.
  _fplanes: The descriptions of the fragment planes.
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
typedef void (*oc_mb_fill_cmapping_func)(oc_mb_map_plane _mb_map[3],
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0);

/*A table of functions used to fill in the chroma plane fragment maps for a
   macro block for each type of chrominance decimation.*/
static const oc_mb_fill_cmapping_func OC_MB_FILL_CMAPPING_TABLE[4]={
  oc_mb_fill_cmapping00,
  oc_mb_fill_cmapping01,
  oc_mb_fill_cmapping10,
  (oc_mb_fill_cmapping_func)oc_mb_fill_cmapping11
};

/*Fills in the mapping from macro blocks to their corresponding fragment
   numbers in each plane.
  _mb_maps:   The list of macro block maps.
  _mb_modes:  The list of macro block modes; macro blocks completely outside
               the coded region are marked invalid.
  _fplanes:   The descriptions of the fragment planes.
  _pixel_fmt: The chroma decimation type.*/
static void oc_mb_create_mapping(oc_mb_map _mb_maps[],
 signed char _mb_modes[],const oc_fragment_plane _fplanes[3],int _pixel_fmt){
  oc_mb_fill_cmapping_func  mb_fill_cmapping;
  unsigned                  sbi;
  int                       y;
  mb_fill_cmapping=OC_MB_FILL_CMAPPING_TABLE[_pixel_fmt];
  /*Loop through the luma plane super blocks.*/
  for(sbi=y=0;y<_fplanes[0].nvfrags;y+=4){
    int x;
    for(x=0;x<_fplanes[0].nhfrags;x+=4,sbi++){
      int ymb;
      /*Loop through the macro blocks in each super block in display order.*/
      for(ymb=0;ymb<2;ymb++){
        int xmb;
        for(xmb=0;xmb<2;xmb++){
          unsigned mbi;
          int      mbx;
          int      mby;
          mbi=sbi<<2|OC_MB_MAP[ymb][xmb];
          mbx=x|xmb<<1;
          mby=y|ymb<<1;
          /*Initialize fragment indices to -1.*/
          memset(_mb_maps[mbi],0xFF,sizeof(_mb_maps[mbi]));
          /*Make sure this macro block is within the encoded region.*/
          if(mbx>=_fplanes[0].nhfrags||mby>=_fplanes[0].nvfrags){
            _mb_modes[mbi]=OC_MODE_INVALID;
            continue;
          }
          /*Fill in the fragment indices for the luma plane.*/
          oc_mb_fill_ymapping(_mb_maps[mbi],_fplanes,mbx,mby);
          /*Fill in the fragment indices for the chroma planes.*/
          (*mb_fill_cmapping)(_mb_maps[mbi],_fplanes,mbx,mby);
        }
      }
    }
  }
}

/*Marks the fragments which fall all or partially outside the displayable
   region of the frame.
  _state: The Theora state containing the fragments to be marked.*/
static void oc_state_border_init(oc_theora_state *_state){
  oc_fragment       *frag;
  oc_fragment       *yfrag_end;
  oc_fragment       *xfrag_end;
  oc_fragment_plane *fplane;
  int                crop_x0;
  int                crop_y0;
  int                crop_xf;
  int                crop_yf;
  int                pli;
  int                y;
  int                x;
  /*The method we use here is slow, but the code is dead simple and handles
     all the special cases easily.
    We only ever need to do it once.*/
  /*Loop through the fragments, marking those completely outside the
     displayable region and constructing a border mask for those that straddle
     the border.*/
  _state->nborders=0;
  yfrag_end=frag=_state->frags;
  for(pli=0;pli<3;pli++){
    fplane=_state->fplanes+pli;
    /*Set up the cropping rectangle for this plane.*/
    crop_x0=_state->info.pic_x;
    crop_xf=_state->info.pic_x+_state->info.pic_width;
    crop_y0=_state->info.pic_y;
    crop_yf=_state->info.pic_y+_state->info.pic_height;
    if(pli>0){
      if(!(_state->info.pixel_fmt&1)){
        crop_x0=crop_x0>>1;
        crop_xf=crop_xf+1>>1;
      }
      if(!(_state->info.pixel_fmt&2)){
        crop_y0=crop_y0>>1;
        crop_yf=crop_yf+1>>1;
      }
    }
    y=0;
    for(yfrag_end+=fplane->nfrags;frag<yfrag_end;y+=8){
      x=0;
      for(xfrag_end=frag+fplane->nhfrags;frag<xfrag_end;frag++,x+=8){
        /*First check to see if this fragment is completely outside the
           displayable region.*/
        /*Note the special checks for an empty cropping rectangle.
          This guarantees that if we count a fragment as straddling the
           border below, at least one pixel in the fragment will be inside
           the displayable region.*/
        if(x+8<=crop_x0||crop_xf<=x||y+8<=crop_y0||crop_yf<=y||
         crop_x0>=crop_xf||crop_y0>=crop_yf){
          frag->invalid=1;
        }
        /*Otherwise, check to see if it straddles the border.*/
        else if(x<crop_x0&&crop_x0<x+8||x<crop_xf&&crop_xf<x+8||
         y<crop_y0&&crop_y0<y+8||y<crop_yf&&crop_yf<y+8){
          ogg_int64_t mask;
          int         npixels;
          int         i;
          mask=npixels=0;
          for(i=0;i<8;i++){
            int j;
            for(j=0;j<8;j++){
              if(x+j>=crop_x0&&x+j<crop_xf&&y+i>=crop_y0&&y+i<crop_yf){
                mask|=(ogg_int64_t)1<<(i<<3|j);
                npixels++;
              }
            }
          }
          /*Search the fragment array for border info with the same pattern.
            In general, there will be at most 8 different patterns (per
             plane).*/
          for(i=0;;i++){
            if(i>=_state->nborders){
              _state->nborders++;
              _state->borders[i].mask=mask;
              _state->borders[i].npixels=npixels;
            }
            else if(_state->borders[i].mask!=mask)continue;
            frag->borderi=i;
            break;
          }
        }
        else frag->borderi=-1;
      }
    }
  }
}

static int oc_state_frarray_init(oc_theora_state *_state){
  int       yhfrags;
  int       yvfrags;
  int       chfrags;
  int       cvfrags;
  ptrdiff_t yfrags;
  ptrdiff_t cfrags;
  ptrdiff_t nfrags;
  unsigned  yhsbs;
  unsigned  yvsbs;
  unsigned  chsbs;
  unsigned  cvsbs;
  unsigned  ysbs;
  unsigned  csbs;
  unsigned  nsbs;
  size_t    nmbs;
  int       hdec;
  int       vdec;
  int       pli;
  /*Figure out the number of fragments in each plane.*/
  /*These parameters have already been validated to be multiples of 16.*/
  yhfrags=_state->info.frame_width>>3;
  yvfrags=_state->info.frame_height>>3;
  hdec=!(_state->info.pixel_fmt&1);
  vdec=!(_state->info.pixel_fmt&2);
  chfrags=yhfrags+hdec>>hdec;
  cvfrags=yvfrags+vdec>>vdec;
  yfrags=yhfrags*(ptrdiff_t)yvfrags;
  cfrags=chfrags*(ptrdiff_t)cvfrags;
  nfrags=yfrags+2*cfrags;
  /*Figure out the number of super blocks in each plane.*/
  yhsbs=yhfrags+3>>2;
  yvsbs=yvfrags+3>>2;
  chsbs=chfrags+3>>2;
  cvsbs=cvfrags+3>>2;
  ysbs=yhsbs*yvsbs;
  csbs=chsbs*cvsbs;
  nsbs=ysbs+2*csbs;
  nmbs=(size_t)ysbs<<2;
  /*Check for overflow.
    We support the ridiculous upper limits of the specification (1048560 by
     1048560, or 3 TB frames) if the target architecture has 64-bit pointers,
     but for those with 32-bit pointers (or smaller!) we have to check.
    If the caller wants to prevent denial-of-service by imposing a more
     reasonable upper limit on the size of attempted allocations, they must do
     so themselves; we have no platform independent way to determine how much
     system memory there is nor an application-independent way to decide what a
     "reasonable" allocation is.*/
  if(yfrags/yhfrags!=yvfrags||2*cfrags<cfrags||nfrags<yfrags||
   ysbs/yhsbs!=yvsbs||2*csbs<csbs||nsbs<ysbs||nmbs>>2!=ysbs){
    return TH_EIMPL;
  }
  /*Initialize the fragment array.*/
  _state->fplanes[0].nhfrags=yhfrags;
  _state->fplanes[0].nvfrags=yvfrags;
  _state->fplanes[0].froffset=0;
  _state->fplanes[0].nfrags=yfrags;
  _state->fplanes[0].nhsbs=yhsbs;
  _state->fplanes[0].nvsbs=yvsbs;
  _state->fplanes[0].sboffset=0;
  _state->fplanes[0].nsbs=ysbs;
  _state->fplanes[1].nhfrags=_state->fplanes[2].nhfrags=chfrags;
  _state->fplanes[1].nvfrags=_state->fplanes[2].nvfrags=cvfrags;
  _state->fplanes[1].froffset=yfrags;
  _state->fplanes[2].froffset=yfrags+cfrags;
  _state->fplanes[1].nfrags=_state->fplanes[2].nfrags=cfrags;
  _state->fplanes[1].nhsbs=_state->fplanes[2].nhsbs=chsbs;
  _state->fplanes[1].nvsbs=_state->fplanes[2].nvsbs=cvsbs;
  _state->fplanes[1].sboffset=ysbs;
  _state->fplanes[2].sboffset=ysbs+csbs;
  _state->fplanes[1].nsbs=_state->fplanes[2].nsbs=csbs;
  _state->nfrags=nfrags;
  _state->frags=_ogg_calloc(nfrags,sizeof(*_state->frags));
  _state->frag_mvs=_ogg_malloc(nfrags*sizeof(*_state->frag_mvs));
  _state->nsbs=nsbs;
  _state->sb_maps=_ogg_malloc(nsbs*sizeof(*_state->sb_maps));
  _state->sb_flags=_ogg_calloc(nsbs,sizeof(*_state->sb_flags));
  _state->nhmbs=yhsbs<<1;
  _state->nvmbs=yvsbs<<1;
  _state->nmbs=nmbs;
  _state->mb_maps=_ogg_calloc(nmbs,sizeof(*_state->mb_maps));
  _state->mb_modes=_ogg_calloc(nmbs,sizeof(*_state->mb_modes));
  _state->coded_fragis=_ogg_malloc(nfrags*sizeof(*_state->coded_fragis));
  if(_state->frags==NULL||_state->frag_mvs==NULL||_state->sb_maps==NULL||
   _state->sb_flags==NULL||_state->mb_maps==NULL||_state->mb_modes==NULL||
   _state->coded_fragis==NULL){
    return TH_EFAULT;
  }
  /*Create the mapping from super blocks to fragments.*/
  for(pli=0;pli<3;pli++){
    oc_fragment_plane *fplane;
    fplane=_state->fplanes+pli;
    oc_sb_create_plane_mapping(_state->sb_maps+fplane->sboffset,
     _state->sb_flags+fplane->sboffset,fplane->froffset,
     fplane->nhfrags,fplane->nvfrags);
  }
  /*Create the mapping from macro blocks to fragments.*/
  oc_mb_create_mapping(_state->mb_maps,_state->mb_modes,
   _state->fplanes,_state->info.pixel_fmt);
  /*Initialize the invalid and borderi fields of each fragment.*/
  oc_state_border_init(_state);
  return 0;
}

static void oc_state_frarray_clear(oc_theora_state *_state){
  _ogg_free(_state->coded_fragis);
  _ogg_free(_state->mb_modes);
  _ogg_free(_state->mb_maps);
  _ogg_free(_state->sb_flags);
  _ogg_free(_state->sb_maps);
  _ogg_free(_state->frag_mvs);
  _ogg_free(_state->frags);
}


/*Initializes the buffers used for reconstructed frames.
  These buffers are padded with 16 extra pixels on each side, to allow
   unrestricted motion vectors without special casing the boundary.
  If chroma is decimated in either direction, the padding is reduced by a
   factor of 2 on the appropriate sides.
  _nrefs: The number of reference buffers to init; must be in the range 3...6.*/
static int oc_state_ref_bufs_init(oc_theora_state *_state,int _nrefs){
  th_info       *info;
  unsigned char *ref_frame_data;
  size_t         ref_frame_data_sz;
  size_t         ref_frame_sz;
  size_t         yplane_sz;
  size_t         cplane_sz;
  int            yhstride;
  int            yheight;
  int            chstride;
  int            cheight;
  ptrdiff_t      align;
  ptrdiff_t      yoffset;
  ptrdiff_t      coffset;
  ptrdiff_t     *frag_buf_offs;
  ptrdiff_t      fragi;
  int            hdec;
  int            vdec;
  int            rfi;
  int            pli;
  if(_nrefs<3||_nrefs>6)return TH_EINVAL;
  info=&_state->info;
  /*Compute the image buffer parameters for each plane.*/
  hdec=!(info->pixel_fmt&1);
  vdec=!(info->pixel_fmt&2);
  yhstride=info->frame_width+2*OC_UMV_PADDING;
  yheight=info->frame_height+2*OC_UMV_PADDING;
  /*Require 16-byte aligned rows in the chroma planes.*/
  chstride=(yhstride>>hdec)+15&~15;
  cheight=yheight>>vdec;
  yplane_sz=yhstride*(size_t)yheight;
  cplane_sz=chstride*(size_t)cheight;
  yoffset=OC_UMV_PADDING+OC_UMV_PADDING*(ptrdiff_t)yhstride;
  coffset=(OC_UMV_PADDING>>hdec)+(OC_UMV_PADDING>>vdec)*(ptrdiff_t)chstride;
  /*Although we guarantee the rows of the chroma planes are a multiple of 16
     bytes, the initial padding on the first row may only be 8 bytes.
    Compute the offset needed to the actual image data to a multiple of 16.*/
  align=-coffset&15;
  ref_frame_sz=yplane_sz+2*cplane_sz+16;
  ref_frame_data_sz=_nrefs*ref_frame_sz;
  /*Check for overflow.
    The same caveats apply as for oc_state_frarray_init().*/
  if(yplane_sz/yhstride!=(size_t)yheight||2*cplane_sz+16<cplane_sz||
   ref_frame_sz<yplane_sz||ref_frame_data_sz/_nrefs!=ref_frame_sz){
    return TH_EIMPL;
  }
  ref_frame_data=oc_aligned_malloc(ref_frame_data_sz,16);
  frag_buf_offs=_state->frag_buf_offs=
   _ogg_malloc(_state->nfrags*sizeof(*frag_buf_offs));
  if(ref_frame_data==NULL||frag_buf_offs==NULL){
    _ogg_free(frag_buf_offs);
    oc_aligned_free(ref_frame_data);
    return TH_EFAULT;
  }
  /*Set up the width, height and stride for the image buffers.*/
  _state->ref_frame_bufs[0][0].width=info->frame_width;
  _state->ref_frame_bufs[0][0].height=info->frame_height;
  _state->ref_frame_bufs[0][0].stride=yhstride;
  _state->ref_frame_bufs[0][1].width=_state->ref_frame_bufs[0][2].width=
   info->frame_width>>hdec;
  _state->ref_frame_bufs[0][1].height=_state->ref_frame_bufs[0][2].height=
   info->frame_height>>vdec;
  _state->ref_frame_bufs[0][1].stride=_state->ref_frame_bufs[0][2].stride=
   chstride;
  for(rfi=1;rfi<_nrefs;rfi++){
    memcpy(_state->ref_frame_bufs[rfi],_state->ref_frame_bufs[0],
     sizeof(_state->ref_frame_bufs[0]));
  }
  _state->ref_frame_handle=ref_frame_data;
  /*Set up the data pointers for the image buffers.*/
  for(rfi=0;rfi<_nrefs;rfi++){
    _state->ref_frame_bufs[rfi][0].data=ref_frame_data+yoffset;
    ref_frame_data+=yplane_sz+align;
    _state->ref_frame_bufs[rfi][1].data=ref_frame_data+coffset;
    ref_frame_data+=cplane_sz;
    _state->ref_frame_bufs[rfi][2].data=ref_frame_data+coffset;
    ref_frame_data+=cplane_sz+(16-align);
    /*Flip the buffer upside down.
      This allows us to decode Theora's bottom-up frames in their natural
       order, yet return a top-down buffer with a positive stride to the user.*/
    oc_ycbcr_buffer_flip(_state->ref_frame_bufs[rfi],
     _state->ref_frame_bufs[rfi]);
  }
  _state->ref_ystride[0]=-yhstride;
  _state->ref_ystride[1]=_state->ref_ystride[2]=-chstride;
  /*Initialize the fragment buffer offsets.*/
  ref_frame_data=_state->ref_frame_bufs[0][0].data;
  fragi=0;
  for(pli=0;pli<3;pli++){
    th_img_plane      *iplane;
    oc_fragment_plane *fplane;
    unsigned char     *vpix;
    ptrdiff_t          stride;
    ptrdiff_t          vfragi_end;
    int                nhfrags;
    iplane=_state->ref_frame_bufs[0]+pli;
    fplane=_state->fplanes+pli;
    vpix=iplane->data;
    vfragi_end=fplane->froffset+fplane->nfrags;
    nhfrags=fplane->nhfrags;
    stride=iplane->stride;
    while(fragi<vfragi_end){
      ptrdiff_t      hfragi_end;
      unsigned char *hpix;
      hpix=vpix;
      for(hfragi_end=fragi+nhfrags;fragi<hfragi_end;fragi++){
        frag_buf_offs[fragi]=hpix-ref_frame_data;
        hpix+=8;
      }
      vpix+=stride<<3;
    }
  }
  /*Initialize the reference frame pointers and indices.*/
  _state->ref_frame_idx[OC_FRAME_GOLD]=
   _state->ref_frame_idx[OC_FRAME_PREV]=
   _state->ref_frame_idx[OC_FRAME_GOLD_ORIG]=
   _state->ref_frame_idx[OC_FRAME_PREV_ORIG]=
   _state->ref_frame_idx[OC_FRAME_SELF]=
   _state->ref_frame_idx[OC_FRAME_IO]=-1;
  _state->ref_frame_data[OC_FRAME_GOLD]=
   _state->ref_frame_data[OC_FRAME_PREV]=
   _state->ref_frame_data[OC_FRAME_GOLD_ORIG]=
   _state->ref_frame_data[OC_FRAME_PREV_ORIG]=
   _state->ref_frame_data[OC_FRAME_SELF]=
   _state->ref_frame_data[OC_FRAME_IO]=NULL;
  return 0;
}

static void oc_state_ref_bufs_clear(oc_theora_state *_state){
  _ogg_free(_state->frag_buf_offs);
  oc_aligned_free(_state->ref_frame_handle);
}


void oc_state_accel_init_c(oc_theora_state *_state){
  _state->cpu_flags=0;
#if defined(OC_STATE_USE_VTABLE)
  _state->opt_vtable.frag_copy=oc_frag_copy_c;
  _state->opt_vtable.frag_copy_list=oc_frag_copy_list_c;
  _state->opt_vtable.frag_recon_intra=oc_frag_recon_intra_c;
  _state->opt_vtable.frag_recon_inter=oc_frag_recon_inter_c;
  _state->opt_vtable.frag_recon_inter2=oc_frag_recon_inter2_c;
  _state->opt_vtable.idct8x8=oc_idct8x8_c;
  _state->opt_vtable.state_frag_recon=oc_state_frag_recon_c;
  _state->opt_vtable.loop_filter_init=oc_loop_filter_init_c;
  _state->opt_vtable.state_loop_filter_frag_rows=
   oc_state_loop_filter_frag_rows_c;
  _state->opt_vtable.restore_fpu=oc_restore_fpu_c;
#endif
  _state->opt_data.dct_fzig_zag=OC_FZIG_ZAG;
}


int oc_state_init(oc_theora_state *_state,const th_info *_info,int _nrefs){
  int ret;
  /*First validate the parameters.*/
  if(_info==NULL)return TH_EFAULT;
  /*The width and height of the encoded frame must be multiples of 16.
    They must also, when divided by 16, fit into a 16-bit unsigned integer.
    The displayable frame offset coordinates must fit into an 8-bit unsigned
     integer.
    Note that the offset Y in the API is specified on the opposite side from
     how it is specified in the bitstream, because the Y axis is flipped in
     the bitstream.
    The displayable frame must fit inside the encoded frame.
    The color space must be one known by the encoder.*/
  if((_info->frame_width&0xF)||(_info->frame_height&0xF)||
   _info->frame_width<=0||_info->frame_width>=0x100000||
   _info->frame_height<=0||_info->frame_height>=0x100000||
   _info->pic_x+_info->pic_width>_info->frame_width||
   _info->pic_y+_info->pic_height>_info->frame_height||
   _info->pic_x>255||_info->frame_height-_info->pic_height-_info->pic_y>255||
   /*Note: the following <0 comparisons may generate spurious warnings on
      platforms where enums are unsigned.
     We could cast them to unsigned and just use the following >= comparison,
      but there are a number of compilers which will mis-optimize this.
     It's better to live with the spurious warnings.*/
   _info->colorspace<0||_info->colorspace>=TH_CS_NSPACES||
   _info->pixel_fmt<0||_info->pixel_fmt>=TH_PF_NFORMATS){
    return TH_EINVAL;
  }
  memset(_state,0,sizeof(*_state));
  memcpy(&_state->info,_info,sizeof(*_info));
  /*Invert the sense of pic_y to match Theora's right-handed coordinate
     system.*/
  _state->info.pic_y=_info->frame_height-_info->pic_height-_info->pic_y;
  _state->frame_type=OC_UNKWN_FRAME;
  oc_state_accel_init(_state);
  ret=oc_state_frarray_init(_state);
  if(ret>=0)ret=oc_state_ref_bufs_init(_state,_nrefs);
  if(ret<0){
    oc_state_frarray_clear(_state);
    return ret;
  }
  /*If the keyframe_granule_shift is out of range, use the maximum allowable
     value.*/
  if(_info->keyframe_granule_shift<0||_info->keyframe_granule_shift>31){
    _state->info.keyframe_granule_shift=31;
  }
  _state->keyframe_num=0;
  _state->curframe_num=-1;
  /*3.2.0 streams mark the frame index instead of the frame count.
    This was changed with stream version 3.2.1 to conform to other Ogg
     codecs.
    We add an extra bias when computing granule positions for new streams.*/
  _state->granpos_bias=TH_VERSION_CHECK(_info,3,2,1);
  return 0;
}

void oc_state_clear(oc_theora_state *_state){
  oc_state_ref_bufs_clear(_state);
  oc_state_frarray_clear(_state);
}


/*Duplicates the pixels on the border of the image plane out into the
   surrounding padding for use by unrestricted motion vectors.
  This function only adds the left and right borders, and only for the fragment
   rows specified.
  _refi: The index of the reference buffer to pad.
  _pli:  The color plane.
  _y0:   The Y coordinate of the first row to pad.
  _yend: The Y coordinate of the row to stop padding at.*/
void oc_state_borders_fill_rows(oc_theora_state *_state,int _refi,int _pli,
 int _y0,int _yend){
  th_img_plane  *iplane;
  unsigned char *apix;
  unsigned char *bpix;
  unsigned char *epix;
  int            stride;
  int            hpadding;
  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
  iplane=_state->ref_frame_bufs[_refi]+_pli;
  stride=iplane->stride;
  apix=iplane->data+_y0*(ptrdiff_t)stride;
  bpix=apix+iplane->width-1;
  epix=iplane->data+_yend*(ptrdiff_t)stride;
  /*Note the use of != instead of <, which allows the stride to be negative.*/
  while(apix!=epix){
    memset(apix-hpadding,apix[0],hpadding);
    memset(bpix+1,bpix[0],hpadding);
    apix+=stride;
    bpix+=stride;
  }
}

/*Duplicates the pixels on the border of the image plane out into the
   surrounding padding for use by unrestricted motion vectors.
  This function only adds the top and bottom borders, and must be called after
   the left and right borders are added.
  _refi:      The index of the reference buffer to pad.
  _pli:       The color plane.*/
void oc_state_borders_fill_caps(oc_theora_state *_state,int _refi,int _pli){
  th_img_plane  *iplane;
  unsigned char *apix;
  unsigned char *bpix;
  unsigned char *epix;
  int            stride;
  int            hpadding;
  int            vpadding;
  int            fullw;
  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
  vpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&2));
  iplane=_state->ref_frame_bufs[_refi]+_pli;
  stride=iplane->stride;
  fullw=iplane->width+(hpadding<<1);
  apix=iplane->data-hpadding;
  bpix=iplane->data+(iplane->height-1)*(ptrdiff_t)stride-hpadding;
  epix=apix-stride*(ptrdiff_t)vpadding;
  while(apix!=epix){
    memcpy(apix-stride,apix,fullw);
    memcpy(bpix+stride,bpix,fullw);
    apix-=stride;
    bpix+=stride;
  }
}

/*Duplicates the pixels on the border of the given reference image out into
   the surrounding padding for use by unrestricted motion vectors.
  _state: The context containing the reference buffers.
  _refi:  The index of the reference buffer to pad.*/
void oc_state_borders_fill(oc_theora_state *_state,int _refi){
  int pli;
  for(pli=0;pli<3;pli++){
    oc_state_borders_fill_rows(_state,_refi,pli,0,
     _state->ref_frame_bufs[_refi][pli].height);
    oc_state_borders_fill_caps(_state,_refi,pli);
  }
}

/*Determines the offsets in an image buffer to use for motion compensation.
  _state:   The Theora state the offsets are to be computed with.
  _offsets: Returns the offset for the buffer(s).
            _offsets[0] is always set.
            _offsets[1] is set if the motion vector has non-zero fractional
             components.
  _pli:     The color plane index.
  _mv:      The motion vector.
  Return: The number of offsets returned: 1 or 2.*/
int oc_state_get_mv_offsets(const oc_theora_state *_state,int _offsets[2],
 int _pli,oc_mv _mv){
  /*Here is a brief description of how Theora handles motion vectors:
    Motion vector components are specified to half-pixel accuracy in
     undecimated directions of each plane, and quarter-pixel accuracy in
     decimated directions.
    Integer parts are extracted by dividing (not shifting) by the
     appropriate amount, with truncation towards zero.
    These integer values are used to calculate the first offset.

    If either of the fractional parts are non-zero, then a second offset is
     computed.
    No third or fourth offsets are computed, even if both components have
     non-zero fractional parts.
    The second offset is computed by dividing (not shifting) by the
     appropriate amount, always truncating _away_ from zero.*/
#if 0
  /*This version of the code doesn't use any tables, but is slower.*/
  int ystride;
  int xprec;
  int yprec;
  int xfrac;
  int yfrac;
  int offs;
  int dx;
  int dy;
  ystride=_state->ref_ystride[_pli];
  /*These two variables decide whether we are in half- or quarter-pixel
     precision in each component.*/
  xprec=1+(_pli!=0&&!(_state->info.pixel_fmt&1));
  yprec=1+(_pli!=0&&!(_state->info.pixel_fmt&2));
  dx=OC_MV_X(_mv);
  dy=OC_MV_Y(_mv);
  /*These two variables are either 0 if all the fractional bits are zero or -1
     if any of them are non-zero.*/
  xfrac=OC_SIGNMASK(-(dx&(xprec|1)));
  yfrac=OC_SIGNMASK(-(dy&(yprec|1)));
  offs=(dx>>xprec)+(dy>>yprec)*ystride;
  if(xfrac||yfrac){
    int xmask;
    int ymask;
    xmask=OC_SIGNMASK(dx);
    ymask=OC_SIGNMASK(dy);
    yfrac&=ystride;
    _offsets[0]=offs-(xfrac&xmask)+(yfrac&ymask);
    _offsets[1]=offs-(xfrac&~xmask)+(yfrac&~ymask);
    return 2;
  }
  else{
    _offsets[0]=offs;
    return 1;
  }
#else
  /*Using tables simplifies the code, and there's enough arithmetic to hide the
     latencies of the memory references.*/
  static const signed char OC_MVMAP[2][64]={
    {
          -15,-15,-14,-14,-13,-13,-12,-12,-11,-11,-10,-10, -9, -9, -8,
       -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1,  0,
        0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,
        8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15
    },
    {
           -7, -7, -7, -7, -6, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4,
       -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1,  0,  0,  0,
        0,  0,  0,  0,  1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,
        4,  4,  4,  4,  5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7
    }
  };
  static const signed char OC_MVMAP2[2][64]={
    {
        -1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
      0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,
      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1
    },
    {
        -1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
      0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,
      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1
    }
  };
  int ystride;
  int qpx;
  int qpy;
  int mx;
  int my;
  int mx2;
  int my2;
  int offs;
  int dx;
  int dy;
  ystride=_state->ref_ystride[_pli];
  qpy=_pli!=0&&!(_state->info.pixel_fmt&2);
  dx=OC_MV_X(_mv);
  dy=OC_MV_Y(_mv);
  my=OC_MVMAP[qpy][dy+31];
  my2=OC_MVMAP2[qpy][dy+31];
  qpx=_pli!=0&&!(_state->info.pixel_fmt&1);
  mx=OC_MVMAP[qpx][dx+31];
  mx2=OC_MVMAP2[qpx][dx+31];
  offs=my*ystride+mx;
  if(mx2||my2){
    _offsets[1]=offs+my2*ystride+mx2;
    _offsets[0]=offs;
    return 2;
  }
  _offsets[0]=offs;
  return 1;
#endif
}

void oc_state_frag_recon_c(const oc_theora_state *_state,ptrdiff_t _fragi,
 int _pli,ogg_int16_t _dct_coeffs[128],int _last_zzi,ogg_uint16_t _dc_quant){
  unsigned char *dst;
  ptrdiff_t      frag_buf_off;
  int            ystride;
  int            refi;
  /*Apply the inverse transform.*/
  /*Special case only having a DC component.*/
  if(_last_zzi<2){
    ogg_int16_t p;
    int         ci;
    /*We round this dequant product (and not any of the others) because there's
       no iDCT rounding.*/
    p=(ogg_int16_t)(_dct_coeffs[0]*(ogg_int32_t)_dc_quant+15>>5);
    /*LOOP VECTORIZES.*/
    for(ci=0;ci<64;ci++)_dct_coeffs[64+ci]=p;
  }
  else{
    /*First, dequantize the DC coefficient.*/
    _dct_coeffs[0]=(ogg_int16_t)(_dct_coeffs[0]*(int)_dc_quant);
    oc_idct8x8(_state,_dct_coeffs+64,_dct_coeffs,_last_zzi);
  }
  /*Fill in the target buffer.*/
  frag_buf_off=_state->frag_buf_offs[_fragi];
  refi=_state->frags[_fragi].refi;
  ystride=_state->ref_ystride[_pli];
  dst=_state->ref_frame_data[OC_FRAME_SELF]+frag_buf_off;
  if(refi==OC_FRAME_SELF)oc_frag_recon_intra(_state,dst,ystride,_dct_coeffs+64);
  else{
    const unsigned char *ref;
    int                  mvoffsets[2];
    ref=_state->ref_frame_data[refi]+frag_buf_off;
    if(oc_state_get_mv_offsets(_state,mvoffsets,_pli,
     _state->frag_mvs[_fragi])>1){
      oc_frag_recon_inter2(_state,
       dst,ref+mvoffsets[0],ref+mvoffsets[1],ystride,_dct_coeffs+64);
    }
    else{
      oc_frag_recon_inter(_state,dst,ref+mvoffsets[0],ystride,_dct_coeffs+64);
    }
  }
}

static void loop_filter_h(unsigned char *_pix,int _ystride,signed char *_bv){
  int y;
  _pix-=2;
  for(y=0;y<8;y++){
    int f;
    f=_pix[0]-_pix[3]+3*(_pix[2]-_pix[1]);
    /*The _bv array is used to compute the function
      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
    f=*(_bv+(f+4>>3));
    _pix[1]=OC_CLAMP255(_pix[1]+f);
    _pix[2]=OC_CLAMP255(_pix[2]-f);
    _pix+=_ystride;
  }
}

static void loop_filter_v(unsigned char *_pix,int _ystride,signed char *_bv){
  int x;
  _pix-=_ystride*2;
  for(x=0;x<8;x++){
    int f;
    f=_pix[x]-_pix[_ystride*3+x]+3*(_pix[_ystride*2+x]-_pix[_ystride+x]);
    /*The _bv array is used to compute the function
      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
    f=*(_bv+(f+4>>3));
    _pix[_ystride+x]=OC_CLAMP255(_pix[_ystride+x]+f);
    _pix[_ystride*2+x]=OC_CLAMP255(_pix[_ystride*2+x]-f);
  }
}

/*Initialize the bounding values array used by the loop filter.
  _bv: Storage for the array.
  _flimit: The filter limit as defined in Section 7.10 of the spec.*/
void oc_loop_filter_init_c(signed char _bv[256],int _flimit){
  int i;
  memset(_bv,0,sizeof(_bv[0])*256);
  for(i=0;i<_flimit;i++){
    if(127-i-_flimit>=0)_bv[127-i-_flimit]=(signed char)(i-_flimit);
    _bv[127-i]=(signed char)(-i);
    _bv[127+i]=(signed char)(i);
    if(127+i+_flimit<256)_bv[127+i+_flimit]=(signed char)(_flimit-i);
  }
}

/*Apply the loop filter to a given set of fragment rows in the given plane.
  The filter may be run on the bottom edge, affecting pixels in the next row of
   fragments, so this row also needs to be available.
  _bv:        The bounding values array.
  _refi:      The index of the frame buffer to filter.
  _pli:       The color plane to filter.
  _fragy0:    The Y coordinate of the first fragment row to filter.
  _fragy_end: The Y coordinate of the fragment row to stop filtering at.*/
void oc_state_loop_filter_frag_rows_c(const oc_theora_state *_state,
 signed char *_bv,int _refi,int _pli,int _fragy0,int _fragy_end){
  const oc_fragment_plane *fplane;
  const oc_fragment       *frags;
  const ptrdiff_t         *frag_buf_offs;
  unsigned char           *ref_frame_data;
  ptrdiff_t                fragi_top;
  ptrdiff_t                fragi_bot;
  ptrdiff_t                fragi0;
  ptrdiff_t                fragi0_end;
  int                      ystride;
  int                      nhfrags;
  _bv+=127;
  fplane=_state->fplanes+_pli;
  nhfrags=fplane->nhfrags;
  fragi_top=fplane->froffset;
  fragi_bot=fragi_top+fplane->nfrags;
  fragi0=fragi_top+_fragy0*(ptrdiff_t)nhfrags;
  fragi0_end=fragi_top+_fragy_end*(ptrdiff_t)nhfrags;
  ystride=_state->ref_ystride[_pli];
  frags=_state->frags;
  frag_buf_offs=_state->frag_buf_offs;
  ref_frame_data=_state->ref_frame_data[_refi];
  /*The following loops are constructed somewhat non-intuitively on purpose.
    The main idea is: if a block boundary has at least one coded fragment on
     it, the filter is applied to it.
    However, the order that the filters are applied in matters, and VP3 chose
     the somewhat strange ordering used below.*/
  while(fragi0<fragi0_end){
    ptrdiff_t fragi;
    ptrdiff_t fragi_end;
    fragi=fragi0;
    fragi_end=fragi+nhfrags;
    while(fragi<fragi_end){
      if(frags[fragi].coded){
        unsigned char *ref;
        ref=ref_frame_data+frag_buf_offs[fragi];
        if(fragi>fragi0)loop_filter_h(ref,ystride,_bv);
        if(fragi0>fragi_top)loop_filter_v(ref,ystride,_bv);
        if(fragi+1<fragi_end&&!frags[fragi+1].coded){
          loop_filter_h(ref+8,ystride,_bv);
        }
        if(fragi+nhfrags<fragi_bot&&!frags[fragi+nhfrags].coded){
          loop_filter_v(ref+(ystride<<3),ystride,_bv);
        }
      }
      fragi++;
    }
    fragi0+=nhfrags;
  }
}

#if defined(OC_DUMP_IMAGES)
int oc_state_dump_frame(const oc_theora_state *_state,int _frame,
 const char *_suf){
  /*Dump a PNG of the reconstructed image.*/
  png_structp    png;
  png_infop      info;
  png_bytep     *image;
  FILE          *fp;
  char           fname[16];
  unsigned char *y_row;
  unsigned char *u_row;
  unsigned char *v_row;
  unsigned char *y;
  unsigned char *u;
  unsigned char *v;
  ogg_int64_t    iframe;
  ogg_int64_t    pframe;
  int            y_stride;
  int            u_stride;
  int            v_stride;
  int            framei;
  int            width;
  int            height;
  int            imgi;
  int            imgj;
  width=_state->info.frame_width;
  height=_state->info.frame_height;
  iframe=_state->granpos>>_state->info.keyframe_granule_shift;
  pframe=_state->granpos-(iframe<<_state->info.keyframe_granule_shift);
  sprintf(fname,"%08i%s.png",(int)(iframe+pframe),_suf);
  fp=fopen(fname,"wb");
  if(fp==NULL)return TH_EFAULT;
  image=(png_bytep *)oc_malloc_2d(height,6*width,sizeof(**image));
  if(image==NULL){
    fclose(fp);
    return TH_EFAULT;
  }
  png=png_create_write_struct(PNG_LIBPNG_VER_STRING,NULL,NULL,NULL);
  if(png==NULL){
    oc_free_2d(image);
    fclose(fp);
    return TH_EFAULT;
  }
  info=png_create_info_struct(png);
  if(info==NULL){
    png_destroy_write_struct(&png,NULL);
    oc_free_2d(image);
    fclose(fp);
    return TH_EFAULT;
  }
  if(setjmp(png_jmpbuf(png))){
    png_destroy_write_struct(&png,&info);
    oc_free_2d(image);
    fclose(fp);
    return TH_EFAULT;
  }
  framei=_state->ref_frame_idx[_frame];
  y_row=_state->ref_frame_bufs[framei][0].data;
  u_row=_state->ref_frame_bufs[framei][1].data;
  v_row=_state->ref_frame_bufs[framei][2].data;
  y_stride=_state->ref_frame_bufs[framei][0].stride;
  u_stride=_state->ref_frame_bufs[framei][1].stride;
  v_stride=_state->ref_frame_bufs[framei][2].stride;
  /*Chroma up-sampling is just done with a box filter.
    This is very likely what will actually be used in practice on a real
     display, and also removes one more layer to search in for the source of
     artifacts.
    As an added bonus, it's dead simple.*/
  for(imgi=height;imgi-->0;){
    int dc;
    y=y_row;
    u=u_row;
    v=v_row;
    for(imgj=0;imgj<6*width;){
      float    yval;
      float    uval;
      float    vval;
      unsigned rval;
      unsigned gval;
      unsigned bval;
      /*This is intentionally slow and very accurate.*/
      yval=(*y-16)*(1.0F/219);
      uval=(*u-128)*(2*(1-0.114F)/224);
      vval=(*v-128)*(2*(1-0.299F)/224);
      rval=OC_CLAMPI(0,(int)(65535*(yval+vval)+0.5F),65535);
      gval=OC_CLAMPI(0,(int)(65535*(
       yval-uval*(0.114F/0.587F)-vval*(0.299F/0.587F))+0.5F),65535);
      bval=OC_CLAMPI(0,(int)(65535*(yval+uval)+0.5F),65535);
      image[imgi][imgj++]=(unsigned char)(rval>>8);
      image[imgi][imgj++]=(unsigned char)(rval&0xFF);
      image[imgi][imgj++]=(unsigned char)(gval>>8);
      image[imgi][imgj++]=(unsigned char)(gval&0xFF);
      image[imgi][imgj++]=(unsigned char)(bval>>8);
      image[imgi][imgj++]=(unsigned char)(bval&0xFF);
      dc=(y-y_row&1)|(_state->info.pixel_fmt&1);
      y++;
      u+=dc;
      v+=dc;
    }
    dc=-((height-1-imgi&1)|_state->info.pixel_fmt>>1);
    y_row+=y_stride;
    u_row+=dc&u_stride;
    v_row+=dc&v_stride;
  }
  png_init_io(png,fp);
  png_set_compression_level(png,Z_BEST_COMPRESSION);
  png_set_IHDR(png,info,width,height,16,PNG_COLOR_TYPE_RGB,
   PNG_INTERLACE_NONE,PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
  switch(_state->info.colorspace){
    case TH_CS_ITU_REC_470M:{
      png_set_gAMA(png,info,2.2);
      png_set_cHRM_fixed(png,info,31006,31616,
       67000,32000,21000,71000,14000,8000);
    }break;
    case TH_CS_ITU_REC_470BG:{
      png_set_gAMA(png,info,2.67);
      png_set_cHRM_fixed(png,info,31271,32902,
       64000,33000,29000,60000,15000,6000);
    }break;
    default:break;
  }
  png_set_pHYs(png,info,_state->info.aspect_numerator,
   _state->info.aspect_denominator,0);
  png_set_rows(png,info,image);
  png_write_png(png,info,PNG_TRANSFORM_IDENTITY,NULL);
  png_write_end(png,info);
  png_destroy_write_struct(&png,&info);
  oc_free_2d(image);
  fclose(fp);
  return 0;
}
#endif



ogg_int64_t th_granule_frame(void *_encdec,ogg_int64_t _granpos){
  oc_theora_state *state;
  state=(oc_theora_state *)_encdec;
  if(_granpos>=0){
    ogg_int64_t iframe;
    ogg_int64_t pframe;
    iframe=_granpos>>state->info.keyframe_granule_shift;
    pframe=_granpos-(iframe<<state->info.keyframe_granule_shift);
    /*3.2.0 streams store the frame index in the granule position.
      3.2.1 and later store the frame count.
      We return the index, so adjust the value if we have a 3.2.1 or later
       stream.*/
    return iframe+pframe-TH_VERSION_CHECK(&state->info,3,2,1);
  }
  return -1;
}

double th_granule_time(void *_encdec,ogg_int64_t _granpos){
  oc_theora_state *state;
  state=(oc_theora_state *)_encdec;
  if(_granpos>=0){
    return (th_granule_frame(_encdec, _granpos)+1)*(
     (double)state->info.fps_denominator/state->info.fps_numerator);
  }
  return -1;
}