1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/encoder/model_rd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
extern int g_pick_inter_mode_cnt;
typedef struct {
uint8_t *data;
int stride;
int in_use;
} PRED_BUFFER;
typedef struct {
PRED_BUFFER *best_pred;
PREDICTION_MODE best_mode;
TX_SIZE best_tx_size;
TX_SIZE best_intra_tx_size;
MV_REFERENCE_FRAME best_ref_frame;
MV_REFERENCE_FRAME best_second_ref_frame;
uint8_t best_mode_skip_txfm;
int_interpfilters best_pred_filter;
} BEST_PICKMODE;
typedef struct {
MV_REFERENCE_FRAME ref_frame;
PREDICTION_MODE pred_mode;
} REF_MODE;
static const int pos_shift_16x16[4][4] = {
{ 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
};
#define RT_INTER_MODES 9
static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
{ LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV },
{ LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
{ GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV },
{ ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV },
{ ALTREF_FRAME, NEWMV }
};
static const THR_MODES mode_idx[REF_FRAMES][4] = {
{ THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH },
{ THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV },
{ THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 },
{ THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 },
{ THR_NEARESTG, THR_NEARG, THR_GLOBALMV, THR_NEWG },
};
static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED,
SMOOTH_PRED };
static INLINE int mode_offset(const PREDICTION_MODE mode) {
if (mode >= NEARESTMV) {
return INTER_OFFSET(mode);
} else {
switch (mode) {
case DC_PRED: return 0;
case V_PRED: return 1;
case H_PRED: return 2;
case SMOOTH_PRED: return 3;
default: assert(0); return -1;
}
}
}
enum {
// INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
INTER_NEAREST = (1 << NEARESTMV),
INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV),
INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV),
};
static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
bp->best_mode = NEARESTMV;
bp->best_ref_frame = LAST_FRAME;
bp->best_tx_size = TX_8X8;
bp->best_intra_tx_size = TX_8X8;
bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
bp->best_mode_skip_txfm = 0;
bp->best_second_ref_frame = NONE_FRAME;
bp->best_pred = NULL;
}
static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int64_t best_rd_sofar, int use_base_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int step_param = cpi->mv_search_params.mv_step_param;
FULLPEL_MV start_mv;
const int ref = mi->ref_frame[0];
const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv;
MV center_mv;
int dis;
int rv = 0;
int cost_list[5];
int search_subpel = 1;
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
start_mv = get_fullmv_from_mv(&ref_mv);
if (!use_base_mv)
center_mv = ref_mv;
else
center_mv = tmp_mv->as_mv;
const search_site_config *src_search_sites =
&cpi->mv_search_params.ss_cfg[SS_CFG_SRC];
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv,
src_search_sites);
av1_full_pixel_search(start_mv, &full_ms_params, step_param,
cond_cost_list(cpi, cost_list), &tmp_mv->as_fullmv,
NULL);
// calculate the bit cost on motion vector
MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv);
*rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->nmv_vec_cost,
x->mv_cost_stack, MV_COST_WEIGHT);
// TODO(kyslov) Account for Rate Mode!
rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar);
if (rv && search_subpel) {
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
cost_list);
MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv);
cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis,
&x->pred_sse[ref], NULL);
*rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmv_vec_cost,
x->mv_cost_stack, MV_COST_WEIGHT);
}
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
return rv;
}
static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x,
int_mv frame_mv[][REF_FRAMES],
MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int best_pred_sad, int *rate_mv, RD_STATS *best_rdc) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
AV1_COMMON *cm = &cpi->common;
if (ref_frame > LAST_FRAME && gf_temporal_ref &&
cpi->oxcf.rc_mode == AOM_CBR) {
int tmp_sad;
int dis;
int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX };
if (bsize < BLOCK_16X16) return -1;
tmp_sad = av1_int_pro_motion_estimation(
cpi, x, bsize, mi_row, mi_col,
&x->mbmi_ext->ref_mv_stack[ref_frame][0].this_mv.as_mv);
if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) return -1;
frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
int_mv best_mv = mi->mv[0];
best_mv.as_mv.row >>= 3;
best_mv.as_mv.col >>= 3;
MV ref_mv = av1_get_ref_mv(x, 0).as_mv;
*rate_mv =
av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv,
x->nmv_vec_cost, x->mv_cost_stack, MV_COST_WEIGHT);
frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
cost_list);
MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis,
&x->pred_sse[ref_frame], NULL);
frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int;
} else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame], rate_mv,
best_rdc->rdcost, 0)) {
return -1;
}
return 0;
}
static INLINE void find_predictors(
AV1_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int *ref_frame_skip_mask,
const int flag_list[4], TileDataEnc *tile_data,
struct buf_2d yv12_mb[8][MAX_MB_PLANE], BLOCK_SIZE bsize,
int force_skip_low_temp_var) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
const int num_planes = av1_num_planes(cm);
(void)tile_data;
x->pred_mv_sad[ref_frame] = INT_MAX;
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
// TODO(kyslov) this needs various further optimizations. to be continued..
if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, ref_frame);
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
av1_find_best_ref_mvs_from_stack(
cm->features.allow_high_precision_mv, mbmi_ext, ref_frame,
&frame_mv[NEARESTMV][ref_frame], &frame_mv[NEARMV][ref_frame], 0);
// Early exit for non-LAST frame if force_skip_low_temp_var is set.
if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 &&
!(force_skip_low_temp_var && ref_frame != LAST_FRAME)) {
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
bsize);
}
} else {
*ref_frame_skip_mask |= (1 << ref_frame);
}
av1_count_overlappable_neighbors(cm, xd);
mbmi->num_proj_ref = 1;
}
static void estimate_single_ref_frame_costs(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const MACROBLOCK *x, int segment_id,
unsigned int *ref_costs_single) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0];
unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1];
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
ref_costs_single[i] = base_cost;
const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);
// Determine cost of a single ref frame, where frame types are represented
// by a tree:
// Level 0: add cost whether this ref is a forward or backward ref
ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];
// Level 1: if this ref is forward ref,
// add cost whether it is last/last2 or last3/golden
ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1];
ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1];
// Level 1: if this ref is backward ref
// then add cost whether this ref is altref or backward ref
ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1];
// Level 2: further add cost whether this ref is last or last2
ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0];
ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1];
// Level 2: last3 or golden
ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0];
ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1];
// Level 2: bwdref or altref2
ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0];
ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1];
}
}
static void estimate_comp_ref_frame_costs(
const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x,
int segment_id, unsigned int (*ref_costs_comp)[REF_FRAMES]) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
memset(ref_costs_comp[ref_frame], 0,
REF_FRAMES * sizeof((*ref_costs_comp)[0]));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1];
if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
// Similar to single ref, determine cost of compound ref frames.
// cost_compound_refs = cost_first_ref + cost_second_ref
const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1];
ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
ref_bicomp_costs[ALTREF_FRAME] = 0;
// cost of first ref frame
ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0];
ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1];
ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0];
ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1];
// cost of second ref frame
ref_bicomp_costs[BWDREF_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
ref_bicomp_costs[BWDREF_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
// cost: if one ref frame is forward ref, the other ref is backward ref
for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
ref_costs_comp[ref0][ref1] =
ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
}
}
// cost: if both ref frames are the same side.
const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
} else {
for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
ref_costs_comp[ref0][ref1] = 512;
}
ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
}
}
}
static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *const x, unsigned int var,
unsigned int sse) {
MACROBLOCKD *const xd = &x->e_mbd;
TX_SIZE tx_size;
if (x->tx_mode_search_type == TX_MODE_SELECT) {
if (sse > (var << 2))
tx_size = AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]);
else
tx_size = TX_8X8;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
tx_size = TX_8X8;
else if (tx_size > TX_16X16)
tx_size = TX_16X16;
} else {
tx_size = AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]);
}
if (x->tx_mode_search_type != ONLY_4X4 && bsize > BLOCK_32X32)
tx_size = TX_16X16;
return AOMMIN(tx_size, TX_16X16);
}
static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2,
2, 2, 3, 3, 3, 4,
4, 4, 5, 5 };
static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1,
2, 3, 2, 3, 4, 3,
4, 5, 4, 5 };
static void block_variance(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int w, int h,
unsigned int *sse, int *sum, int block_size,
uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
int i, j, k = 0;
*sse = 0;
*sum = 0;
for (i = 0; i < h; i += block_size) {
for (j = 0; j < w; j += block_size) {
aom_get8x8var(src + src_stride * i + j, src_stride,
ref + ref_stride * i + j, ref_stride, &sse8x8[k],
&sum8x8[k]);
*sse += sse8x8[k];
*sum += sum8x8[k];
var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6);
k++;
}
}
}
static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
unsigned int *sse_i, int *sum_i,
unsigned int *var_o, unsigned int *sse_o,
int *sum_o) {
const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
int i, j, k = 0;
for (i = 0; i < nh; i += 2) {
for (j = 0; j < nw; j += 2) {
sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
(b_width_log2_lookup[unit_size] +
b_height_log2_lookup[unit_size] + 6));
k++;
}
}
}
// Adjust the ac_thr according to speed, width, height and normalized sum
static int ac_thr_factor(const int speed, const int width, const int height,
const int norm_sum) {
if (speed >= 8 && norm_sum < 5) {
if (width <= 640 && height <= 480)
return 4;
else
return 2;
}
return 1;
}
static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col, MACROBLOCK *x,
MACROBLOCKD *xd, int *out_rate,
int64_t *out_dist, unsigned int *var_y,
unsigned int *sse_y, int *early_term,
int calculate_rd) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
const int64_t dc_thr = dc_quant * dc_quant >> 6;
int64_t ac_thr = ac_quant * ac_quant >> 6;
unsigned int var;
int sum;
const int bw = b_width_log2_lookup[bsize];
const int bh = b_height_log2_lookup[bsize];
const int num8x8 = 1 << (bw + bh - 2);
unsigned int sse8x8[256] = { 0 };
int sum8x8[256] = { 0 };
unsigned int var8x8[256] = { 0 };
TX_SIZE tx_size;
int k;
// Calculate variance for whole partition, and also save 8x8 blocks' variance
// to be used in following transform skipping test.
block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
*var_y = var;
*sse_y = sse;
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
cpi->common.height, abs(sum) >> (bw + bh));
tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
// The code below for setting skip flag assumes tranform size of at least 8x8,
// so force this lower limit on transform.
if (tx_size < TX_8X8) tx_size = TX_8X8;
xd->mi[0]->tx_size = tx_size;
// Evaluate if the partition block is a skippable block in Y plane.
{
unsigned int sse16x16[64] = { 0 };
int sum16x16[64] = { 0 };
unsigned int var16x16[64] = { 0 };
const int num16x16 = num8x8 >> 2;
unsigned int sse32x32[16] = { 0 };
int sum32x32[16] = { 0 };
unsigned int var32x32[16] = { 0 };
const int num32x32 = num8x8 >> 4;
int ac_test = 1;
int dc_test = 1;
const int num = (tx_size == TX_8X8)
? num8x8
: ((tx_size == TX_16X16) ? num16x16 : num32x32);
const unsigned int *sse_tx =
(tx_size == TX_8X8) ? sse8x8
: ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
const unsigned int *var_tx =
(tx_size == TX_8X8) ? var8x8
: ((tx_size == TX_16X16) ? var16x16 : var32x32);
// Calculate variance if tx_size > TX_8X8
if (tx_size >= TX_16X16)
calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
sum16x16);
if (tx_size == TX_32X32)
calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
sse32x32, sum32x32);
// Skipping test
*early_term = 0;
for (k = 0; k < num; k++)
// Check if all ac coefficients can be quantized to zero.
if (!(var_tx[k] < ac_thr || var == 0)) {
ac_test = 0;
break;
}
for (k = 0; k < num; k++)
// Check if dc coefficient can be quantized to zero.
if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
dc_test = 0;
break;
}
if (ac_test && dc_test) {
int skip_uv[2] = { 0 };
unsigned int var_uv[2];
unsigned int sse_uv[2];
AV1_COMMON *const cm = &cpi->common;
// Transform skipping test in UV planes.
for (int i = 1; i <= 2; i++) {
int j = i - 1;
skip_uv[j] = 1;
if (x->color_sensitivity[j]) {
skip_uv[j] = 0;
struct macroblock_plane *const puv = &x->plane[i];
struct macroblockd_plane *const puvd = &xd->plane[i];
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, puvd->subsampling_x, puvd->subsampling_y);
// Adjust these thresholds for UV.
const int64_t uv_dc_thr =
(puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3;
const int64_t uv_ac_thr =
(puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i,
i);
var_uv[j] = cpi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride,
puvd->dst.buf, puvd->dst.stride,
&sse_uv[j]);
if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
(sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
skip_uv[j] = 1;
else
break;
}
}
if (skip_uv[0] & skip_uv[1]) {
*early_term = 1;
}
}
}
if (calculate_rd && out_dist != NULL && out_rate != NULL) {
if (!*early_term) {
const int bwide = block_size_wide[bsize];
const int bhigh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh,
out_rate, out_dist);
}
if (*early_term) {
*out_rate = 0;
*out_dist = sse << 4;
}
}
}
static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum,
int64_t *out_dist_sum, int *skip_txfm_sb,
int64_t *skip_sse_sb, unsigned int *var_y,
unsigned int *sse_y, int calculate_rd) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
const int ref = xd->mi[0]->ref_frame[0];
assert(bsize < BLOCK_SIZES_ALL);
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
unsigned int sse;
int rate;
int64_t dist;
unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
if (calculate_rd) {
const int bwide = block_size_wide[bsize];
const int bhigh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate,
&dist);
} else {
rate = INT_MAX; // this will be overwritten later with block_yrd
dist = INT_MAX;
}
*var_y = var;
*sse_y = sse;
x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
assert(rate >= 0);
if (skip_txfm_sb) *skip_txfm_sb = rate == 0;
if (skip_sse_sb) *skip_sse_sb = sse << 4;
rate = AOMMIN(rate, INT_MAX);
*out_rate_sum = (int)rate;
*out_dist_sum = dist;
}
static void block_yrd(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col,
RD_STATS *this_rdc, int *skippable, int64_t *sse,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblockd_plane *pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
const int num_4x4_w = mi_size_wide[bsize];
const int num_4x4_h = mi_size_high[bsize];
const int step = 1 << (tx_size << 1);
const int block_step = (1 << tx_size);
int block = 0;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
int eob_cost = 0;
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
(void)mi_row;
(void)mi_col;
(void)cpi;
#if CONFIG_AV1_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
} else {
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#else
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
#endif
*skippable = 1;
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
const SCAN_ORDER *const scan_order = &av1_default_scan_orders[tx_size];
const int block_offset = BLOCK_OFFSET(block);
#if CONFIG_AV1_HIGHBITDEPTH
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = pd->dqcoeff + block_offset;
#else
int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
int16_t *const low_dqcoeff = (int16_t *)pd->dqcoeff + block_offset;
#endif
uint16_t *const eob = &p->eobs[block];
const int diff_stride = bw;
const int16_t *src_diff;
src_diff = &p->src_diff[(r * diff_stride + c) << 2];
switch (tx_size) {
case TX_64X64:
assert(0); // Not implemented
break;
case TX_32X32:
assert(0); // Not used
break;
#if CONFIG_AV1_HIGHBITDEPTH
case TX_16X16:
aom_hadamard_16x16(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_8X8:
aom_hadamard_8x8(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
#else
case TX_16X16:
aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
p->dequant_QTX, eob, scan_order->scan);
break;
case TX_8X8:
aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
scan_order->scan);
break;
default:
assert(tx_size == TX_4X4);
x->fwd_txfm4x4(src_diff, low_coeff, diff_stride);
av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
scan_order->scan);
break;
#endif
}
*skippable &= (*eob == 0);
eob_cost += 1;
}
block += step;
}
}
this_rdc->skip = *skippable;
this_rdc->rate = 0;
if (*sse < INT64_MAX) {
*sse = (*sse << 6) >> 2;
if (*skippable) {
this_rdc->dist = *sse;
return;
}
}
block = 0;
this_rdc->dist = 0;
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
const int block_offset = BLOCK_OFFSET(block);
uint16_t *const eob = &p->eobs[block];
#if CONFIG_AV1_HIGHBITDEPTH
int64_t dummy;
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = pd->dqcoeff + block_offset;
if (*eob == 1)
this_rdc->rate += (int)abs(qcoeff[0]);
else if (*eob > 1)
this_rdc->rate += aom_satd(qcoeff, step << 4);
this_rdc->dist +=
av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2;
#else
int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
int16_t *const low_dqcoeff = (int16_t *)pd->dqcoeff + block_offset;
if (*eob == 1)
this_rdc->rate += (int)abs(low_qcoeff[0]);
else if (*eob > 1)
this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
this_rdc->dist +=
av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
#endif
}
block += step;
}
}
// If skippable is set, rate gets clobbered later.
this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
}
static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode,
MV_REFERENCE_FRAME ref_frame0,
MV_REFERENCE_FRAME ref_frame1,
const AV1_COMMON *cm) {
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
mbmi->ref_mv_idx = 0;
mbmi->mode = pred_mode;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = ref_frame0;
mbmi->ref_frame[1] = ref_frame1;
pmi->palette_size[0] = 0;
pmi->palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->num_proj_ref = 1;
mbmi->interintra_mode = 0;
set_default_interp_filters(mbmi, cm->features.interp_filter);
}
#if CONFIG_INTERNAL_STATS
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index) {
#else
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
#endif // CONFIG_INTERNAL_STATS
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->rd_stats.skip = x->force_skip;
memset(ctx->blk_skip, 0, sizeof(ctx->blk_skip[0]) * ctx->num_4x4_blk);
memset(ctx->tx_type_map, DCT_DCT,
sizeof(ctx->tx_type_map[0]) * ctx->num_4x4_blk);
ctx->skippable = x->force_skip;
#if CONFIG_INTERNAL_STATS
ctx->best_mode_index = mode_index;
#endif // CONFIG_INTERNAL_STATS
ctx->mic = *xd->mi[0];
ctx->skippable = x->force_skip;
av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
ctx->comp_pred_diff = 0;
ctx->hybrid_pred_diff = 0;
ctx->single_pred_diff = 0;
}
static int get_pred_buffer(PRED_BUFFER *p, int len) {
for (int i = 0; i < len; i++) {
if (!p[i].in_use) {
p[i].in_use = 1;
return i;
}
}
return -1;
}
static void free_pred_buffer(PRED_BUFFER *p) {
if (p != NULL) p->in_use = 0;
}
static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode,
int16_t mode_context) {
if (is_inter_compound_mode(mode)) {
return x
->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
}
int mode_cost = 0;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
assert(is_inter_mode(mode));
if (mode == NEWMV) {
mode_cost = x->newmv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost = x->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
mode_cost += x->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += x->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
}
static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode,
RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row,
int mv_col, int speed, uint32_t spatial_variance) {
// Bias against MVs associated with NEWMV mode that are very different from
// top/left neighbors.
if (this_mode == NEWMV) {
int al_mv_average_row;
int al_mv_average_col;
int left_row, left_col;
int row_diff, col_diff;
int above_mv_valid = 0;
int left_mv_valid = 0;
int above_row = 0;
int above_col = 0;
if (xd->above_mbmi) {
above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV;
above_row = xd->above_mbmi->mv[0].as_mv.row;
above_col = xd->above_mbmi->mv[0].as_mv.col;
}
if (xd->left_mbmi) {
left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV;
left_row = xd->left_mbmi->mv[0].as_mv.row;
left_col = xd->left_mbmi->mv[0].as_mv.col;
}
if (above_mv_valid && left_mv_valid) {
al_mv_average_row = (above_row + left_row + 1) >> 1;
al_mv_average_col = (above_col + left_col + 1) >> 1;
} else if (above_mv_valid) {
al_mv_average_row = above_row;
al_mv_average_col = above_col;
} else if (left_mv_valid) {
al_mv_average_row = left_row;
al_mv_average_col = left_col;
} else {
al_mv_average_row = al_mv_average_col = 0;
}
row_diff = al_mv_average_row - mv_row;
col_diff = al_mv_average_col - mv_col;
if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) {
if (bsize >= BLOCK_32X32)
this_rdc->rdcost = this_rdc->rdcost << 1;
else
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
}
} else {
// Bias for speed >= 8 for low spatial variance.
if (speed >= 8 && spatial_variance < 150 &&
(mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64))
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
}
}
static void model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
RD_STATS *this_rdc, unsigned int *var_y,
unsigned int *sse_y, int start_plane,
int stop_plane) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
int i;
uint32_t tot_var = *var_y;
uint32_t tot_sse = *sse_y;
this_rdc->rate = 0;
this_rdc->dist = 0;
this_rdc->skip = 0;
for (i = start_plane; i <= stop_plane; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
const BLOCK_SIZE bs = plane_bsize;
unsigned int var;
if (!x->color_sensitivity[i - 1]) continue;
var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, &sse);
assert(sse >= var);
tot_var += var;
tot_sse += sse;
av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
dc_quant >> 3, &rate, &dist);
this_rdc->rate += rate >> 1;
this_rdc->dist += dist << 3;
av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
&rate, &dist);
this_rdc->rate += rate;
this_rdc->dist += dist << 4;
}
if (this_rdc->rate == 0) {
this_rdc->skip = 1;
}
if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
RDCOST(x->rdmult, 0, ((int64_t)tot_sse) << 4)) {
this_rdc->rate = 0;
this_rdc->dist = tot_sse << 4;
this_rdc->skip = 1;
}
*var_y = tot_var;
*sse_y = tot_sse;
}
struct estimate_block_intra_args {
AV1_COMP *cpi;
MACROBLOCK *x;
PREDICTION_MODE mode;
int skippable;
RD_STATS *rdc;
};
static void estimate_block_intra(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct estimate_block_intra_args *const args = arg;
AV1_COMP *const cpi = args->cpi;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int64_t src_stride = p->src.stride;
const int64_t dst_stride = pd->dst.stride;
RD_STATS this_rdc;
(void)block;
p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
if (plane == 0) {
int64_t this_sse = INT64_MAX;
block_yrd(cpi, x, 0, 0, &this_rdc, &args->skippable, &this_sse, bsize_tx,
AOMMIN(tx_size, TX_16X16));
} else {
unsigned int var = 0;
unsigned int sse = 0;
model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &var, &sse, plane,
plane);
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
args->rdc->rate += this_rdc.rate;
args->rdc->dist += this_rdc.dist;
}
static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
MV_REFERENCE_FRAME ref_frame,
THR_MODES best_mode_idx,
PREDICTION_MODE mode) {
THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
int *freq_fact = &x->thresh_freq_fact[bsize][thr_mode_idx];
if (thr_mode_idx == best_mode_idx) {
*freq_fact -= (*freq_fact >> 4);
} else {
*freq_fact =
AOMMIN(*freq_fact + RD_THRESH_INC,
cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
}
}
static INLINE int get_force_skip_low_temp_var_small_sb(uint8_t *variance_low,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
// Relative indices of MB inside the superblock.
const int mi_x = mi_row & 0xF;
const int mi_y = mi_col & 0xF;
// Relative indices of 16x16 block inside the superblock.
const int i = mi_x >> 2;
const int j = mi_y >> 2;
int force_skip_low_temp_var = 0;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_64X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[1];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[2];
}
break;
case BLOCK_32X64:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[3];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[4];
}
break;
case BLOCK_32X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[5];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[6];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[7];
} else if (mi_y && mi_x) {
force_skip_low_temp_var = variance_low[8];
}
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
break;
default: break;
}
return force_skip_low_temp_var;
}
static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
int force_skip_low_temp_var = 0;
int x, y;
x = (mi_col & 0x1F) >> 4;
// y = (mi_row & 0x1F) >> 4;
// const int idx64 = (y << 1) + x;
y = (mi_row & 0x17) >> 3;
const int idx64 = y + x;
x = (mi_col & 0xF) >> 3;
// y = (mi_row & 0xF) >> 3;
// const int idx32 = (y << 1) + x;
y = (mi_row & 0xB) >> 2;
const int idx32 = y + x;
x = (mi_col & 0x7) >> 2;
// y = (mi_row & 0x7) >> 2;
// const int idx16 = (y << 1) + x;
y = (mi_row & 0x5) >> 1;
const int idx16 = y + x;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_128X64:
assert((mi_col & 0x1F) == 0);
force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)];
break;
case BLOCK_64X128:
assert((mi_row & 0x1F) == 0);
force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)];
break;
case BLOCK_64X64:
// Location of this 64x64 block inside the 128x128 superblock
force_skip_low_temp_var = variance_low[5 + idx64];
break;
case BLOCK_64X32:
x = (mi_col & 0x1F) >> 4;
y = (mi_row & 0x1F) >> 3;
/*
.---------------.---------------.
| x=0,y=0,idx=0 | x=0,y=0,idx=2 |
:---------------+---------------:
| x=0,y=1,idx=1 | x=1,y=1,idx=3 |
:---------------+---------------:
| x=0,y=2,idx=4 | x=1,y=2,idx=6 |
:---------------+---------------:
| x=0,y=3,idx=5 | x=1,y=3,idx=7 |
'---------------'---------------'
*/
const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2);
force_skip_low_temp_var = variance_low[9 + idx64x32];
break;
case BLOCK_32X64:
x = (mi_col & 0x1F) >> 3;
y = (mi_row & 0x1F) >> 4;
const int idx32x64 = (y << 2) + x;
force_skip_low_temp_var = variance_low[17 + idx32x64];
break;
case BLOCK_32X32:
force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32];
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var =
variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16];
break;
default: break;
}
return force_skip_low_temp_var;
}
#define FILTER_SEARCH_SIZE 2
static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
int mi_row, int mi_col, PRED_BUFFER *tmp,
BLOCK_SIZE bsize, int reuse_inter_pred,
PRED_BUFFER **this_mode_pred, unsigned int *var_y,
unsigned int *sse_y, int *this_early_term,
int use_model_yrd_large, int64_t *sse_block_yrd) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
MB_MODE_INFO *const mi = xd->mi[0];
const int bw = block_size_wide[bsize];
int pf_rate[FILTER_SEARCH_SIZE] = { 0 };
int64_t pf_dist[FILTER_SEARCH_SIZE] = { 0 };
unsigned int pf_var[FILTER_SEARCH_SIZE] = { 0 };
unsigned int pf_sse[FILTER_SEARCH_SIZE] = { 0 };
int64_t pf_sse_block_yrd[FILTER_SEARCH_SIZE] = { 0 };
TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE] = { 0 };
PRED_BUFFER *current_pred = *this_mode_pred;
int skip_txfm[FILTER_SEARCH_SIZE] = { 0 };
int best_skip = 0;
int best_early_term = 0;
int64_t best_cost = INT64_MAX;
int best_filter_index = -1;
InterpFilter filters[FILTER_SEARCH_SIZE] = { EIGHTTAP_REGULAR,
EIGHTTAP_SMOOTH };
int i;
for (i = 0; i < FILTER_SEARCH_SIZE; ++i) {
int64_t cost;
InterpFilter filter = filters[i];
mi->interp_filters = av1_broadcast_interp_filter(filter);
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
if (use_model_yrd_large)
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &pf_rate[i],
&pf_dist[i], &pf_var[i], &pf_sse[i],
this_early_term, 1);
else
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[i], &pf_dist[i],
&skip_txfm[i], NULL, &pf_var[i], &pf_sse[i], 1);
pf_rate[i] += av1_get_switchable_rate(x, xd, cm->features.interp_filter);
cost = RDCOST(x->rdmult, pf_rate[i], pf_dist[i]);
pf_tx_size[i] = mi->tx_size;
if (cost < best_cost) {
best_filter_index = i;
best_cost = cost;
best_skip = skip_txfm[i];
best_early_term = *this_early_term;
if (reuse_inter_pred) {
if (*this_mode_pred != current_pred) {
free_pred_buffer(*this_mode_pred);
*this_mode_pred = current_pred;
}
current_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
assert(best_filter_index >= 0 && best_filter_index < FILTER_SEARCH_SIZE);
if (reuse_inter_pred && *this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mi->interp_filters = av1_broadcast_interp_filter(filters[best_filter_index]);
mi->tx_size = pf_tx_size[best_filter_index];
this_rdc->rate = pf_rate[best_filter_index];
this_rdc->dist = pf_dist[best_filter_index];
*var_y = pf_var[best_filter_index];
*sse_y = pf_sse[best_filter_index];
*sse_block_yrd = pf_sse_block_yrd[best_filter_index];
this_rdc->skip = (best_skip || best_early_term);
*this_early_term = best_early_term;
if (reuse_inter_pred) {
pd->dst.buf = (*this_mode_pred)->data;
pd->dst.stride = (*this_mode_pred)->stride;
} else if (best_filter_index < FILTER_SEARCH_SIZE - 1) {
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
}
}
#define COLLECT_PICK_MODE_STAT 0
#if COLLECT_PICK_MODE_STAT
typedef struct _mode_search_stat {
int32_t num_blocks[BLOCK_SIZES];
int64_t avg_block_times[BLOCK_SIZES];
int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT];
int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT];
int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT];
int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT];
struct aom_usec_timer timer1;
struct aom_usec_timer timer2;
} mode_search_stat;
#endif // COLLECT_PICK_MODE_STAT
static void compute_intra_yprediction(const AV1_COMMON *cm,
PREDICTION_MODE mode, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd) {
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int plane = 0;
int row, col;
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
av1_predict_intra_block(cm, xd, block_size_wide[bsize],
block_size_high[bsize], tx_size, mode, 0, 0,
FILTER_INTRA_MODES, pd->dst.buf, dst_stride,
pd->dst.buf, dst_stride, 0, 0, plane);
}
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
}
void av1_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
RD_STATS this_rdc, best_rdc;
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
const TX_SIZE intra_tx_size =
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]);
int *bmode_costs;
const MB_MODE_INFO *above_mi = xd->above_mbmi;
const MB_MODE_INFO *left_mi = xd->left_mbmi;
const PREDICTION_MODE A = av1_above_block_mode(above_mi);
const PREDICTION_MODE L = av1_left_block_mode(left_mi);
bmode_costs = x->y_mode_costs[A][L];
av1_invalid_rd_stats(&best_rdc);
av1_invalid_rd_stats(&this_rdc);
init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm);
mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV;
// Change the limit of this loop to add other intra prediction
// mode tests.
for (int i = 0; i < 4; ++i) {
PREDICTION_MODE this_mode = intra_mode_list[i];
this_rdc.dist = this_rdc.rate = 0;
args.mode = this_mode;
args.skippable = 1;
args.rdc = &this_rdc;
mi->tx_size = intra_tx_size;
av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
&args);
if (args.skippable) {
this_rdc.rate = av1_cost_symbol(av1_get_skip_cdf(xd)[1]);
} else {
this_rdc.rate += av1_cost_symbol(av1_get_skip_cdf(xd)[0]);
}
this_rdc.rate += bmode_costs[this_mode];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
mi->mode = this_mode;
}
}
*rd_cost = best_rdc;
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, mi->mode);
#else
store_coding_context(x, ctx);
#endif // CONFIG_INTERNAL_STATS
}
void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[0];
BEST_PICKMODE best_pickmode;
int inter_mode_mask[BLOCK_SIZES];
#if COLLECT_PICK_MODE_STAT
static mode_search_stat ms_stat;
#endif
MV_REFERENCE_FRAME ref_frame;
MV_REFERENCE_FRAME usable_ref_frame, second_ref_frame;
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES];
struct buf_2d yv12_mb[8][MAX_MB_PLANE];
static const int flag_list[8] = { 0, AOM_LAST_FLAG, 0, 0, AOM_GOLD_FLAG, 0,
0, AOM_ALT_FLAG };
RD_STATS this_rdc, best_rdc;
// var_y and sse_y are saved to be used in skipping checking
unsigned int sse_y = UINT_MAX;
unsigned int var_y = UINT_MAX;
const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize];
const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
InterpFilter filter_ref;
int ref_frame_skip_mask = 0;
int best_pred_sad = INT_MAX;
int best_early_term = 0;
unsigned int ref_costs_single[REF_FRAMES],
ref_costs_comp[REF_FRAMES][REF_FRAMES];
int force_skip_low_temp_var = 0;
int skip_ref_find_pred[8] = { 0 };
unsigned int sse_zeromv_norm = UINT_MAX;
const unsigned int thresh_skip_golden = 500;
int gf_temporal_ref = 0;
const struct segmentation *const seg = &cm->seg;
int num_inter_modes = RT_INTER_MODES;
unsigned char segment_id = mi->segment_id;
PRED_BUFFER tmp[4];
DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]);
PRED_BUFFER *this_mode_pred = NULL;
const int reuse_inter_pred =
cpi->sf.rt_sf.reuse_inter_pred_nonrd && cm->seq_params.bit_depth == 8;
const int bh = block_size_high[bsize];
const int bw = block_size_wide[bsize];
const int pixels_in_block = bh * bw;
struct buf_2d orig_dst = pd->dst;
const CommonQuantParams *quant_params = &cm->quant_params;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_start(&ms_stat.timer2);
#endif
int intra_cost_penalty = av1_get_intra_cost_penalty(
quant_params->base_qindex, quant_params->y_dc_delta_q,
cm->seq_params.bit_depth);
int64_t inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
const int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd;
int use_modeled_non_rd_cost = 0;
int enable_filter_search = 0;
InterpFilter default_interp_filter = EIGHTTAP_REGULAR;
int64_t thresh_sad_pred = INT64_MAX;
(void)best_rd_so_far;
init_best_pickmode(&best_pickmode);
for (int i = 0; i < BLOCK_SIZES; ++i) inter_mode_mask[i] = INTER_ALL;
// TODO(kyslov) Move this to Speed Features
inter_mode_mask[BLOCK_128X128] = INTER_NEAREST_NEAR;
struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME);
struct scale_factors *const sf_golden =
get_ref_scale_factors(cm, GOLDEN_FRAME);
gf_temporal_ref = 1;
// For temporal long term prediction, check that the golden reference
// is same scale as last reference, otherwise disable.
if ((sf_last->x_scale_fp != sf_golden->x_scale_fp) ||
(sf_last->y_scale_fp != sf_golden->y_scale_fp)) {
gf_temporal_ref = 0;
}
av1_collect_neighbors_ref_counts(xd);
estimate_single_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single);
if (cpi->sf.rt_sf.use_comp_ref_nonrd)
estimate_comp_ref_frame_costs(cm, xd, x, segment_id, ref_costs_comp);
memset(&mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES);
if (reuse_inter_pred) {
for (int i = 0; i < 3; i++) {
tmp[i].data = &pred_buf[pixels_in_block * i];
tmp[i].stride = bw;
tmp[i].in_use = 0;
}
tmp[3].data = pd->dst.buf;
tmp[3].stride = pd->dst.stride;
tmp[3].in_use = 0;
}
x->force_skip = 0;
// Instead of using av1_get_pred_context_switchable_interp(xd) to assign
// filter_ref, we use a less strict condition on assigning filter_ref.
// This is to reduce the probabily of entering the flow of not assigning
// filter_ref and then skip filter search.
filter_ref = cm->features.interp_filter;
// initialize mode decisions
av1_invalid_rd_stats(&best_rdc);
av1_invalid_rd_stats(&this_rdc);
av1_invalid_rd_stats(rd_cost);
mi->sb_type = bsize;
mi->ref_frame[0] = NONE_FRAME;
mi->ref_frame[1] = NONE_FRAME;
usable_ref_frame =
cpi->sf.rt_sf.use_nonrd_altref_frame ? ALTREF_FRAME : GOLDEN_FRAME;
if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref) {
skip_ref_find_pred[GOLDEN_FRAME] = 1;
if (!cpi->sf.rt_sf.use_nonrd_altref_frame) usable_ref_frame = LAST_FRAME;
}
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
if (cpi->sf.rt_sf.short_circuit_low_temp_var &&
x->nonrd_prune_ref_frame_search) {
if (is_small_sb)
force_skip_low_temp_var = get_force_skip_low_temp_var_small_sb(
&x->variance_low[0], mi_row, mi_col, bsize);
else
force_skip_low_temp_var = get_force_skip_low_temp_var(
&x->variance_low[0], mi_row, mi_col, bsize);
// If force_skip_low_temp_var is set, skip golden reference.
if (force_skip_low_temp_var) {
usable_ref_frame = LAST_FRAME;
}
}
// If the segment reference frame feature is enabled and it's set to GOLDEN
// reference, then make sure we don't skip checking GOLDEN, this is to
// prevent possibility of not picking any mode.
if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
usable_ref_frame = GOLDEN_FRAME;
skip_ref_find_pred[GOLDEN_FRAME] = 0;
}
for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME;
ref_frame_iter <= usable_ref_frame; ++ref_frame_iter) {
// Skip find_predictor if the reference frame is not in the
// ref_frame_flags (i.e., not used as a reference for this frame).
skip_ref_find_pred[ref_frame_iter] =
!(cpi->ref_frame_flags & flag_list[ref_frame_iter]);
if (!skip_ref_find_pred[ref_frame_iter]) {
find_predictors(cpi, x, ref_frame_iter, frame_mv, &ref_frame_skip_mask,
flag_list, tile_data, yv12_mb, bsize,
force_skip_low_temp_var);
}
}
thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1;
// Increase threshold for less agressive pruning.
if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1)
thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2);
const int large_block = bsize >= BLOCK_32X32;
const int use_model_yrd_large =
cpi->oxcf.rc_mode == AOM_CBR && large_block &&
!cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) &&
quant_params->base_qindex && cm->seq_params.bit_depth == 8;
#if COLLECT_PICK_MODE_STAT
ms_stat.num_blocks[bsize]++;
#endif
init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm);
mi->tx_size =
AOMMIN(AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]),
TX_16X16);
// TODO(marpan): Look into reducing these conditions. For now constrain
// it to avoid significant bdrate loss.
if (cpi->sf.rt_sf.use_modeled_non_rd_cost &&
quant_params->base_qindex > 120 && x->source_variance > 100 &&
bsize <= BLOCK_16X16 && x->content_state_sb != kLowVarHighSumdiff &&
x->content_state_sb != kHighSad)
use_modeled_non_rd_cost = 1;
if (cpi->sf.rt_sf.use_nonrd_filter_search) {
enable_filter_search = 1;
if (cpi->sf.interp_sf.cb_pred_filter_search) {
const int bsl = mi_size_wide_log2[bsize];
enable_filter_search =
(((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_frame.frame_number)) &
0x1;
}
if (x->source_variance <=
cpi->sf.interp_sf.disable_filter_search_var_thresh)
enable_filter_search = 0;
}
for (int idx = 0; idx < num_inter_modes; ++idx) {
int rate_mv = 0;
int mode_rd_thresh;
int mode_index;
int64_t this_sse;
int is_skippable;
int this_early_term = 0;
int skip_this_mv = 0;
int comp_pred = 0;
int force_mv_inter_layer = 0;
PREDICTION_MODE this_mode;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
second_ref_frame = NONE_FRAME;
this_mode = ref_mode_set[idx].pred_mode;
ref_frame = ref_mode_set[idx].ref_frame;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_start(&ms_stat.timer1);
ms_stat.num_searches[bsize][this_mode]++;
#endif
mi->mode = this_mode;
mi->ref_frame[0] = ref_frame;
if (ref_frame > usable_ref_frame) continue;
if (skip_ref_find_pred[ref_frame]) continue;
// Skip non-zero motion for SVC if skip_nonzeromv_ref is set.
if (cpi->use_svc && frame_mv[this_mode][ref_frame].as_int != 0) {
if (ref_frame == LAST_FRAME && cpi->svc.skip_nonzeromv_last)
continue;
else if (ref_frame == GOLDEN_FRAME && cpi->svc.skip_nonzeromv_gf)
continue;
}
// If the segment reference frame feature is enabled then do nothing if the
// current ref frame is not allowed.
if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
continue;
if (ref_frame != LAST_FRAME && cpi->oxcf.rc_mode == AOM_CBR &&
sse_zeromv_norm < thresh_skip_golden && this_mode == NEWMV)
continue;
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue;
if (!(inter_mode_mask[bsize] & (1 << this_mode))) continue;
// Skip testing non-LAST if this flag is set.
if (x->nonrd_prune_ref_frame_search) {
if (x->nonrd_prune_ref_frame_search > 1 && ref_frame != LAST_FRAME &&
(bsize > BLOCK_64X64 || (bsize > BLOCK_16X16 && this_mode == NEWMV)))
continue;
if (ref_frame != LAST_FRAME && this_mode == NEARMV) continue;
}
// Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var
// is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
// later.
if (!force_mv_inter_layer && force_skip_low_temp_var &&
ref_frame != LAST_FRAME && frame_mv[this_mode][ref_frame].as_int != 0) {
continue;
}
#if 0
if (x->content_state_sb != kVeryHighSad &&
(cpi->sf.short_circuit_low_temp_var >= 2 ||
(cpi->sf.short_circuit_low_temp_var == 1 && bsize == BLOCK_64X64))
&& force_skip_low_temp_var && ref_frame == LAST_FRAME && this_mode ==
NEWMV) {
continue;
}
#endif
// Disable this drop out case if the ref frame segment level feature is
// enabled for this segment. This is to prevent the possibility that we
// end up unable to pick any mode.
if (!segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) {
// Check for skipping GOLDEN and ALTREF based pred_mv_sad.
if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 &&
x->pred_mv_sad[ref_frame] != INT_MAX && ref_frame != LAST_FRAME) {
if ((int64_t)(x->pred_mv_sad[ref_frame]) > thresh_sad_pred)
ref_frame_skip_mask |= (1 << ref_frame);
}
if (ref_frame_skip_mask & (1 << ref_frame)) continue;
}
// Select prediction reference frames.
for (int i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
}
mi->ref_frame[0] = ref_frame;
mi->ref_frame[1] = second_ref_frame;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
mode_rd_thresh = best_pickmode.best_mode_skip_txfm
? rd_threshes[mode_index] << 1
: rd_threshes[mode_index];
// Increase mode_rd_thresh value for non-LAST for improved encoding
// speed
if (ref_frame != LAST_FRAME) {
mode_rd_thresh = mode_rd_thresh << 1;
if (ref_frame == GOLDEN_FRAME && cpi->rc.frames_since_golden > 4)
mode_rd_thresh = mode_rd_thresh << 1;
}
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]))
if (frame_mv[this_mode][ref_frame].as_int != 0) continue;
if (this_mode == NEWMV && !force_mv_inter_layer) {
if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize,
mi_row, mi_col, best_pred_sad, &rate_mv, &best_rdc))
continue;
}
for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV;
inter_mv_mode++) {
if (inter_mv_mode == this_mode || comp_pred) continue;
if (mode_checked[inter_mv_mode][ref_frame] &&
frame_mv[this_mode][ref_frame].as_int ==
frame_mv[inter_mv_mode][ref_frame].as_int) {
skip_this_mv = 1;
break;
}
}
if (skip_this_mv) continue;
mi->mode = this_mode;
mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
mi->mv[1].as_int = 0;
if (reuse_inter_pred) {
if (!this_mode_pred) {
this_mode_pred = &tmp[3];
} else {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = bw;
}
}
#if COLLECT_PICK_MODE_STAT
ms_stat.num_nonskipped_searches[bsize][this_mode]++;
#endif
if (enable_filter_search &&
((mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07)) &&
(ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search)) {
search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize,
reuse_inter_pred, &this_mode_pred, &var_y, &sse_y,
&this_early_term, use_model_yrd_large, &this_sse);
} else {
mi->interp_filters =
(filter_ref == SWITCHABLE)
? av1_broadcast_interp_filter(default_interp_filter)
: av1_broadcast_interp_filter(filter_ref);
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
if (use_model_yrd_large) {
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, NULL, NULL,
&var_y, &sse_y, &this_early_term,
use_modeled_non_rd_cost);
} else {
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&this_rdc.skip, NULL, &var_y, &sse_y,
use_modeled_non_rd_cost);
}
}
if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) {
sse_zeromv_norm =
sse_y >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
}
const int skip_ctx = av1_get_skip_context(xd);
const int skip_cost = x->skip_cost[skip_ctx][1];
const int no_skip_cost = x->skip_cost[skip_ctx][0];
if (!this_early_term) {
if (use_modeled_non_rd_cost) {
if (this_rdc.skip) {
this_rdc.rate = skip_cost;
} else {
this_rdc.rate += no_skip_cost;
}
} else {
this_sse = (int64_t)sse_y;
block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &is_skippable, &this_sse,
bsize, mi->tx_size);
if (this_rdc.skip) {
this_rdc.rate = skip_cost;
} else {
if (RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist) >=
RDCOST(x->rdmult, 0,
this_sse)) { // this_sse already multiplied by 16 in
// block_yrd
this_rdc.skip = 1;
this_rdc.rate = skip_cost;
this_rdc.dist = this_sse;
} else {
this_rdc.rate += no_skip_cost;
}
}
}
} else {
this_rdc.skip = 1;
this_rdc.rate = skip_cost;
this_rdc.dist = sse_y << 4;
}
if (!this_early_term &&
(x->color_sensitivity[0] || x->color_sensitivity[1])) {
RD_STATS rdc_uv;
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
if (x->color_sensitivity[0]) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_U, AOM_PLANE_U);
}
if (x->color_sensitivity[1]) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_V, AOM_PLANE_V);
}
model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &var_y, &sse_y, 1, 2);
this_rdc.rate += rdc_uv.rate;
this_rdc.dist += rdc_uv.dist;
this_rdc.skip = this_rdc.skip && rdc_uv.skip;
}
// TODO(kyslov) account for UV prediction cost
this_rdc.rate += rate_mv;
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
this_rdc.rate += cost_mv_ref(x, this_mode, mode_ctx);
this_rdc.rate += ref_costs_single[ref_frame];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (cpi->oxcf.rc_mode == AOM_CBR) {
newmv_diff_bias(xd, this_mode, &this_rdc, bsize,
frame_mv[this_mode][ref_frame].as_mv.row,
frame_mv[this_mode][ref_frame].as_mv.col, cpi->speed,
x->source_variance);
}
mode_checked[this_mode][ref_frame] = 1;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_mark(&ms_stat.timer1);
ms_stat.nonskipped_search_times[bsize][this_mode] +=
aom_usec_timer_elapsed(&ms_stat.timer1);
#endif
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
best_early_term = this_early_term;
best_pickmode.best_mode = this_mode;
best_pickmode.best_pred_filter = mi->interp_filters;
best_pickmode.best_tx_size = mi->tx_size;
best_pickmode.best_ref_frame = ref_frame;
best_pickmode.best_mode_skip_txfm = this_rdc.skip;
best_pickmode.best_second_ref_frame = second_ref_frame;
if (reuse_inter_pred) {
free_pred_buffer(best_pickmode.best_pred);
best_pickmode.best_pred = this_mode_pred;
}
} else {
if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
}
if (best_early_term && idx > 0) {
x->force_skip = 1;
break;
}
}
mi->mode = best_pickmode.best_mode;
mi->interp_filters = best_pickmode.best_pred_filter;
mi->tx_size = best_pickmode.best_tx_size;
memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size));
mi->ref_frame[0] = best_pickmode.best_ref_frame;
mi->mv[0].as_int =
frame_mv[best_pickmode.best_mode][best_pickmode.best_ref_frame].as_int;
mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
x->force_skip = best_rdc.skip;
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
mi->angle_delta[PLANE_TYPE_Y] = 0;
mi->angle_delta[PLANE_TYPE_UV] = 0;
mi->filter_intra_mode_info.use_filter_intra = 0;
uint32_t spatial_var_thresh = 50;
int motion_thresh = 32;
// Adjust thresholds to make intra mode likely tested if the other
// references (golden, alt) are skipped/not checked.
if (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 &&
cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0) {
spatial_var_thresh = 150;
motion_thresh = 0;
}
int do_early_exit_rdthresh = 1;
// Some adjustments to checking intra mode based on source variance.
if (x->source_variance < spatial_var_thresh) {
// If the best inter mode is large motion or non-LAST ref reduce intra cost
// penalty, so intra mode is more likely tested.
if (best_pickmode.best_ref_frame != LAST_FRAME ||
abs(mi->mv[0].as_mv.row) >= motion_thresh ||
abs(mi->mv[0].as_mv.col) >= motion_thresh) {
intra_cost_penalty = intra_cost_penalty >> 2;
inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
do_early_exit_rdthresh = 0;
}
// For big blocks worth checking intra (since only DC will be checked),
// even if best_early_term is set.
if (bsize >= BLOCK_32X32) best_early_term = 0;
}
if (best_rdc.rdcost == INT64_MAX ||
(perform_intra_pred && !best_early_term &&
best_rdc.rdcost > inter_mode_thresh &&
bsize <= cpi->sf.part_sf.max_intra_bsize)) {
int64_t this_sse = INT64_MAX;
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
PRED_BUFFER *const best_pred = best_pickmode.best_pred;
TX_SIZE intra_tx_size =
AOMMIN(AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]),
TX_16X16);
if (reuse_inter_pred && best_pred != NULL) {
if (best_pred->data == orig_dst.buf) {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
aom_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride, 0, 0, 0,
0, bw, bh);
best_pickmode.best_pred = this_mode_pred;
}
}
pd->dst = orig_dst;
for (int i = 0; i < 4; ++i) {
const PREDICTION_MODE this_mode = intra_mode_list[i];
const THR_MODES mode_index =
mode_idx[INTRA_FRAME][mode_offset(this_mode)];
const int mode_rd_thresh = rd_threshes[mode_index];
// Only check DC for blocks >= 32X32.
if (this_mode > 0 && bsize >= BLOCK_32X32) continue;
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]) &&
(do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
continue;
}
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
mi->mode = this_mode;
mi->ref_frame[0] = INTRA_FRAME;
mi->ref_frame[1] = NONE_FRAME;
this_rdc.dist = this_rdc.rate = 0;
args.mode = this_mode;
args.skippable = 1;
args.rdc = &this_rdc;
mi->tx_size = intra_tx_size;
compute_intra_yprediction(cm, this_mode, bsize, x, xd);
// Look into selecting tx_size here, based on prediction residual.
if (use_modeled_non_rd_cost)
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&this_rdc.skip, NULL, &var_y, &sse_y, 1);
else
block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &args.skippable, &this_sse,
bsize, mi->tx_size);
// TODO(kyslov@) Need to account for skippable
if (x->color_sensitivity[0]) {
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1,
estimate_block_intra, &args);
}
if (x->color_sensitivity[1]) {
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2,
estimate_block_intra, &args);
}
int mode_cost = 0;
if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
mode_cost += x->angle_delta_cost[this_mode - V_PRED]
[MAX_ANGLE_DELTA +
mi->angle_delta[PLANE_TYPE_Y]];
}
if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
mode_cost += x->filter_intra_cost[bsize][0];
}
this_rdc.rate += ref_costs_single[INTRA_FRAME];
this_rdc.rate += intra_cost_penalty;
this_rdc.rate += mode_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
best_pickmode.best_mode = this_mode;
best_pickmode.best_intra_tx_size = mi->tx_size;
best_pickmode.best_ref_frame = INTRA_FRAME;
best_pickmode.best_second_ref_frame = NONE_FRAME;
mi->uv_mode = this_mode;
mi->mv[0].as_int = INVALID_MV;
mi->mv[1].as_int = INVALID_MV;
}
}
// Reset mb_mode_info to the best inter mode.
if (best_pickmode.best_ref_frame != INTRA_FRAME) {
mi->tx_size = best_pickmode.best_tx_size;
} else {
mi->tx_size = best_pickmode.best_intra_tx_size;
}
}
pd->dst = orig_dst;
mi->mode = best_pickmode.best_mode;
mi->ref_frame[0] = best_pickmode.best_ref_frame;
mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
if (!is_inter_block(mi)) {
mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS);
}
if (reuse_inter_pred && best_pickmode.best_pred != NULL) {
PRED_BUFFER *const best_pred = best_pickmode.best_pred;
if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
pd->dst.stride, 0, 0, 0, 0, bw, bh);
}
}
if (cpi->sf.inter_sf.adaptive_rd_thresh) {
THR_MODES best_mode_idx =
mode_idx[best_pickmode.best_ref_frame][mode_offset(mi->mode)];
if (best_pickmode.best_ref_frame == INTRA_FRAME) {
// Only consider the modes that are included in the intra_mode_list.
int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
for (int i = 0; i < intra_modes; i++) {
update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx,
intra_mode_list[i]);
}
} else {
for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) {
PREDICTION_MODE this_mode;
if (best_pickmode.best_ref_frame != ref_frame) continue;
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
update_thresh_freq_fact(cpi, x, bsize, ref_frame, best_mode_idx,
this_mode);
}
}
}
}
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, mi->mode);
#else
store_coding_context(x, ctx);
#endif // CONFIG_INTERNAL_STATS
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_mark(&ms_stat.timer2);
ms_stat.avg_block_times[bsize] += aom_usec_timer_elapsed(&ms_stat.timer2);
//
if ((mi_row + mi_size_high[bsize] >= (cpi->common.mi_params.mi_rows)) &&
(mi_col + mi_size_wide[bsize] >= (cpi->common.mi_params.mi_cols))) {
int i, j;
PREDICTION_MODE used_modes[3] = { NEARESTMV, NEARMV, NEWMV };
BLOCK_SIZE bss[5] = { BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
BLOCK_128X128 };
int64_t total_time = 0l;
int32_t total_blocks = 0;
printf("\n");
for (i = 0; i < 5; i++) {
printf("BS(%d) Num %d, Avg_time %f: ", bss[i], ms_stat.num_blocks[bss[i]],
ms_stat.num_blocks[bss[i]] > 0
? (float)ms_stat.avg_block_times[bss[i]] /
ms_stat.num_blocks[bss[i]]
: 0);
total_time += ms_stat.avg_block_times[bss[i]];
total_blocks += ms_stat.num_blocks[bss[i]];
for (j = 0; j < 3; j++) {
printf("Mode %d, %d/%d tps %f ", used_modes[j],
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]],
ms_stat.num_searches[bss[i]][used_modes[j]],
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]] > 0
? (float)ms_stat
.nonskipped_search_times[bss[i]][used_modes[j]] /
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]]
: 0l);
}
printf("\n");
}
printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks);
}
//
#endif // COLLECT_PICK_MODE_STAT
*rd_cost = best_rdc;
}
|