summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/encoder/segmentation.c
blob: 0c029c0e6e15ad83c9864328be198411ae196ea5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <limits.h>

#include "aom_mem/aom_mem.h"

#include "av1/common/pred_common.h"
#include "av1/common/tile_common.h"

#include "av1/encoder/cost.h"
#include "av1/encoder/segmentation.h"

void av1_enable_segmentation(struct segmentation *seg) {
  seg->enabled = 1;
  seg->update_map = 1;
  seg->update_data = 1;
  seg->temporal_update = 0;
}

void av1_disable_segmentation(struct segmentation *seg) {
  seg->enabled = 0;
  seg->update_map = 0;
  seg->update_data = 0;
  seg->temporal_update = 0;
}

void av1_disable_segfeature(struct segmentation *seg, int segment_id,
                            SEG_LVL_FEATURES feature_id) {
  seg->feature_mask[segment_id] &= ~(1 << feature_id);
}

void av1_clear_segdata(struct segmentation *seg, int segment_id,
                       SEG_LVL_FEATURES feature_id) {
  seg->feature_data[segment_id][feature_id] = 0;
}

static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd,
                       const TileInfo *tile, MB_MODE_INFO **mi,
                       unsigned *no_pred_segcounts,
                       unsigned (*temporal_predictor_count)[2],
                       unsigned *t_unpred_seg_counts, int bw, int bh,
                       int mi_row, int mi_col) {
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;

  xd->mi = mi;
  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
                 mi_params->mi_cols);

  // Count the number of hits on each segment with no prediction
  const int segment_id = xd->mi[0]->segment_id;
  no_pred_segcounts[segment_id]++;

  // Temporal prediction not allowed on key frames
  if (cm->current_frame.frame_type != KEY_FRAME) {
    const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
    // Test to see if the segment id matches the predicted value.
    const int pred_segment_id =
        cm->last_frame_seg_map
            ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
                             mi_col)
            : 0;
    const int pred_flag = pred_segment_id == segment_id;
    const int pred_context = av1_get_pred_context_seg_id(xd);

    // Store the prediction status for this mb and update counts
    // as appropriate
    xd->mi[0]->seg_id_predicted = pred_flag;
    temporal_predictor_count[pred_context][pred_flag]++;

    // Update the "unpredicted" segment count
    if (!pred_flag) t_unpred_seg_counts[segment_id]++;
  }
}

static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
                          const TileInfo *tile, MB_MODE_INFO **mi,
                          unsigned *no_pred_segcounts,
                          unsigned (*temporal_predictor_count)[2],
                          unsigned *t_unpred_seg_counts, int mi_row, int mi_col,
                          BLOCK_SIZE bsize) {
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int mis = mi_params->mi_stride;
  const int bs = mi_size_wide[bsize], hbs = bs / 2;
  PARTITION_TYPE partition;
  const int qbs = bs / 4;

  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;

#define CSEGS(cs_bw, cs_bh, cs_rowoff, cs_coloff)                              \
  count_segs(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff),               \
             no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, \
             (cs_bw), (cs_bh), mi_row + (cs_rowoff), mi_col + (cs_coloff));

  if (bsize == BLOCK_8X8)
    partition = PARTITION_NONE;
  else
    partition = get_partition(cm, mi_row, mi_col, bsize);
  switch (partition) {
    case PARTITION_NONE: CSEGS(bs, bs, 0, 0); break;
    case PARTITION_HORZ:
      CSEGS(bs, hbs, 0, 0);
      CSEGS(bs, hbs, hbs, 0);
      break;
    case PARTITION_VERT:
      CSEGS(hbs, bs, 0, 0);
      CSEGS(hbs, bs, 0, hbs);
      break;
    case PARTITION_HORZ_A:
      CSEGS(hbs, hbs, 0, 0);
      CSEGS(hbs, hbs, 0, hbs);
      CSEGS(bs, hbs, hbs, 0);
      break;
    case PARTITION_HORZ_B:
      CSEGS(bs, hbs, 0, 0);
      CSEGS(hbs, hbs, hbs, 0);
      CSEGS(hbs, hbs, hbs, hbs);
      break;
    case PARTITION_VERT_A:
      CSEGS(hbs, hbs, 0, 0);
      CSEGS(hbs, hbs, hbs, 0);
      CSEGS(hbs, bs, 0, hbs);
      break;
    case PARTITION_VERT_B:
      CSEGS(hbs, bs, 0, 0);
      CSEGS(hbs, hbs, 0, hbs);
      CSEGS(hbs, hbs, hbs, hbs);
      break;
    case PARTITION_HORZ_4:
      CSEGS(bs, qbs, 0, 0);
      CSEGS(bs, qbs, qbs, 0);
      CSEGS(bs, qbs, 2 * qbs, 0);
      if (mi_row + 3 * qbs < mi_params->mi_rows) CSEGS(bs, qbs, 3 * qbs, 0);
      break;

    case PARTITION_VERT_4:
      CSEGS(qbs, bs, 0, 0);
      CSEGS(qbs, bs, 0, qbs);
      CSEGS(qbs, bs, 0, 2 * qbs);
      if (mi_col + 3 * qbs < mi_params->mi_cols) CSEGS(qbs, bs, 0, 3 * qbs);
      break;

    case PARTITION_SPLIT: {
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      int n;
      assert(subsize < BLOCK_SIZES_ALL);

      for (n = 0; n < 4; n++) {
        const int mi_dc = hbs * (n & 1);
        const int mi_dr = hbs * (n >> 1);

        count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
                      temporal_predictor_count, t_unpred_seg_counts,
                      mi_row + mi_dr, mi_col + mi_dc, subsize);
      }
    } break;
    default: assert(0);
  }

#undef CSEGS
}

void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) {
  struct segmentation *seg = &cm->seg;
  struct segmentation_probs *segp = &cm->fc->seg;
  int no_pred_cost;
  int t_pred_cost = INT_MAX;
  int tile_col, tile_row, mi_row, mi_col;
  unsigned temporal_predictor_count[SEG_TEMPORAL_PRED_CTXS][2] = { { 0 } };
  unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 };
  unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
  (void)xd;
  int scale_up = cm->prev_frame && (cm->width > cm->prev_frame->width ||
                                    cm->height > cm->prev_frame->height);
  // First of all generate stats regarding how well the last segment map
  // predicts this one
  if (!scale_up) {
    for (tile_row = 0; tile_row < cm->tiles.rows; tile_row++) {
      TileInfo tile_info;
      av1_tile_set_row(&tile_info, cm, tile_row);
      for (tile_col = 0; tile_col < cm->tiles.cols; tile_col++) {
        MB_MODE_INFO **mi_ptr;
        av1_tile_set_col(&tile_info, cm, tile_col);
        mi_ptr = cm->mi_params.mi_grid_base +
                 tile_info.mi_row_start * cm->mi_params.mi_stride +
                 tile_info.mi_col_start;
        for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
             mi_row += cm->seq_params.mib_size,
            mi_ptr += cm->seq_params.mib_size * cm->mi_params.mi_stride) {
          MB_MODE_INFO **mi = mi_ptr;
          for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
               mi_col += cm->seq_params.mib_size,
              mi += cm->seq_params.mib_size) {
            count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts,
                          temporal_predictor_count, t_unpred_seg_counts, mi_row,
                          mi_col, cm->seq_params.sb_size);
          }
        }
      }
    }
  }

  int seg_id_cost[MAX_SEGMENTS];
  av1_cost_tokens_from_cdf(seg_id_cost, segp->tree_cdf, NULL);
  no_pred_cost = 0;
  for (int i = 0; i < MAX_SEGMENTS; ++i)
    no_pred_cost += no_pred_segcounts[i] * seg_id_cost[i];

  // Frames without past dependency cannot use temporal prediction
  if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
    int pred_flag_cost[SEG_TEMPORAL_PRED_CTXS][2];
    for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i)
      av1_cost_tokens_from_cdf(pred_flag_cost[i], segp->pred_cdf[i], NULL);
    t_pred_cost = 0;
    // Cost for signaling the prediction flag.
    for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) {
      for (int j = 0; j < 2; ++j)
        t_pred_cost += temporal_predictor_count[i][j] * pred_flag_cost[i][j];
    }
    // Cost for signaling the unpredicted segment id.
    for (int i = 0; i < MAX_SEGMENTS; ++i)
      t_pred_cost += t_unpred_seg_counts[i] * seg_id_cost[i];
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    assert(!cm->features.error_resilient_mode);
    seg->temporal_update = 1;
  } else {
    seg->temporal_update = 0;
  }
}

void av1_reset_segment_features(AV1_COMMON *cm) {
  struct segmentation *seg = &cm->seg;

  // Set up default state for MB feature flags
  seg->enabled = 0;
  seg->update_map = 0;
  seg->update_data = 0;
  av1_clearall_segfeatures(seg);
}