1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code is subject to the terms of the Mozilla Public License
* version 2.0 (the "License"). You can obtain a copy of the License at
* http://mozilla.org/MPL/2.0/. */
/* rendering object for CSS "display: flex" */
#include "mozilla/UniquePtr.h"
#include "nsFlexContainerFrame.h"
#include "nsContentUtils.h"
#include "nsCSSAnonBoxes.h"
#include "nsDisplayList.h"
#include "nsIFrameInlines.h"
#include "nsLayoutUtils.h"
#include "nsPlaceholderFrame.h"
#include "nsPresContext.h"
#include "nsRenderingContext.h"
#include "nsStyleContext.h"
#include "mozilla/Logging.h"
#include <algorithm>
#include "mozilla/LinkedList.h"
#include "mozilla/FloatingPoint.h"
#include "WritingModes.h"
using namespace mozilla;
using namespace mozilla::layout;
// Convenience typedefs for helper classes that we forward-declare in .h file
// (so that nsFlexContainerFrame methods can use them as parameters):
typedef nsFlexContainerFrame::FlexItem FlexItem;
typedef nsFlexContainerFrame::FlexLine FlexLine;
typedef nsFlexContainerFrame::FlexboxAxisTracker FlexboxAxisTracker;
typedef nsFlexContainerFrame::StrutInfo StrutInfo;
typedef nsFlexContainerFrame::CachedMeasuringReflowResult
CachedMeasuringReflowResult;
typedef nsLayoutUtils::IntrinsicISizeType IntrinsicISizeType;
static mozilla::LazyLogModule gFlexContainerLog("nsFlexContainerFrame");
// XXXdholbert Some of this helper-stuff should be separated out into a general
// "main/cross-axis utils" header, shared by grid & flexbox?
// (Particularly when grid gets support for align-*/justify-* properties.)
// Helper enums
// ============
// Represents a physical orientation for an axis.
// The directional suffix indicates the direction in which the axis *grows*.
// So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT
// means a vertical bottom-to-top axis.
// NOTE: The order here is important -- these values are used as indices into
// the static array 'kAxisOrientationToSidesMap', defined below.
enum AxisOrientationType {
eAxis_LR,
eAxis_RL,
eAxis_TB,
eAxis_BT,
eNumAxisOrientationTypes // For sizing arrays that use these values as indices
};
// Represents one or the other extreme of an axis (e.g. for the main axis, the
// main-start vs. main-end edge.
// NOTE: The order here is important -- these values are used as indices into
// the sub-arrays in 'kAxisOrientationToSidesMap', defined below.
enum AxisEdgeType {
eAxisEdge_Start,
eAxisEdge_End,
eNumAxisEdges // For sizing arrays that use these values as indices
};
// This array maps each axis orientation to a pair of corresponding
// [start, end] physical mozilla::Side values.
static const mozilla::Side
kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = {
{ eSideLeft, eSideRight }, // eAxis_LR
{ eSideRight, eSideLeft }, // eAxis_RL
{ eSideTop, eSideBottom }, // eAxis_TB
{ eSideBottom, eSideTop } // eAxis_BT
};
// Helper structs / classes / methods
// ==================================
// Returns true iff the given nsStyleDisplay has display:-webkit-{inline-}-box.
static inline bool
IsDisplayValueLegacyBox(const nsStyleDisplay* aStyleDisp)
{
return aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitBox ||
aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitInlineBox;
}
// Returns true if aFlexContainer is the frame for an element with
// "display:-webkit-box" or "display:-webkit-inline-box". aFlexContainer is
// expected to be an instance of nsFlexContainerFrame (enforced with an assert);
// otherwise, this function's state-bit-check here is bogus.
static bool
IsLegacyBox(const nsIFrame* aFlexContainer)
{
MOZ_ASSERT(aFlexContainer->GetType() == nsGkAtoms::flexContainerFrame,
"only flex containers may be passed to this function");
return aFlexContainer->HasAnyStateBits(NS_STATE_FLEX_IS_LEGACY_WEBKIT_BOX);
}
// Returns the "align-items" value that's equivalent to the legacy "box-align"
// value in the given style struct.
static uint8_t
ConvertLegacyStyleToAlignItems(const nsStyleXUL* aStyleXUL)
{
// -[moz|webkit]-box-align corresponds to modern "align-items"
switch (aStyleXUL->mBoxAlign) {
case StyleBoxAlign::Stretch:
return NS_STYLE_ALIGN_STRETCH;
case StyleBoxAlign::Start:
return NS_STYLE_ALIGN_FLEX_START;
case StyleBoxAlign::Center:
return NS_STYLE_ALIGN_CENTER;
case StyleBoxAlign::Baseline:
return NS_STYLE_ALIGN_BASELINE;
case StyleBoxAlign::End:
return NS_STYLE_ALIGN_FLEX_END;
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value");
// Fall back to default value of "align-items" property:
return NS_STYLE_ALIGN_STRETCH;
}
// Returns the "justify-content" value that's equivalent to the legacy
// "box-pack" value in the given style struct.
static uint8_t
ConvertLegacyStyleToJustifyContent(const nsStyleXUL* aStyleXUL)
{
// -[moz|webkit]-box-pack corresponds to modern "justify-content"
switch (aStyleXUL->mBoxPack) {
case StyleBoxPack::Start:
return NS_STYLE_ALIGN_FLEX_START;
case StyleBoxPack::Center:
return NS_STYLE_ALIGN_CENTER;
case StyleBoxPack::End:
return NS_STYLE_ALIGN_FLEX_END;
case StyleBoxPack::Justify:
return NS_STYLE_ALIGN_SPACE_BETWEEN;
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value");
// Fall back to default value of "justify-content" property:
return NS_STYLE_ALIGN_FLEX_START;
}
// Indicates whether advancing along the given axis is equivalent to
// increasing our X or Y position (as opposed to decreasing it).
static inline bool
AxisGrowsInPositiveDirection(AxisOrientationType aAxis)
{
return eAxis_LR == aAxis || eAxis_TB == aAxis;
}
// Given an AxisOrientationType, returns the "reverse" AxisOrientationType
// (in the same dimension, but the opposite direction)
static inline AxisOrientationType
GetReverseAxis(AxisOrientationType aAxis)
{
AxisOrientationType reversedAxis;
if (aAxis % 2 == 0) {
// even enum value. Add 1 to reverse.
reversedAxis = AxisOrientationType(aAxis + 1);
} else {
// odd enum value. Subtract 1 to reverse.
reversedAxis = AxisOrientationType(aAxis - 1);
}
// Check that we're still in the enum's valid range
MOZ_ASSERT(reversedAxis >= eAxis_LR &&
reversedAxis <= eAxis_BT);
return reversedAxis;
}
/**
* Converts a "flex-relative" coordinate in a single axis (a main- or cross-axis
* coordinate) into a coordinate in the corresponding physical (x or y) axis. If
* the flex-relative axis in question already maps *directly* to a physical
* axis (i.e. if it's LTR or TTB), then the physical coordinate has the same
* numeric value as the provided flex-relative coordinate. Otherwise, we have to
* subtract the flex-relative coordinate from the flex container's size in that
* axis, to flip the polarity. (So e.g. a main-axis position of 2px in a RTL
* 20px-wide container would correspond to a physical coordinate (x-value) of
* 18px.)
*/
static nscoord
PhysicalCoordFromFlexRelativeCoord(nscoord aFlexRelativeCoord,
nscoord aContainerSize,
AxisOrientationType aAxis) {
if (AxisGrowsInPositiveDirection(aAxis)) {
return aFlexRelativeCoord;
}
return aContainerSize - aFlexRelativeCoord;
}
// Helper-macro to let us pick one of two expressions to evaluate
// (a width expression vs. a height expression), to get a main-axis or
// cross-axis component.
// For code that has e.g. a nsSize object, FlexboxAxisTracker::GetMainComponent
// and GetCrossComponent are cleaner; but in cases where we simply have
// two separate expressions for width and height (which may be expensive to
// evaluate), these macros will ensure that only the expression for the correct
// axis gets evaluated.
#define GET_MAIN_COMPONENT(axisTracker_, width_, height_) \
(axisTracker_).IsMainAxisHorizontal() ? (width_) : (height_)
#define GET_CROSS_COMPONENT(axisTracker_, width_, height_) \
(axisTracker_).IsCrossAxisHorizontal() ? (width_) : (height_)
// Logical versions of helper-macros above:
#define GET_MAIN_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \
wm_.IsOrthogonalTo(axisTracker_.GetWritingMode()) != \
(axisTracker_).IsRowOriented() ? (isize_) : (bsize_)
#define GET_CROSS_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \
wm_.IsOrthogonalTo(axisTracker_.GetWritingMode()) != \
(axisTracker_).IsRowOriented() ? (bsize_) : (isize_)
// Flags to customize behavior of the FlexboxAxisTracker constructor:
enum AxisTrackerFlags {
eNoFlags = 0x0,
// Normally, FlexboxAxisTracker may attempt to reverse axes & iteration order
// to avoid bottom-to-top child ordering, for saner pagination. This flag
// suppresses that behavior (so that we allow bottom-to-top child ordering).
// (This may be helpful e.g. when we're only dealing with a single child.)
eAllowBottomToTopChildOrdering = 0x1
};
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(AxisTrackerFlags)
// Encapsulates our flex container's main & cross axes.
class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker {
public:
FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer,
const WritingMode& aWM,
AxisTrackerFlags aFlags = eNoFlags);
// Accessors:
// XXXdholbert [BEGIN DEPRECATED]
AxisOrientationType GetMainAxis() const { return mMainAxis; }
AxisOrientationType GetCrossAxis() const { return mCrossAxis; }
bool IsMainAxisHorizontal() const {
// If we're row-oriented, and our writing mode is NOT vertical,
// or we're column-oriented and our writing mode IS vertical,
// then our main axis is horizontal. This handles all cases:
return mIsRowOriented != mWM.IsVertical();
}
bool IsCrossAxisHorizontal() const {
return !IsMainAxisHorizontal();
}
// XXXdholbert [END DEPRECATED]
// Returns the flex container's writing mode.
WritingMode GetWritingMode() const { return mWM; }
// Returns true if our main axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-direction: *-reverse')
bool IsMainAxisReversed() const {
return mIsMainAxisReversed;
}
// Returns true if our cross axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-wrap: *-reverse')
bool IsCrossAxisReversed() const {
return mIsCrossAxisReversed;
}
bool IsRowOriented() const { return mIsRowOriented; }
bool IsColumnOriented() const { return !mIsRowOriented; }
nscoord GetMainComponent(const nsSize& aSize) const {
return GET_MAIN_COMPONENT(*this, aSize.width, aSize.height);
}
int32_t GetMainComponent(const LayoutDeviceIntSize& aIntSize) const {
return GET_MAIN_COMPONENT(*this, aIntSize.width, aIntSize.height);
}
nscoord GetCrossComponent(const nsSize& aSize) const {
return GET_CROSS_COMPONENT(*this, aSize.width, aSize.height);
}
int32_t GetCrossComponent(const LayoutDeviceIntSize& aIntSize) const {
return GET_CROSS_COMPONENT(*this, aIntSize.width, aIntSize.height);
}
nscoord GetMarginSizeInMainAxis(const nsMargin& aMargin) const {
return IsMainAxisHorizontal() ?
aMargin.LeftRight() :
aMargin.TopBottom();
}
nscoord GetMarginSizeInCrossAxis(const nsMargin& aMargin) const {
return IsCrossAxisHorizontal() ?
aMargin.LeftRight() :
aMargin.TopBottom();
}
// Returns aFrame's computed value for 'height' or 'width' -- whichever is in
// the cross-axis. (NOTE: This is cross-axis-specific for now. If we need a
// main-axis version as well, we could generalize or clone this function.)
const nsStyleCoord& ComputedCrossSize(const nsIFrame* aFrame) const {
const nsStylePosition* stylePos = aFrame->StylePosition();
return IsCrossAxisHorizontal() ?
stylePos->mWidth :
stylePos->mHeight;
}
/**
* Converts a "flex-relative" point (a main-axis & cross-axis coordinate)
* into a LogicalPoint, using the flex container's writing mode.
*
* @arg aMainCoord The main-axis coordinate -- i.e an offset from the
* main-start edge of the flex container's content box.
* @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the
* cross-start edge of the flex container's content box.
* @arg aContainerMainSize The main size of flex container's content box.
* @arg aContainerCrossSize The cross size of flex container's content box.
* @return A LogicalPoint, with the flex container's writing mode, that
* represents the same position. The logical coordinates are
* relative to the flex container's content box.
*/
LogicalPoint
LogicalPointFromFlexRelativePoint(nscoord aMainCoord,
nscoord aCrossCoord,
nscoord aContainerMainSize,
nscoord aContainerCrossSize) const {
nscoord logicalCoordInMainAxis = mIsMainAxisReversed ?
aContainerMainSize - aMainCoord : aMainCoord;
nscoord logicalCoordInCrossAxis = mIsCrossAxisReversed ?
aContainerCrossSize - aCrossCoord : aCrossCoord;
return mIsRowOriented ?
LogicalPoint(mWM, logicalCoordInMainAxis, logicalCoordInCrossAxis) :
LogicalPoint(mWM, logicalCoordInCrossAxis, logicalCoordInMainAxis);
}
/**
* Converts a "flex-relative" size (a main-axis & cross-axis size)
* into a LogicalSize, using the flex container's writing mode.
*
* @arg aMainSize The main-axis size.
* @arg aCrossSize The cross-axis size.
* @return A LogicalSize, with the flex container's writing mode, that
* represents the same size.
*/
LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize,
nscoord aCrossSize) const {
return mIsRowOriented ?
LogicalSize(mWM, aMainSize, aCrossSize) :
LogicalSize(mWM, aCrossSize, aMainSize);
}
// Are my axes reversed with respect to what the author asked for?
// (We may reverse the axes in the FlexboxAxisTracker constructor and set
// this flag, to avoid reflowing our children in bottom-to-top order.)
bool AreAxesInternallyReversed() const
{
return mAreAxesInternallyReversed;
}
private:
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
FlexboxAxisTracker(const FlexboxAxisTracker&) = delete;
FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete;
// Helpers for constructor which determine the orientation of our axes, based
// on legacy box properties (-webkit-box-orient, -webkit-box-direction) or
// modern flexbox properties (flex-direction, flex-wrap) depending on whether
// the flex container is a "legacy box" (as determined by IsLegacyBox).
void InitAxesFromLegacyProps(const nsFlexContainerFrame* aFlexContainer);
void InitAxesFromModernProps(const nsFlexContainerFrame* aFlexContainer);
// XXXdholbert [BEGIN DEPRECATED]
AxisOrientationType mMainAxis;
AxisOrientationType mCrossAxis;
// XXXdholbert [END DEPRECATED]
const WritingMode mWM; // The flex container's writing mode.
bool mIsRowOriented; // Is our main axis the inline axis?
// (Are we 'flex-direction:row[-reverse]'?)
bool mIsMainAxisReversed; // Is our main axis in the opposite direction
// as mWM's corresponding axis? (e.g. RTL vs LTR)
bool mIsCrossAxisReversed; // Is our cross axis in the opposite direction
// as mWM's corresponding axis? (e.g. BTT vs TTB)
// Implementation detail -- this indicates whether we've decided to
// transparently reverse our axes & our child ordering, to avoid having
// frames flow from bottom to top in either axis (& to make pagination saner).
bool mAreAxesInternallyReversed;
};
/**
* Represents a flex item.
* Includes the various pieces of input that the Flexbox Layout Algorithm uses
* to resolve a flexible width.
*/
class nsFlexContainerFrame::FlexItem : public LinkedListElement<FlexItem>
{
public:
// Normal constructor:
FlexItem(ReflowInput& aFlexItemReflowInput,
float aFlexGrow, float aFlexShrink, nscoord aMainBaseSize,
nscoord aMainMinSize, nscoord aMainMaxSize,
nscoord aTentativeCrossSize,
nscoord aCrossMinSize, nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker);
// Simplified constructor, to be used only for generating "struts":
// (NOTE: This "strut" constructor uses the *container's* writing mode, which
// we'll use on this FlexItem instead of the child frame's real writing mode.
// This is fine - it doesn't matter what writing mode we use for a
// strut, since it won't render any content and we already know its size.)
FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM);
// Accessors
nsIFrame* Frame() const { return mFrame; }
nscoord GetFlexBaseSize() const { return mFlexBaseSize; }
nscoord GetMainMinSize() const {
MOZ_ASSERT(!mNeedsMinSizeAutoResolution,
"Someone's using an unresolved 'auto' main min-size");
return mMainMinSize;
}
nscoord GetMainMaxSize() const { return mMainMaxSize; }
// Note: These return the main-axis position and size of our *content box*.
nscoord GetMainSize() const { return mMainSize; }
nscoord GetMainPosition() const { return mMainPosn; }
nscoord GetCrossMinSize() const { return mCrossMinSize; }
nscoord GetCrossMaxSize() const { return mCrossMaxSize; }
// Note: These return the cross-axis position and size of our *content box*.
nscoord GetCrossSize() const { return mCrossSize; }
nscoord GetCrossPosition() const { return mCrossPosn; }
nscoord ResolvedAscent(bool aUseFirstBaseline) const {
if (mAscent == ReflowOutput::ASK_FOR_BASELINE) {
// XXXdholbert We should probably be using the *container's* writing-mode
// here, instead of the item's -- though it doesn't much matter right
// now, because all of the baseline-handling code here essentially
// assumes that the container & items have the same writing-mode. This
// will matter more (& can be expanded/tested) once we officially support
// logical directions & vertical writing-modes in flexbox, in bug 1079155
// or a dependency.
// Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate,
// or just GetLogicalBaseline() if that fails.
bool found = aUseFirstBaseline ?
nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &mAscent) :
nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &mAscent);
if (!found) {
mAscent = mFrame->SynthesizeBaselineBOffsetFromBorderBox(mWM,
BaselineSharingGroup::eFirst);
}
}
return mAscent;
}
// Convenience methods to compute the main & cross size of our *margin-box*.
// The caller is responsible for telling us the right axis, so that we can
// pull out the appropriate components of our margin/border/padding structs.
nscoord GetOuterMainSize(AxisOrientationType aMainAxis) const
{
return mMainSize + GetMarginBorderPaddingSizeInAxis(aMainAxis);
}
nscoord GetOuterCrossSize(AxisOrientationType aCrossAxis) const
{
return mCrossSize + GetMarginBorderPaddingSizeInAxis(aCrossAxis);
}
// Returns the distance between this FlexItem's baseline and the cross-start
// edge of its margin-box. Used in baseline alignment.
// (This function needs to be told which edge we're measuring the baseline
// from, so that it can look up the appropriate components from mMargin.)
nscoord GetBaselineOffsetFromOuterCrossEdge(
AxisEdgeType aEdge,
const FlexboxAxisTracker& aAxisTracker,
bool aUseFirstLineBaseline) const;
float GetShareOfWeightSoFar() const { return mShareOfWeightSoFar; }
bool IsFrozen() const { return mIsFrozen; }
bool HadMinViolation() const { return mHadMinViolation; }
bool HadMaxViolation() const { return mHadMaxViolation; }
// Indicates whether this item received a preliminary "measuring" reflow
// before its actual reflow.
bool HadMeasuringReflow() const { return mHadMeasuringReflow; }
// Indicates whether this item's cross-size has been stretched (from having
// "align-self: stretch" with an auto cross-size and no auto margins in the
// cross axis).
bool IsStretched() const { return mIsStretched; }
// Indicates whether we need to resolve an 'auto' value for the main-axis
// min-[width|height] property.
bool NeedsMinSizeAutoResolution() const
{ return mNeedsMinSizeAutoResolution; }
// Indicates whether this item is a "strut" left behind by an element with
// visibility:collapse.
bool IsStrut() const { return mIsStrut; }
// Returns true if this item's inline axis is parallel (or antiparallel)
// to the container's main axis. Otherwise (i.e. if this item's inline axis
// is orthogonal to the container's main axis), this function returns false.
bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; }
// Same as above, but for cross axis. Equivalent to !IsInlineAxisMainAxis().
// This just exists for convenience/readability at callsites.
bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; }
WritingMode GetWritingMode() const { return mWM; }
uint8_t GetAlignSelf() const { return mAlignSelf; }
// Returns the flex factor (flex-grow or flex-shrink), depending on
// 'aIsUsingFlexGrow'.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetFlexFactor(bool aIsUsingFlexGrow)
{
MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen");
return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink;
}
// Returns the weight that we should use in the "resolving flexible lengths"
// algorithm. If we're using the flex grow factor, we just return that;
// otherwise, we return the "scaled flex shrink factor" (scaled by our flex
// base size, so that when both large and small items are shrinking, the large
// items shrink more).
//
// I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink]
// factor", to more clearly distinguish it from the actual flex-grow &
// flex-shrink factors.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetWeight(bool aIsUsingFlexGrow)
{
MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen");
if (aIsUsingFlexGrow) {
return mFlexGrow;
}
// We're using flex-shrink --> return mFlexShrink * mFlexBaseSize
if (mFlexBaseSize == 0) {
// Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so
// regardless of mFlexShrink, we should just return 0.
// (This is really a special-case for when mFlexShrink is infinity, to
// avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.)
return 0.0f;
}
return mFlexShrink * mFlexBaseSize;
}
const AspectRatio IntrinsicRatio() const { return mIntrinsicRatio; }
bool HasIntrinsicRatio() const { return !!mIntrinsicRatio; }
// Getters for margin:
// ===================
const nsMargin& GetMargin() const { return mMargin; }
// Returns the margin component for a given mozilla::Side
nscoord GetMarginComponentForSide(mozilla::Side aSide) const
{ return mMargin.Side(aSide); }
// Returns the total space occupied by this item's margins in the given axis
nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const
{
mozilla::Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
mozilla::Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
return GetMarginComponentForSide(startSide) +
GetMarginComponentForSide(endSide);
}
// Getters for border/padding
// ==========================
const nsMargin& GetBorderPadding() const { return mBorderPadding; }
// Returns the border+padding component for a given mozilla::Side
nscoord GetBorderPaddingComponentForSide(mozilla::Side aSide) const
{ return mBorderPadding.Side(aSide); }
// Returns the total space occupied by this item's borders and padding in
// the given axis
nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const
{
mozilla::Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
mozilla::Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
return GetBorderPaddingComponentForSide(startSide) +
GetBorderPaddingComponentForSide(endSide);
}
// Getter for combined margin/border/padding
// =========================================
// Returns the total space occupied by this item's margins, borders and
// padding in the given axis
nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const
{
return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis);
}
// Setters
// =======
// Helper to set the resolved value of min-[width|height]:auto for the main
// axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.)
void UpdateMainMinSize(nscoord aNewMinSize)
{
NS_ASSERTION(aNewMinSize >= 0,
"How did we end up with a negative min-size?");
MOZ_ASSERT(mMainMaxSize >= aNewMinSize,
"Should only use this function for resolving min-size:auto, "
"and main max-size should be an upper-bound for resolved val");
MOZ_ASSERT(mNeedsMinSizeAutoResolution &&
(mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())),
"Should only use this function for resolving min-size:auto, "
"so we shouldn't already have a nonzero min-size established "
"(unless it's a themed-widget-imposed minimum size)");
if (aNewMinSize > mMainMinSize) {
mMainMinSize = aNewMinSize;
// Also clamp main-size to be >= new min-size:
mMainSize = std::max(mMainSize, aNewMinSize);
}
mNeedsMinSizeAutoResolution = false;
}
// This sets our flex base size, and then sets our main size to the
// resulting "hypothetical main size" (the base size clamped to our
// main-axis [min,max] sizing constraints).
void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize)
{
MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_INTRINSICSIZE,
"flex base size shouldn't change after we're frozen "
"(unless we're just resolving an intrinsic size)");
mFlexBaseSize = aNewFlexBaseSize;
// Before we've resolved flexible lengths, we keep mMainSize set to
// the 'hypothetical main size', which is the flex base size, clamped
// to the [min,max] range:
mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize);
}
// Setters used while we're resolving flexible lengths
// ---------------------------------------------------
// Sets the main-size of our flex item's content-box.
void SetMainSize(nscoord aNewMainSize)
{
MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
mMainSize = aNewMainSize;
}
void SetShareOfWeightSoFar(float aNewShare)
{
MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f,
"shouldn't be giving this item any share of the weight "
"after it's frozen");
mShareOfWeightSoFar = aNewShare;
}
void Freeze() { mIsFrozen = true; }
void SetHadMinViolation()
{
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMinViolation = true;
}
void SetHadMaxViolation()
{
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMaxViolation = true;
}
void ClearViolationFlags()
{ mHadMinViolation = mHadMaxViolation = false; }
// Setters for values that are determined after we've resolved our main size
// -------------------------------------------------------------------------
// Sets the main-axis position of our flex item's content-box.
// (This is the distance between the main-start edge of the flex container
// and the main-start edge of the flex item's content-box.)
void SetMainPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMainPosn = aPosn;
}
// Sets the cross-size of our flex item's content-box.
void SetCrossSize(nscoord aCrossSize) {
MOZ_ASSERT(!mIsStretched,
"Cross size shouldn't be modified after it's been stretched");
mCrossSize = aCrossSize;
}
// Sets the cross-axis position of our flex item's content-box.
// (This is the distance between the cross-start edge of the flex container
// and the cross-start edge of the flex item.)
void SetCrossPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mCrossPosn = aPosn;
}
// After a FlexItem has had a reflow, this method can be used to cache its
// (possibly-unresolved) ascent, in case it's needed later for
// baseline-alignment or to establish the container's baseline.
// (NOTE: This can be marked 'const' even though it's modifying mAscent,
// because mAscent is mutable. It's nice for this to be 'const', because it
// means our final reflow can iterate over const FlexItem pointers, and we
// can be sure it's not modifying those FlexItems, except via this method.)
void SetAscent(nscoord aAscent) const {
mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE
}
void SetHadMeasuringReflow() {
mHadMeasuringReflow = true;
}
void SetIsStretched() {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mIsStretched = true;
}
// Setter for margin components (for resolving "auto" margins)
void SetMarginComponentForSide(mozilla::Side aSide, nscoord aLength)
{
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMargin.Side(aSide) = aLength;
}
void ResolveStretchedCrossSize(nscoord aLineCrossSize,
const FlexboxAxisTracker& aAxisTracker);
uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const;
// Once the main size has been resolved, should we bother doing layout to
// establish the cross size?
bool CanMainSizeInfluenceCrossSize(const FlexboxAxisTracker& aAxisTracker) const;
protected:
// Helper called by the constructor, to set mNeedsMinSizeAutoResolution:
void CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput,
const FlexboxAxisTracker& aAxisTracker);
// Values that we already know in constructor (and are hence mostly 'const'):
nsIFrame* const mFrame; // The flex item's frame.
const float mFlexGrow;
const float mFlexShrink;
const AspectRatio mIntrinsicRatio;
const nsMargin mBorderPadding;
nsMargin mMargin; // non-const because we need to resolve auto margins
// These are non-const so that we can lazily update them with the item's
// intrinsic size (obtained via a "measuring" reflow), when necessary.
// (e.g. for "flex-basis:auto;height:auto" & "min-height:auto")
nscoord mFlexBaseSize;
nscoord mMainMinSize;
nscoord mMainMaxSize;
const nscoord mCrossMinSize;
const nscoord mCrossMaxSize;
// Values that we compute after constructor:
nscoord mMainSize;
nscoord mMainPosn;
nscoord mCrossSize;
nscoord mCrossPosn;
mutable nscoord mAscent; // Mutable b/c it's set & resolved lazily, sometimes
// via const pointer. See comment above SetAscent().
// Temporary state, while we're resolving flexible widths (for our main size)
// XXXdholbert To save space, we could use a union to make these variables
// overlay the same memory as some other member vars that aren't touched
// until after main-size has been resolved. In particular, these could share
// memory with mMainPosn through mAscent, and mIsStretched.
float mShareOfWeightSoFar;
const WritingMode mWM; // The flex item's writing mode.
bool mIsFrozen;
bool mHadMinViolation;
bool mHadMaxViolation;
// Misc:
bool mHadMeasuringReflow; // Did this item get a preliminary reflow,
// to measure its desired height?
bool mIsStretched; // See IsStretched() documentation
bool mIsStrut; // Is this item a "strut" left behind by an element
// with visibility:collapse?
const bool mIsInlineAxisMainAxis; // See IsInlineAxisMainAxis() documentation
// Does this item need to resolve a min-[width|height]:auto (in main-axis).
bool mNeedsMinSizeAutoResolution;
uint8_t mAlignSelf; // My "align-self" computed value (with "auto"
// swapped out for parent"s "align-items" value,
// in our constructor).
};
/**
* Represents a single flex line in a flex container.
* Manages a linked list of the FlexItems that are in the line.
*/
class nsFlexContainerFrame::FlexLine : public LinkedListElement<FlexLine>
{
public:
explicit FlexLine(nscoord aMainGapSize)
: mNumItems(0),
mNumFrozenItems(0),
mTotalInnerHypotheticalMainSize(0),
mTotalOuterHypotheticalMainSize(0),
mLineCrossSize(0),
mFirstBaselineOffset(nscoord_MIN),
mLastBaselineOffset(nscoord_MIN),
mMainGapSize(aMainGapSize)
{}
nscoord GetSumOfGaps() const {
return mNumItems > 0 ? (mNumItems - 1) * mMainGapSize : 0;
}
// Returns the sum of our FlexItems' outer hypothetical main sizes
// and the sum of the main axis {row,column}-gaps between items.
// ("outer" = margin-box, and "hypothetical" = before flexing)
nscoord GetTotalOuterHypotheticalMainSize() const {
return mTotalOuterHypotheticalMainSize;
}
// Accessors for our FlexItems & information about them:
FlexItem* GetFirstItem()
{
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getFirst();
}
const FlexItem* GetFirstItem() const
{
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getFirst();
}
FlexItem* GetLastItem()
{
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getLast();
}
const FlexItem* GetLastItem() const
{
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getLast();
}
bool IsEmpty() const
{
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.isEmpty();
}
uint32_t NumItems() const
{
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mNumItems;
}
// Adds the given FlexItem to our list of items (at the front or back
// depending on aShouldInsertAtFront), and adds its hypothetical
// outer & inner main sizes to our totals. Use this method instead of
// directly modifying the item list, so that our bookkeeping remains correct.
void AddItem(FlexItem* aItem,
bool aShouldInsertAtFront,
nscoord aItemInnerHypotheticalMainSize,
nscoord aItemOuterHypotheticalMainSize)
{
if (aShouldInsertAtFront) {
mItems.insertFront(aItem);
} else {
mItems.insertBack(aItem);
}
// Update our various bookkeeping member-vars:
mNumItems++;
if (aItem->IsFrozen()) {
mNumFrozenItems++;
}
mTotalInnerHypotheticalMainSize += (aItemOuterHypotheticalMainSize -
aItemInnerHypotheticalMainSize);
mTotalOuterHypotheticalMainSize += aItemOuterHypotheticalMainSize;
// If the item added was not the first item in the line, we add in
// any gap space as needed.
if (mNumItems >= 2) {
mTotalOuterHypotheticalMainSize += mMainGapSize;
}
}
// Computes the cross-size and baseline position of this FlexLine, based on
// its FlexItems.
void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker);
// Returns the cross-size of this line.
nscoord GetLineCrossSize() const { return mLineCrossSize; }
// Setter for line cross-size -- needed for cases where the flex container
// imposes a cross-size on the line. (e.g. for single-line flexbox, or for
// multi-line flexbox with 'align-content: stretch')
void SetLineCrossSize(nscoord aLineCrossSize) {
mLineCrossSize = aLineCrossSize;
}
/**
* Returns the offset within this line where any baseline-aligned FlexItems
* should place their baseline. Usually, this represents a distance from the
* line's cross-start edge, but if we're internally reversing the axes (see
* AreAxesInternallyReversed()), this instead represents the distance from
* its cross-end edge.
*
* If there are no baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord GetFirstBaselineOffset() const {
return mFirstBaselineOffset;
}
/**
* Returns the offset within this line where any last baseline-aligned
* FlexItems should place their baseline. Opposite the case of the first
* baseline offset, this represents a distance from the line's cross-end
* edge (since last baseline-aligned items are flush to the cross-end edge).
* If we're internally reversing the axes, this instead represents the
* distance from the line's cross-start edge.
*
* If there are no last baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord GetLastBaselineOffset() const {
return mLastBaselineOffset;
}
/**
* Returns the number of items held in this line. Used for total gap
* calculations.
*/
uint32_t GetNumItems() const {
return mNumItems;
}
/**
* Returns the gap size in the main axis for this line. Used for gap
* calculations.
*/
nscoord GetMainGapSize() const {
return mMainGapSize;
}
// Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the
// CSS flexbox spec to distribute aFlexContainerMainSize among our flex items.
void ResolveFlexibleLengths(nscoord aFlexContainerMainSize);
void PositionItemsInMainAxis(uint8_t aJustifyContent,
nscoord aContentBoxMainSize,
const FlexboxAxisTracker& aAxisTracker);
void PositionItemsInCrossAxis(nscoord aLineStartPosition,
const FlexboxAxisTracker& aAxisTracker);
friend class AutoFlexLineListClearer; // (needs access to mItems)
private:
// Helpers for ResolveFlexibleLengths():
void FreezeItemsEarly(bool aIsUsingFlexGrow);
void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration);
LinkedList<FlexItem> mItems; // Linked list of this line's flex items.
uint32_t mNumItems; // Number of FlexItems in this line (in |mItems|).
// (Shouldn't change after GenerateFlexLines finishes
// with this line -- at least, not until we add support
// for splitting lines across continuations. Then we can
// update this count carefully.)
// Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen().
// Mostly used for optimization purposes, e.g. to bail out early from loops
// when we can tell they have nothing left to do.
uint32_t mNumFrozenItems;
nscoord mTotalInnerHypotheticalMainSize;
nscoord mTotalOuterHypotheticalMainSize;
nscoord mLineCrossSize;
nscoord mFirstBaselineOffset;
nscoord mLastBaselineOffset;
// Maintain size of each {row,column}-gap in the main axis
const nscoord mMainGapSize;
};
// Information about a strut left behind by a FlexItem that's been collapsed
// using "visibility:collapse".
struct nsFlexContainerFrame::StrutInfo {
StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize)
: mItemIdx(aItemIdx),
mStrutCrossSize(aStrutCrossSize)
{
}
uint32_t mItemIdx; // Index in the child list.
nscoord mStrutCrossSize; // The cross-size of this strut.
};
static void
BuildStrutInfoFromCollapsedItems(const FlexLine* aFirstLine,
nsTArray<StrutInfo>& aStruts)
{
MOZ_ASSERT(aFirstLine, "null first line pointer");
MOZ_ASSERT(aStruts.IsEmpty(),
"We should only build up StrutInfo once per reflow, so "
"aStruts should be empty when this is called");
uint32_t itemIdxInContainer = 0;
for (const FlexLine* line = aFirstLine; line; line = line->getNext()) {
for (const FlexItem* item = line->GetFirstItem(); item;
item = item->getNext()) {
if (NS_STYLE_VISIBILITY_COLLAPSE ==
item->Frame()->StyleVisibility()->mVisible) {
// Note the cross size of the line as the item's strut size.
aStruts.AppendElement(StrutInfo(itemIdxInContainer,
line->GetLineCrossSize()));
}
itemIdxInContainer++;
}
}
}
// Convenience function to get either the "order" or the "box-ordinal-group"
// property-value for a flex item (depending on whether the container is a
// modern flex container or a legacy box).
static int32_t
GetOrderOrBoxOrdinalGroup(nsIFrame* aFlexItem, bool aIsLegacyBox)
{
if (aFlexItem->GetType() == nsGkAtoms::placeholderFrame) {
// Always treat placeholders as having the default value, which is
// 1 for (legacy) 'box-ordinal-group' and 0 for 'order'.
return aIsLegacyBox ? 1 : 0;
}
if (aIsLegacyBox) {
// We'll be using mBoxOrdinal, which has type uint32_t. However, the modern
// 'order' property (whose functionality we're co-opting) has type int32_t.
// So: if we happen to have a uint32_t value that's greater than INT32_MAX,
// we clamp it rather than letting it overflow. Chances are, this is just
// an author using BIG_VALUE anyway, so the clamped value should be fine.
// (particularly since sufficiently-huge values are busted in Chrome/WebKit
// per https://bugs.chromium.org/p/chromium/issues/detail?id=599645 )
uint32_t clampedBoxOrdinal = std::min(aFlexItem->StyleXUL()->mBoxOrdinal,
static_cast<uint32_t>(INT32_MAX));
return static_cast<int32_t>(clampedBoxOrdinal);
}
// Normal case: just use modern 'order' property.
return aFlexItem->StylePosition()->mOrder;
}
// Helper-function to find the first non-anonymous-box descendent of aFrame.
static nsIFrame*
GetFirstNonAnonBoxDescendant(nsIFrame* aFrame)
{
while (aFrame) {
nsIAtom* pseudoTag = aFrame->StyleContext()->GetPseudo();
// If aFrame isn't an anonymous container, then it'll do.
if (!pseudoTag || // No pseudotag.
!nsCSSAnonBoxes::IsAnonBox(pseudoTag) || // Pseudotag isn't anon.
nsCSSAnonBoxes::IsNonElement(pseudoTag)) { // Text, not a container.
break;
}
// Otherwise, descend to its first child and repeat.
// SPECIAL CASE: if we're dealing with an anonymous table, then it might
// be wrapping something non-anonymous in its caption or col-group lists
// (instead of its principal child list), so we have to look there.
// (Note: For anonymous tables that have a non-anon cell *and* a non-anon
// column, we'll always return the column. This is fine; we're really just
// looking for a handle to *anything* with a meaningful content node inside
// the table, for use in DOM comparisons to things outside of the table.)
if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableWrapperFrame)) {
nsIFrame* captionDescendant =
GetFirstNonAnonBoxDescendant(aFrame->GetChildList(kCaptionList).FirstChild());
if (captionDescendant) {
return captionDescendant;
}
} else if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableFrame)) {
nsIFrame* colgroupDescendant =
GetFirstNonAnonBoxDescendant(aFrame->GetChildList(kColGroupList).FirstChild());
if (colgroupDescendant) {
return colgroupDescendant;
}
}
// USUAL CASE: Descend to the first child in principal list.
aFrame = aFrame->PrincipalChildList().FirstChild();
}
return aFrame;
}
/**
* Sorting helper-function that compares two frames' "order" property-values,
* and if they're equal, compares the DOM positions of their corresponding
* content nodes. Returns true if aFrame1 is "less than or equal to" aFrame2
* according to this comparison.
*
* Note: This can't be a static function, because we need to pass it as a
* template argument. (Only functions with external linkage can be passed as
* template arguments.)
*
* @return true if the computed "order" property of aFrame1 is less than that
* of aFrame2, or if the computed "order" values are equal and aFrame1's
* corresponding DOM node is earlier than aFrame2's in the DOM tree.
* Otherwise, returns false.
*/
bool
IsOrderLEQWithDOMFallback(nsIFrame* aFrame1,
nsIFrame* aFrame2)
{
MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(),
"this method only intended for comparing flex items");
MOZ_ASSERT(aFrame1->GetParent() == aFrame2->GetParent(),
"this method only intended for comparing siblings");
if (aFrame1 == aFrame2) {
// Anything is trivially LEQ itself, so we return "true" here... but it's
// probably bad if we end up actually needing this, so let's assert.
NS_ERROR("Why are we checking if a frame is LEQ itself?");
return true;
}
const bool isInLegacyBox = IsLegacyBox(aFrame1->GetParent());
int32_t order1 = GetOrderOrBoxOrdinalGroup(aFrame1, isInLegacyBox);
int32_t order2 = GetOrderOrBoxOrdinalGroup(aFrame2, isInLegacyBox);
if (order1 != order2) {
return order1 < order2;
}
// The "order" values are equal, so we need to fall back on DOM comparison.
// For that, we need to dig through any anonymous box wrapper frames to find
// the actual frame that corresponds to our child content.
aFrame1 = GetFirstNonAnonBoxDescendant(aFrame1);
aFrame2 = GetFirstNonAnonBoxDescendant(aFrame2);
MOZ_ASSERT(aFrame1 && aFrame2,
"why do we have an anonymous box without any "
"non-anonymous descendants?");
// Special case:
// If either frame is for generated content from ::before or ::after, then
// we can't use nsContentUtils::PositionIsBefore(), since that method won't
// recognize generated content as being an actual sibling of other nodes.
// We know where ::before and ::after nodes *effectively* insert in the DOM
// tree, though (at the beginning & end), so we can just special-case them.
nsIAtom* pseudo1 =
nsPlaceholderFrame::GetRealFrameFor(aFrame1)->StyleContext()->GetPseudo();
nsIAtom* pseudo2 =
nsPlaceholderFrame::GetRealFrameFor(aFrame2)->StyleContext()->GetPseudo();
if (pseudo1 == nsCSSPseudoElements::before ||
pseudo2 == nsCSSPseudoElements::after) {
// frame1 is ::before and/or frame2 is ::after => frame1 is LEQ frame2.
return true;
}
if (pseudo1 == nsCSSPseudoElements::after ||
pseudo2 == nsCSSPseudoElements::before) {
// frame1 is ::after and/or frame2 is ::before => frame1 is not LEQ frame2.
return false;
}
// Usual case: Compare DOM position.
nsIContent* content1 = aFrame1->GetContent();
nsIContent* content2 = aFrame2->GetContent();
MOZ_ASSERT(content1 != content2,
"Two different flex items are using the same nsIContent node for "
"comparison, so we may be sorting them in an arbitrary order");
return nsContentUtils::PositionIsBefore(content1, content2);
}
/**
* Sorting helper-function that compares two frames' "order" property-values.
* Returns true if aFrame1 is "less than or equal to" aFrame2 according to this
* comparison.
*
* Note: This can't be a static function, because we need to pass it as a
* template argument. (Only functions with external linkage can be passed as
* template arguments.)
*
* @return true if the computed "order" property of aFrame1 is less than or
* equal to that of aFrame2. Otherwise, returns false.
*/
bool
IsOrderLEQ(nsIFrame* aFrame1,
nsIFrame* aFrame2)
{
MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(),
"this method only intended for comparing flex items");
MOZ_ASSERT(aFrame1->GetParent() == aFrame2->GetParent(),
"this method only intended for comparing siblings");
const bool isInLegacyBox = IsLegacyBox(aFrame1->GetParent());
int32_t order1 = GetOrderOrBoxOrdinalGroup(aFrame1, isInLegacyBox);
int32_t order2 = GetOrderOrBoxOrdinalGroup(aFrame2, isInLegacyBox);
return order1 <= order2;
}
uint8_t
SimplifyAlignOrJustifyContentForOneItem(uint16_t aAlignmentVal,
bool aIsAlign)
{
// Mask away any explicit fallback, to get the main (non-fallback) part of
// the specified value:
uint16_t specified = aAlignmentVal & NS_STYLE_ALIGN_ALL_BITS;
// XXX strip off <overflow-position> bits until we implement it (bug 1311892)
specified &= ~NS_STYLE_ALIGN_FLAG_BITS;
// FIRST: handle a special-case for "justify-content:stretch" (or equivalent),
// which requires that we ignore any author-provided explicit fallback value.
if (specified == NS_STYLE_ALIGN_NORMAL) {
// In a flex container, *-content: "'normal' behaves as 'stretch'".
// Do that conversion early, so it benefits from our 'stretch' special-case.
// https://drafts.csswg.org/css-align-3/#distribution-flex
specified = NS_STYLE_ALIGN_STRETCH;
}
if (!aIsAlign && specified == NS_STYLE_ALIGN_STRETCH) {
// In a flex container, in "justify-content Axis: [...] 'stretch' behaves
// as 'flex-start' (ignoring the specified fallback alignment, if any)."
// https://drafts.csswg.org/css-align-3/#distribution-flex
// So, we just directly return 'flex-start', & ignore explicit fallback..
return NS_STYLE_ALIGN_FLEX_START;
}
// Now check for an explicit fallback value (and if it's present, use it).
uint16_t explicitFallback = aAlignmentVal >> NS_STYLE_ALIGN_ALL_SHIFT;
if (explicitFallback) {
// XXX strip off <overflow-position> bits until we implement it
// (bug 1311892)
explicitFallback &= ~NS_STYLE_ALIGN_FLAG_BITS;
return explicitFallback;
}
// There's no explicit fallback. Use the implied fallback values for
// space-{between,around,evenly} (since those values only make sense with
// multiple alignment subjects), and otherwise just use the specified value:
switch (specified) {
case NS_STYLE_ALIGN_SPACE_BETWEEN:
return NS_STYLE_ALIGN_START;
case NS_STYLE_ALIGN_SPACE_AROUND:
case NS_STYLE_ALIGN_SPACE_EVENLY:
return NS_STYLE_ALIGN_CENTER;
default:
return specified;
}
}
uint16_t
nsFlexContainerFrame::CSSAlignmentForAbsPosChild(
const ReflowInput& aChildRI,
LogicalAxis aLogicalAxis) const
{
WritingMode wm = GetWritingMode();
const FlexboxAxisTracker
axisTracker(this, wm, AxisTrackerFlags::eAllowBottomToTopChildOrdering);
// If we're row-oriented and the caller is asking about our inline axis (or
// alternately, if we're column-oriented and the caller is asking about our
// block axis), then the caller is really asking about our *main* axis.
// Otherwise, the caller is asking about our cross axis.
const bool isMainAxis = (axisTracker.IsRowOriented() ==
(aLogicalAxis == eLogicalAxisInline));
const nsStylePosition* containerStylePos = StylePosition();
const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed()
: axisTracker.IsCrossAxisReversed();
uint8_t alignment;
if (isMainAxis) {
alignment = SimplifyAlignOrJustifyContentForOneItem(
containerStylePos->mJustifyContent,
/*aIsAlign = */false);
} else {
const uint8_t alignContent = SimplifyAlignOrJustifyContentForOneItem(
containerStylePos->mAlignContent,
/*aIsAlign = */true);
if (NS_STYLE_FLEX_WRAP_NOWRAP != containerStylePos->mFlexWrap &&
alignContent != NS_STYLE_ALIGN_STRETCH) {
// Multi-line, align-content isn't stretch --> align-content determines
// this child's alignment in the cross axis.
alignment = alignContent;
} else {
// Single-line, or multi-line but the (one) line stretches to fill
// container. Respect align-self.
alignment = aChildRI.mStylePosition->UsedAlignSelf(StyleContext());
// XXX strip off <overflow-position> bits until we implement it
// (bug 1311892)
alignment &= ~NS_STYLE_ALIGN_FLAG_BITS;
if (alignment == NS_STYLE_ALIGN_NORMAL) {
// "the 'normal' keyword behaves as 'start' on replaced
// absolutely-positioned boxes, and behaves as 'stretch' on all other
// absolutely-positioned boxes."
// https://drafts.csswg.org/css-align/#align-abspos
alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced) ?
NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_STRETCH;
}
}
}
// Resolve flex-start, flex-end, auto, left, right, baseline, last baseline;
if (alignment == NS_STYLE_ALIGN_FLEX_START) {
alignment = isAxisReversed ? NS_STYLE_ALIGN_END : NS_STYLE_ALIGN_START;
} else if (alignment == NS_STYLE_ALIGN_FLEX_END) {
alignment = isAxisReversed ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END;
} else if (alignment == NS_STYLE_ALIGN_LEFT ||
alignment == NS_STYLE_ALIGN_RIGHT) {
if (aLogicalAxis == eLogicalAxisInline) {
const bool isLeft = (alignment == NS_STYLE_ALIGN_LEFT);
alignment = (isLeft == wm.IsBidiLTR()) ? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_END;
} else {
alignment = NS_STYLE_ALIGN_START;
}
} else if (alignment == NS_STYLE_ALIGN_BASELINE) {
alignment = NS_STYLE_ALIGN_START;
} else if (alignment == NS_STYLE_ALIGN_LAST_BASELINE) {
alignment = NS_STYLE_ALIGN_END;
}
return alignment;
}
bool
nsFlexContainerFrame::IsHorizontal()
{
const FlexboxAxisTracker axisTracker(this, GetWritingMode());
return axisTracker.IsMainAxisHorizontal();
}
UniquePtr<FlexItem>
nsFlexContainerFrame::GenerateFlexItemForChild(
nsPresContext* aPresContext,
nsIFrame* aChildFrame,
const ReflowInput& aParentReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
// Create temporary reflow state just for sizing -- to get hypothetical
// main-size and the computed values of min / max main-size property.
// (This reflow state will _not_ be used for reflow.)
ReflowInput
childRI(aPresContext, aParentReflowInput, aChildFrame,
aParentReflowInput.ComputedSize(aChildFrame->GetWritingMode()));
// FLEX GROW & SHRINK WEIGHTS
// --------------------------
float flexGrow, flexShrink;
if (IsLegacyBox(this)) {
flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex;
} else {
const nsStylePosition* stylePos = aChildFrame->StylePosition();
flexGrow = stylePos->mFlexGrow;
flexShrink = stylePos->mFlexShrink;
}
WritingMode childWM = childRI.GetWritingMode();
// MAIN SIZES (flex base size, min/max size)
// -----------------------------------------
nscoord flexBaseSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedISize(),
childRI.ComputedBSize());
nscoord mainMinSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMinISize(),
childRI.ComputedMinBSize());
nscoord mainMaxSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMaxISize(),
childRI.ComputedMaxBSize());
// This is enforced by the ReflowInput where these values come from:
MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");
// CROSS SIZES (tentative cross size, min/max cross size)
// ------------------------------------------------------
// Grab the cross size from the reflow state. This might be the right value,
// or we might resolve it to something else in SizeItemInCrossAxis(); hence,
// it's tentative. See comment under "Cross Size Determination" for more.
nscoord tentativeCrossSize =
GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedISize(),
childRI.ComputedBSize());
nscoord crossMinSize =
GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMinISize(),
childRI.ComputedMinBSize());
nscoord crossMaxSize =
GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMaxISize(),
childRI.ComputedMaxBSize());
// SPECIAL-CASE FOR WIDGET-IMPOSED SIZES
// Check if we're a themed widget, in which case we might have a minimum
// main & cross size imposed by our widget (which we can't go below), or
// (more severe) our widget might have only a single valid size.
bool isFixedSizeWidget = false;
const nsStyleDisplay* disp = aChildFrame->StyleDisplay();
if (aChildFrame->IsThemed(disp)) {
LayoutDeviceIntSize widgetMinSize;
bool canOverride = true;
aPresContext->GetTheme()->
GetMinimumWidgetSize(aPresContext, aChildFrame,
disp->mAppearance,
&widgetMinSize, &canOverride);
nscoord widgetMainMinSize =
aPresContext->DevPixelsToAppUnits(
aAxisTracker.GetMainComponent(widgetMinSize));
nscoord widgetCrossMinSize =
aPresContext->DevPixelsToAppUnits(
aAxisTracker.GetCrossComponent(widgetMinSize));
// GMWS() returns border-box. We need content-box, so subtract
// borderPadding (but don't let that push our min sizes below 0).
nsMargin& bp = childRI.ComputedPhysicalBorderPadding();
widgetMainMinSize = std::max(widgetMainMinSize -
aAxisTracker.GetMarginSizeInMainAxis(bp), 0);
widgetCrossMinSize = std::max(widgetCrossMinSize -
aAxisTracker.GetMarginSizeInCrossAxis(bp), 0);
if (!canOverride) {
// Fixed-size widget: freeze our main-size at the widget's mandated size.
// (Set min and max main-sizes to that size, too, to keep us from
// clamping to any other size later on.)
flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize;
tentativeCrossSize = crossMinSize = crossMaxSize = widgetCrossMinSize;
isFixedSizeWidget = true;
} else {
// Variable-size widget: ensure our min/max sizes are at least as large
// as the widget's mandated minimum size, so we don't flex below that.
mainMinSize = std::max(mainMinSize, widgetMainMinSize);
mainMaxSize = std::max(mainMaxSize, widgetMainMinSize);
if (tentativeCrossSize != NS_INTRINSICSIZE) {
tentativeCrossSize = std::max(tentativeCrossSize, widgetCrossMinSize);
}
crossMinSize = std::max(crossMinSize, widgetCrossMinSize);
crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize);
}
}
// Construct the flex item!
auto item = MakeUnique<FlexItem>(childRI,
flexGrow, flexShrink, flexBaseSize,
mainMinSize, mainMaxSize,
tentativeCrossSize,
crossMinSize, crossMaxSize,
aAxisTracker);
// If we're inflexible, we can just freeze to our hypothetical main-size
// up-front. Similarly, if we're a fixed-size widget, we only have one
// valid size, so we freeze to keep ourselves from flexing.
if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) {
item->Freeze();
}
// Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might
// require us to reflow the item to measure content height)
ResolveAutoFlexBasisAndMinSize(aPresContext, *item,
childRI, aAxisTracker);
return item;
}
// Static helper-functions for ResolveAutoFlexBasisAndMinSize():
// -------------------------------------------------------------
// Indicates whether the cross-size property is set to something definite,
// for the purpose of intrinsic ratio calculations.
// The logic here should be similar to the logic for isAutoISize/isAutoBSize
// in nsFrame::ComputeSizeWithIntrinsicDimensions().
static bool
IsCrossSizeDefinite(const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
const nsStylePosition* pos = aItemReflowInput.mStylePosition;
const WritingMode containerWM = aAxisTracker.GetWritingMode();
if (aAxisTracker.IsColumnOriented()) {
// Column-oriented means cross axis is container's inline axis.
return pos->ISize(containerWM).GetUnit() != eStyleUnit_Auto;
}
// Else, we're row-oriented, which means cross axis is container's block
// axis. We need to use IsAutoBSize() to catch e.g. %-BSize applied to
// indefinite container BSize, which counts as auto.
nscoord cbBSize = aItemReflowInput.mCBReflowInput->ComputedBSize();
return !nsLayoutUtils::IsAutoBSize(pos->BSize(containerWM), cbBSize);
}
// If aFlexItem has a definite cross size, this function returns it, for usage
// (in combination with an intrinsic ratio) for resolving the item's main size
// or main min-size.
//
// The parameter "aMinSizeFallback" indicates whether we should fall back to
// returning the cross min-size, when the cross size is indefinite. (This param
// should be set IFF the caller intends to resolve the main min-size.) If this
// param is true, then this function is guaranteed to return a definite value
// (i.e. not NS_AUTOHEIGHT, excluding cases where huge sizes are involved).
//
// XXXdholbert the min-size behavior here is based on my understanding in
// http://lists.w3.org/Archives/Public/www-style/2014Jul/0053.html
// If my understanding there ends up being wrong, we'll need to update this.
static nscoord
CrossSizeToUseWithRatio(const FlexItem& aFlexItem,
const ReflowInput& aItemReflowInput,
bool aMinSizeFallback,
const FlexboxAxisTracker& aAxisTracker)
{
if (aFlexItem.IsStretched()) {
// Definite cross-size, imposed via 'align-self:stretch' & flex container.
return aFlexItem.GetCrossSize();
}
if (IsCrossSizeDefinite(aItemReflowInput, aAxisTracker)) {
// Definite cross size.
return GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(),
aItemReflowInput.ComputedISize(),
aItemReflowInput.ComputedBSize());
}
if (aMinSizeFallback) {
// Indefinite cross-size, and we're resolving main min-size, so we'll fall
// back to ussing the cross min-size (which should be definite).
return GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(),
aItemReflowInput.ComputedMinISize(),
aItemReflowInput.ComputedMinBSize());
}
// Indefinite cross-size.
return NS_AUTOHEIGHT;
}
// Convenience function; returns a main-size, given a cross-size and an
// intrinsic ratio. The caller is responsible for ensuring that the passed-in
// intrinsic ratio is not zero.
static nscoord
MainSizeFromAspectRatio(nscoord aCrossSize,
const AspectRatio& aIntrinsicRatio,
const FlexboxAxisTracker& aAxisTracker)
{
MOZ_ASSERT(aIntrinsicRatio,
"Invalid ratio; will divide by 0! Caller should've checked...");
AspectRatio ratio = aAxisTracker.IsMainAxisHorizontal() ?
aIntrinsicRatio :
aIntrinsicRatio.Inverted();
return ratio.ApplyTo(aCrossSize);
}
// Partially resolves "min-[width|height]:auto" and returns the resulting value.
// By "partially", I mean we don't consider the min-content size (but we do
// consider flex-basis, main max-size, and the intrinsic aspect ratio).
// The caller is responsible for computing & considering the min-content size
// in combination with the partially-resolved value that this function returns.
//
// Spec reference: http://dev.w3.org/csswg/css-flexbox/#min-size-auto
static nscoord
PartiallyResolveAutoMinSize(const FlexItem& aFlexItem,
const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(),
"only call for FlexItems that need min-size auto resolution");
nscoord minMainSize = nscoord_MAX; // Intentionally huge; we'll shrink it
// from here, w/ std::min().
// We need the smallest of:
// * the used flex-basis, if the computed flex-basis was 'auto':
// XXXdholbert ('auto' might be renamed to 'main-size'; see bug 1032922)
if (eStyleUnit_Auto ==
aItemReflowInput.mStylePosition->mFlexBasis.GetUnit() &&
aFlexItem.GetFlexBaseSize() != NS_AUTOHEIGHT) {
// NOTE: We skip this if the flex base size depends on content & isn't yet
// resolved. This is OK, because the caller is responsible for computing
// the min-content height and min()'ing it with the value we return, which
// is equivalent to what would happen if we min()'d that at this point.
minMainSize = std::min(minMainSize, aFlexItem.GetFlexBaseSize());
}
// * the computed max-width (max-height), if that value is definite:
nscoord maxSize =
GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(),
aItemReflowInput.ComputedMaxISize(),
aItemReflowInput.ComputedMaxBSize());
if (maxSize != NS_UNCONSTRAINEDSIZE) {
minMainSize = std::min(minMainSize, maxSize);
}
// * if the item has no intrinsic aspect ratio, its min-content size:
// --- SKIPPING THIS IN THIS FUNCTION --- caller's responsibility.
// * if the item has an intrinsic aspect ratio, the width (height) calculated
// from the aspect ratio and any definite size constraints in the opposite
// dimension.
if (aFlexItem.IntrinsicRatio()) {
// We have a usable aspect ratio. (not going to divide by 0)
const bool useMinSizeIfCrossSizeIsIndefinite = true;
nscoord crossSizeToUseWithRatio =
CrossSizeToUseWithRatio(aFlexItem, aItemReflowInput,
useMinSizeIfCrossSizeIsIndefinite,
aAxisTracker);
nscoord minMainSizeFromRatio =
MainSizeFromAspectRatio(crossSizeToUseWithRatio,
aFlexItem.IntrinsicRatio(), aAxisTracker);
minMainSize = std::min(minMainSize, minMainSizeFromRatio);
}
return minMainSize;
}
// Resolves flex-basis:auto, using the given intrinsic ratio and the flex
// item's cross size. On success, updates the flex item with its resolved
// flex-basis and returns true. On failure (e.g. if the ratio is invalid or
// the cross-size is indefinite), returns false.
static bool
ResolveAutoFlexBasisFromRatio(FlexItem& aFlexItem,
const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
MOZ_ASSERT(NS_AUTOHEIGHT == aFlexItem.GetFlexBaseSize(),
"Should only be called to resolve an 'auto' flex-basis");
// If the flex item has ...
// - an intrinsic aspect ratio,
// - a [used] flex-basis of 'main-size' [auto?] [We have this, if we're here.]
// - a definite cross size
// then the flex base size is calculated from its inner cross size and the
// flex item’s intrinsic aspect ratio.
if (aFlexItem.IntrinsicRatio()) {
// We have a usable aspect ratio. (not going to divide by 0)
const bool useMinSizeIfCrossSizeIsIndefinite = false;
nscoord crossSizeToUseWithRatio =
CrossSizeToUseWithRatio(aFlexItem, aItemReflowInput,
useMinSizeIfCrossSizeIsIndefinite,
aAxisTracker);
if (crossSizeToUseWithRatio != NS_AUTOHEIGHT) {
// We have a definite cross-size
nscoord mainSizeFromRatio =
MainSizeFromAspectRatio(crossSizeToUseWithRatio,
aFlexItem.IntrinsicRatio(), aAxisTracker);
aFlexItem.SetFlexBaseSizeAndMainSize(mainSizeFromRatio);
return true;
}
}
return false;
}
// Note: If & when we handle "min-height: min-content" for flex items,
// we may want to resolve that in this function, too.
void
nsFlexContainerFrame::
ResolveAutoFlexBasisAndMinSize(nsPresContext* aPresContext,
FlexItem& aFlexItem,
const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
// (Note: We can guarantee that the flex-basis will have already been
// resolved if the main axis is the same is the same as the item's inline
// axis. Inline-axis values should always be resolvable without reflow.)
const bool isMainSizeAuto = (!aFlexItem.IsInlineAxisMainAxis() &&
NS_AUTOHEIGHT == aFlexItem.GetFlexBaseSize());
const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution();
if (!isMainSizeAuto && !isMainMinSizeAuto) {
// Nothing to do; this function is only needed for flex items
// with a used flex-basis of "auto" or a min-main-size of "auto".
return;
}
// We may be about to do computations based on our item's cross-size
// (e.g. using it as a contstraint when measuring our content in the
// main axis, or using it with the intrinsic ratio to obtain a main size).
// BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size (if
// it's got 'align-self:stretch'), for a certain case where the spec says
// the stretched cross size is considered "definite". That case is if we
// have a single-line (nowrap) flex container which itself has a definite
// cross-size. Otherwise, we'll wait to do stretching, since (in other
// cases) we don't know how much the item should stretch yet.
const ReflowInput* flexContainerRI = aItemReflowInput.mParentReflowInput;
MOZ_ASSERT(flexContainerRI,
"flex item's reflow state should have ptr to container's state");
if (NS_STYLE_FLEX_WRAP_NOWRAP == flexContainerRI->mStylePosition->mFlexWrap) {
// XXXdholbert Maybe this should share logic with ComputeCrossSize()...
// Alternately, maybe tentative container cross size should be passed down.
nscoord containerCrossSize =
GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aAxisTracker.GetWritingMode(),
flexContainerRI->ComputedISize(),
flexContainerRI->ComputedBSize());
// Is container's cross size "definite"?
// - If it's column-oriented, then "yes", because its cross size is its
// inline-size which is always definite from its descendants' perspective.
// - Otherwise (if it's row-oriented), then we check the actual size
// and call it definite if it's not NS_AUTOHEIGHT.
if (aAxisTracker.IsColumnOriented() ||
containerCrossSize != NS_AUTOHEIGHT) {
// Container's cross size is "definite", so we can resolve the item's
// stretched cross size using that.
aFlexItem.ResolveStretchedCrossSize(containerCrossSize, aAxisTracker);
}
}
nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true)
bool minSizeNeedsToMeasureContent = false; // assume the best
if (isMainMinSizeAuto) {
// Resolve the min-size, except for considering the min-content size.
// (We'll consider that later, if we need to.)
resolvedMinSize = PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput,
aAxisTracker);
if (resolvedMinSize > 0 && !aFlexItem.IntrinsicRatio()) {
// We don't have a usable aspect ratio, so we need to consider our
// min-content size as another candidate min-size, which we'll have to
// min() with the current resolvedMinSize.
// (If resolvedMinSize were already at 0, we could skip this measurement
// because it can't go any lower. But it's not 0, so we need it.)
minSizeNeedsToMeasureContent = true;
}
}
bool flexBasisNeedsToMeasureContent = false; // assume the best
if (isMainSizeAuto) {
if (!ResolveAutoFlexBasisFromRatio(aFlexItem, aItemReflowInput,
aAxisTracker)) {
flexBasisNeedsToMeasureContent = true;
}
}
// Measure content, if needed (w/ intrinsic-width method or a reflow)
if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) {
if (aFlexItem.IsInlineAxisMainAxis()) {
if (minSizeNeedsToMeasureContent) {
nscoord frameMinISize =
aFlexItem.Frame()->GetMinISize(aItemReflowInput.mRenderingContext);
resolvedMinSize = std::min(resolvedMinSize, frameMinISize);
}
NS_ASSERTION(!flexBasisNeedsToMeasureContent,
"flex-basis:auto should have been resolved in the "
"reflow state, for horizontal flexbox. It shouldn't need "
"special handling here");
} else {
// If this item is flexible (in its block axis)...
// OR if we're measuring its 'auto' min-BSize, with its main-size (in its
// block axis) being something non-"auto"...
// THEN: we assume that the computed BSize that we're reflowing with now
// could be different from the one we'll use for this flex item's
// "actual" reflow later on. In that case, we need to be sure the flex
// item treats this as a block-axis resize (regardless of whether there
// are actually any ancestors being resized in that axis).
// (Note: We don't have to do this for the inline axis, because
// InitResizeFlags will always turn on mIsIResize on when it sees that
// the computed ISize is different from current ISize, and that's all we
// need.)
bool forceBResizeForMeasuringReflow =
!aFlexItem.IsFrozen() || // Is the item flexible?
!flexBasisNeedsToMeasureContent; // Are we *only* measuring it for
// 'min-block-size:auto'?
nscoord contentBSize =
MeasureFlexItemContentBSize(aPresContext, aFlexItem,
forceBResizeForMeasuringReflow,
*flexContainerRI);
if (minSizeNeedsToMeasureContent) {
resolvedMinSize = std::min(resolvedMinSize, contentBSize);
}
if (flexBasisNeedsToMeasureContent) {
aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize);
}
}
}
if (isMainMinSizeAuto) {
aFlexItem.UpdateMainMinSize(resolvedMinSize);
}
}
/**
* A cached result for a measuring reflow.
*
* Right now we only need to cache the available size and the computed height
* for checking that the reflow input is valid, and the height and the ascent
* to be used. This can be extended later if needed.
*
* The assumption here is that a given flex item measurement won't change until
* either the available size or computed height changes, or the flex container
* intrinsic size is marked as dirty (due to a style or DOM change).
*
* In particular the computed height may change between measuring reflows due to
* how the mIsFlexContainerMeasuringBSize flag affects size computation (see
* bug 1336708).
*
* Caching it prevents us from doing exponential reflows in cases of deeply
* nested flex and scroll frames.
*
* We store them in the frame property table for simplicity.
*/
class nsFlexContainerFrame::CachedMeasuringReflowResult
{
// Members that are part of the cache key:
const LogicalSize mAvailableSize;
const nscoord mComputedBSize;
// Members that are part of the cache value:
const nscoord mBSize;
const nscoord mAscent;
public:
CachedMeasuringReflowResult(const ReflowInput& aReflowInput,
const ReflowOutput& aDesiredSize)
: mAvailableSize(aReflowInput.AvailableSize())
, mComputedBSize(aReflowInput.ComputedBSize())
, mBSize(aDesiredSize.BSize(aReflowInput.GetWritingMode()))
, mAscent(aDesiredSize.BlockStartAscent())
{}
bool IsValidFor(const ReflowInput& aReflowInput) const {
return mAvailableSize == aReflowInput.AvailableSize() &&
mComputedBSize == aReflowInput.ComputedBSize();
}
nscoord BSize() const { return mBSize; }
nscoord Ascent() const { return mAscent; }
};
NS_DECLARE_FRAME_PROPERTY_DELETABLE(CachedFlexMeasuringReflow,
CachedMeasuringReflowResult);
const CachedMeasuringReflowResult&
nsFlexContainerFrame::MeasureAscentAndBSizeForFlexItem(
FlexItem& aItem,
nsPresContext* aPresContext,
ReflowInput& aChildReflowInput)
{
if (const auto* cachedResult =
aItem.Frame()->GetProperty(CachedFlexMeasuringReflow())) {
if (cachedResult->IsValidFor(aChildReflowInput)) {
return *cachedResult;
}
}
ReflowOutput childDesiredSize(aChildReflowInput);
nsReflowStatus childReflowStatus;
const ReflowChildFlags flags = ReflowChildFlags::NoMoveFrame;
ReflowChild(aItem.Frame(), aPresContext,
childDesiredSize, aChildReflowInput,
0, 0, flags, childReflowStatus);
aItem.SetHadMeasuringReflow();
// XXXdholbert Once we do pagination / splitting, we'll need to actually
// handle incomplete childReflowStatuses. But for now, we give our kids
// unconstrained available height, which means they should always complete.
MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
"We gave flex item unconstrained available height, so it "
"should be complete");
// Tell the child we're done with its initial reflow.
// (Necessary for e.g. GetBaseline() to work below w/out asserting)
FinishReflowChild(aItem.Frame(), aPresContext,
childDesiredSize, &aChildReflowInput, 0, 0, flags);
auto result =
new CachedMeasuringReflowResult(aChildReflowInput, childDesiredSize);
aItem.Frame()->SetProperty(CachedFlexMeasuringReflow(), result);
return *result;
}
/* virtual */ void
nsFlexContainerFrame::MarkIntrinsicISizesDirty()
{
for (nsIFrame* childFrame : mFrames) {
childFrame->DeleteProperty(CachedFlexMeasuringReflow());
}
nsContainerFrame::MarkIntrinsicISizesDirty();
}
nscoord
nsFlexContainerFrame::
MeasureFlexItemContentBSize(nsPresContext* aPresContext,
FlexItem& aFlexItem,
bool aForceBResizeForMeasuringReflow,
const ReflowInput& aParentReflowInput)
{
// Set up a reflow state for measuring the flex item's auto-height:
WritingMode wm = aFlexItem.Frame()->GetWritingMode();
LogicalSize availSize = aParentReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput
childRIForMeasuringBSize(aPresContext, aParentReflowInput,
aFlexItem.Frame(), availSize,
nullptr, ReflowInput::CALLER_WILL_INIT);
childRIForMeasuringBSize.mFlags.mIsFlexContainerMeasuringBSize = true;
childRIForMeasuringBSize.Init(aPresContext);
if (aFlexItem.IsStretched()) {
childRIForMeasuringBSize.SetComputedISize(aFlexItem.GetCrossSize());
childRIForMeasuringBSize.SetIResize(true);
}
if (aForceBResizeForMeasuringReflow) {
childRIForMeasuringBSize.SetBResize(true);
}
const CachedMeasuringReflowResult& reflowResult =
MeasureAscentAndBSizeForFlexItem(aFlexItem, aPresContext,
childRIForMeasuringBSize);
aFlexItem.SetAscent(reflowResult.Ascent());
// Subtract border/padding in block axis, to get _just_
// the effective computed value of the BSize property.
nscoord childDesiredBSize = reflowResult.BSize() -
childRIForMeasuringBSize.ComputedLogicalBorderPadding().BStartEnd(wm);
return std::max(0, childDesiredBSize);
}
FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput,
float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize,
nscoord aMainMinSize, nscoord aMainMaxSize,
nscoord aTentativeCrossSize,
nscoord aCrossMinSize, nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker)
: mFrame(aFlexItemReflowInput.mFrame),
mFlexGrow(aFlexGrow),
mFlexShrink(aFlexShrink),
mIntrinsicRatio(mFrame->GetIntrinsicRatio()),
mBorderPadding(aFlexItemReflowInput.ComputedPhysicalBorderPadding()),
mMargin(aFlexItemReflowInput.ComputedPhysicalMargin()),
mMainMinSize(aMainMinSize),
mMainMaxSize(aMainMaxSize),
mCrossMinSize(aCrossMinSize),
mCrossMaxSize(aCrossMaxSize),
mMainPosn(0),
mCrossSize(aTentativeCrossSize),
mCrossPosn(0),
mAscent(0),
mShareOfWeightSoFar(0.0f),
mWM(aFlexItemReflowInput.GetWritingMode()),
mIsFrozen(false),
mHadMinViolation(false),
mHadMaxViolation(false),
mHadMeasuringReflow(false),
mIsStretched(false),
mIsStrut(false),
mIsInlineAxisMainAxis(aAxisTracker.IsRowOriented() !=
aAxisTracker.GetWritingMode().IsOrthogonalTo(mWM))
// mNeedsMinSizeAutoResolution is initialized in CheckForMinSizeAuto()
// mAlignSelf, see below
{
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame,
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
MOZ_ASSERT(mIsInlineAxisMainAxis ==
nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame),
"public API should be consistent with internal state (about "
"whether flex item's inline axis is flex container's main axis)");
const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput;
if (IsLegacyBox(containerRS->mFrame)) {
// For -webkit-box/-webkit-inline-box, we need to:
// (1) Use "-webkit-box-align" instead of "align-items" to determine the
// container's cross-axis alignment behavior.
// (2) Suppress the ability for flex items to override that with their own
// cross-axis alignment. (The legacy box model doesn't support this.)
// So, each FlexItem simply copies the container's converted "align-items"
// value and disregards their own "align-self" property.
const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL();
mAlignSelf = ConvertLegacyStyleToAlignItems(containerStyleXUL);
} else {
mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf(
containerRS->mFrame->StyleContext());
if (MOZ_LIKELY(mAlignSelf == NS_STYLE_ALIGN_NORMAL)) {
mAlignSelf = NS_STYLE_ALIGN_STRETCH;
}
// XXX strip off the <overflow-position> bit until we implement that
mAlignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS;
}
SetFlexBaseSizeAndMainSize(aFlexBaseSize);
CheckForMinSizeAuto(aFlexItemReflowInput, aAxisTracker);
// Assert that any "auto" margin components are set to 0.
// (We'll resolve them later; until then, we want to treat them as 0-sized.)
#ifdef DEBUG
{
const nsStyleSides& styleMargin =
aFlexItemReflowInput.mStyleMargin->mMargin;
NS_FOR_CSS_SIDES(side) {
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
"Someone else tried to resolve our auto margin");
}
}
}
#endif // DEBUG
// Map align-self 'baseline' value to 'start' when baseline alignment
// is not possible because the FlexItem's writing mode is orthogonal to
// the main axis of the container. If that's the case, we just directly
// convert our align-self value here, so that we don't have to handle this
// with special cases elsewhere.
// We are treating this case as one where it is appropriate to use the
// fallback values defined at https://www.w3.org/TR/css-align-3/#baseline
if (aAxisTracker.IsRowOriented() ==
aAxisTracker.GetWritingMode().IsOrthogonalTo(mWM)) {
if (mAlignSelf == NS_STYLE_ALIGN_BASELINE) {
mAlignSelf = NS_STYLE_ALIGN_FLEX_START;
} else if (mAlignSelf == NS_STYLE_ALIGN_LAST_BASELINE) {
mAlignSelf = NS_STYLE_ALIGN_FLEX_END;
}
}
}
// Simplified constructor for creating a special "strut" FlexItem, for a child
// with visibility:collapse. The strut has 0 main-size, and it only exists to
// impose a minimum cross size on whichever FlexLine it ends up in.
FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize,
WritingMode aContainerWM)
: mFrame(aChildFrame),
mFlexGrow(0.0f),
mFlexShrink(0.0f),
mIntrinsicRatio(),
// mBorderPadding uses default constructor,
// mMargin uses default constructor,
mFlexBaseSize(0),
mMainMinSize(0),
mMainMaxSize(0),
mCrossMinSize(0),
mCrossMaxSize(0),
mMainSize(0),
mMainPosn(0),
mCrossSize(aCrossSize),
mCrossPosn(0),
mAscent(0),
mShareOfWeightSoFar(0.0f),
// Struts don't do layout, so its WM doesn't matter at this point. So, we
// just share container's WM for simplicity:
mWM(aContainerWM),
mIsFrozen(true),
mHadMinViolation(false),
mHadMaxViolation(false),
mHadMeasuringReflow(false),
mIsStretched(false),
mIsStrut(true), // (this is the constructor for making struts, after all)
mIsInlineAxisMainAxis(true), // (doesn't matter b/c we're not doing layout)
mNeedsMinSizeAutoResolution(false),
mAlignSelf(NS_STYLE_ALIGN_FLEX_START)
{
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(NS_STYLE_VISIBILITY_COLLAPSE ==
mFrame->StyleVisibility()->mVisible,
"Should only make struts for children with 'visibility:collapse'");
MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame,
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
}
void
FlexItem::CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
const nsStylePosition* pos = aFlexItemReflowInput.mStylePosition;
const nsStyleDisplay* disp = aFlexItemReflowInput.mStyleDisplay;
// We'll need special behavior for "min-[width|height]:auto" (whichever is in
// the main axis) iff:
// (a) its computed value is "auto"
// (b) the "overflow" sub-property in the same axis (the main axis) has a
// computed value of "visible"
const nsStyleCoord& minSize = GET_MAIN_COMPONENT(aAxisTracker,
pos->mMinWidth,
pos->mMinHeight);
const uint8_t overflowVal = GET_MAIN_COMPONENT(aAxisTracker,
disp->mOverflowX,
disp->mOverflowY);
mNeedsMinSizeAutoResolution = (minSize.GetUnit() == eStyleUnit_Auto &&
overflowVal == NS_STYLE_OVERFLOW_VISIBLE);
}
nscoord
FlexItem::GetBaselineOffsetFromOuterCrossEdge(
AxisEdgeType aEdge,
const FlexboxAxisTracker& aAxisTracker,
bool aUseFirstLineBaseline) const
{
// NOTE: Currently, 'mAscent' (taken from reflow) is an inherently vertical
// measurement -- it's the distance from the border-top edge of this FlexItem
// to its baseline. So, we can really only do baseline alignment when the
// cross axis is vertical. (The FlexItem constructor enforces this when
// resolving the item's "mAlignSelf" value).
MOZ_ASSERT(!aAxisTracker.IsCrossAxisHorizontal(),
"Only expecting to be doing baseline computations when the "
"cross axis is vertical");
AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis();
mozilla::Side sideToMeasureFrom = kAxisOrientationToSidesMap[crossAxis][aEdge];
nscoord marginTopToBaseline = ResolvedAscent(aUseFirstLineBaseline) +
mMargin.top;
if (sideToMeasureFrom == eSideTop) {
// Measuring from top (normal case): the distance from the margin-box top
// edge to the baseline is just ascent + margin-top.
return marginTopToBaseline;
}
MOZ_ASSERT(sideToMeasureFrom == eSideBottom,
"We already checked that we're dealing with a vertical axis, and "
"we're not using the top side, so that only leaves the bottom...");
// Measuring from bottom: The distance from the margin-box bottom edge to the
// baseline is just the margin-box cross size (i.e. outer cross size), minus
// the already-computed distance from margin-top to baseline.
return GetOuterCrossSize(crossAxis) - marginTopToBaseline;
}
uint32_t
FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const
{
uint32_t numAutoMargins = 0;
const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin;
for (uint32_t i = 0; i < eNumAxisEdges; i++) {
mozilla::Side side = kAxisOrientationToSidesMap[aAxis][i];
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
numAutoMargins++;
}
}
// Mostly for clarity:
MOZ_ASSERT(numAutoMargins <= 2,
"We're just looking at one item along one dimension, so we "
"should only have examined 2 margins");
return numAutoMargins;
}
bool
FlexItem::CanMainSizeInfluenceCrossSize(
const FlexboxAxisTracker& aAxisTracker) const
{
if (mIsStretched) {
// We've already had our cross-size stretched for "align-self:stretch").
// The container is imposing its cross size on us.
return false;
}
if (mIsStrut) {
// Struts (for visibility:collapse items) have a predetermined size;
// no need to measure anything.
return false;
}
if (HasIntrinsicRatio()) {
// For flex items that have an intrinsic ratio (and maintain it, i.e. are
// not stretched, which we already checked above): changes to main-size
// *do* influence the cross size.
return true;
}
if (IsInlineAxisCrossAxis()) {
// If we get here, this function is really asking: "can changes to this
// item's block size have an influence on its inline size"? For blocks and
// tables, the answer is "no".
if (mFrame->GetType() == nsGkAtoms::blockFrame ||
mFrame->GetType() == nsGkAtoms::tableWrapperFrame) {
// XXXdholbert (Maybe use an IsFrameOfType query or something more
// general to test this across all frame types? For now, I'm just
// optimizing for block and table, since those are common containers that
// can contain arbitrarily-large subtrees (and that reliably have ISize
// being unaffected by BSize, per CSS2). So optimizing away needless
// relayout is possible & especially valuable for these containers.)
return false;
}
// Other opt-outs can go here, as they're identified as being useful
// (particularly for containers where an extra reflow is expensive). But in
// general, we have to assume that a flexed BSize *could* influence the
// ISize. Some examples where this can definitely happen:
// * Intrinsically-sized multicol with fixed-ISize columns, which adds
// columns (i.e. grows in inline axis) depending on its block size.
// * Intrinsically-sized multi-line column-oriented flex container, which
// adds flex lines (i.e. grows in inline axis) depending on its block size.
}
// Default assumption, if we haven't proven otherwise: the resolved main size
// *can* change the cross size.
return true;
}
// Keeps track of our position along a particular axis (where a '0' position
// corresponds to the 'start' edge of that axis).
// This class shouldn't be instantiated directly -- rather, it should only be
// instantiated via its subclasses defined below.
class MOZ_STACK_CLASS PositionTracker {
public:
// Accessor for the current value of the position that we're tracking.
inline nscoord GetPosition() const { return mPosition; }
inline AxisOrientationType GetAxis() const { return mAxis; }
// Advances our position across the start edge of the given margin, in the
// axis we're tracking.
void EnterMargin(const nsMargin& aMargin)
{
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start];
mPosition += aMargin.Side(side);
}
// Advances our position across the end edge of the given margin, in the axis
// we're tracking.
void ExitMargin(const nsMargin& aMargin)
{
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End];
mPosition += aMargin.Side(side);
}
// Advances our current position from the start side of a child frame's
// border-box to the frame's upper or left edge (depending on our axis).
// (Note that this is a no-op if our axis grows in the same direction as
// the corresponding logical axis.)
void EnterChildFrame(nscoord aChildFrameSize)
{
if (mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
// Advances our current position from a frame's upper or left border-box edge
// (whichever is in the axis we're tracking) to the 'end' side of the frame
// in the axis that we're tracking. (Note that this is a no-op if our axis
// is reversed with respect to the corresponding logical axis.)
void ExitChildFrame(nscoord aChildFrameSize)
{
if (!mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
protected:
// Protected constructor, to be sure we're only instantiated via a subclass.
PositionTracker(AxisOrientationType aAxis, bool aIsAxisReversed)
: mPosition(0),
mAxis(aAxis),
mIsAxisReversed(aIsAxisReversed)
{}
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
PositionTracker(const PositionTracker&) = delete;
PositionTracker& operator=(const PositionTracker&) = delete;
// Member data:
nscoord mPosition; // The position we're tracking
// XXXdholbert [BEGIN DEPRECATED]
const AxisOrientationType mAxis; // The axis along which we're moving.
// XXXdholbert [END DEPRECATED]
const bool mIsAxisReversed; // Is the axis along which we're moving reversed
// (e.g. LTR vs RTL) with respect to the
// corresponding axis on the flex container's WM?
};
// Tracks our position in the main axis, when we're laying out flex items.
// The "0" position represents the main-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker {
public:
MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker,
const FlexLine* aLine,
uint8_t aJustifyContent,
nscoord aContentBoxMainSize);
~MainAxisPositionTracker() {
MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
"miscounted the number of packing spaces");
MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
"miscounted the number of auto margins");
}
// Advances past the gap space (if any) between two flex items
void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; }
// Advances past the packing space (if any) between two flex items
void TraversePackingSpace();
// If aItem has any 'auto' margins in the main axis, this method updates the
// corresponding values in its margin.
void ResolveAutoMarginsInMainAxis(FlexItem& aItem);
private:
nscoord mPackingSpaceRemaining;
uint32_t mNumAutoMarginsInMainAxis;
uint32_t mNumPackingSpacesRemaining;
// XXX this should be uint16_t when we add explicit fallback handling
uint8_t mJustifyContent;
};
// Utility class for managing our position along the cross axis along
// the whole flex container (at a higher level than a single line).
// The "0" position represents the cross-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker {
public:
CrossAxisPositionTracker(FlexLine* aFirstLine,
const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize,
bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker,
const nscoord aCrossGapSize);
// Advances past the gap (if any) between two flex lines
void TraverseGap() { mPosition += mCrossGapSize; }
// Advances past the packing space (if any) between two flex lines
void TraversePackingSpace();
// Advances past the given FlexLine
void TraverseLine(FlexLine& aLine) { mPosition += aLine.GetLineCrossSize(); }
private:
// Redeclare the frame-related methods from PositionTracker as private with
// = delete, to be sure (at compile time) that no client code can invoke
// them. (Unlike the other PositionTracker derived classes, this class here
// deals with FlexLines, not with individual FlexItems or frames.)
void EnterMargin(const nsMargin& aMargin) = delete;
void ExitMargin(const nsMargin& aMargin) = delete;
void EnterChildFrame(nscoord aChildFrameSize) = delete;
void ExitChildFrame(nscoord aChildFrameSize) = delete;
nscoord mPackingSpaceRemaining;
uint32_t mNumPackingSpacesRemaining;
// XXX this should be uint16_t when we add explicit fallback handling
uint8_t mAlignContent;
const nscoord mCrossGapSize;
};
// Utility class for managing our position along the cross axis, *within* a
// single flex line.
class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker : public PositionTracker {
public:
explicit SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker);
void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine,
FlexItem& aItem);
void EnterAlignPackingSpace(const FlexLine& aLine,
const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker);
// Resets our position to the cross-start edge of this line.
inline void ResetPosition() { mPosition = 0; }
};
//----------------------------------------------------------------------
// Frame class boilerplate
// =======================
NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)
nsContainerFrame*
NS_NewFlexContainerFrame(nsIPresShell* aPresShell,
nsStyleContext* aContext)
{
return new (aPresShell) nsFlexContainerFrame(aContext);
}
//----------------------------------------------------------------------
// nsFlexContainerFrame Method Implementations
// ===========================================
/* virtual */
nsFlexContainerFrame::~nsFlexContainerFrame()
{
}
/* virtual */
void
nsFlexContainerFrame::Init(nsIContent* aContent,
nsContainerFrame* aParent,
nsIFrame* aPrevInFlow)
{
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
const nsStyleDisplay* styleDisp = StyleContext()->StyleDisplay();
// Figure out if we should set a frame state bit to indicate that this frame
// represents a legacy -webkit-{inline-}box container.
// First, the trivial case: just check "display" directly.
bool isLegacyBox = IsDisplayValueLegacyBox(styleDisp);
// If this frame is for a scrollable element, then it will actually have
// "display:block", and its *parent* will have the real flex-flavored display
// value. So in that case, check the parent to find out if we're legacy.
if (!isLegacyBox && styleDisp->mDisplay == mozilla::StyleDisplay::Block) {
nsStyleContext* parentStyleContext = mStyleContext->GetParent();
NS_ASSERTION(parentStyleContext &&
(mStyleContext->GetPseudo() == nsCSSAnonBoxes::buttonContent ||
mStyleContext->GetPseudo() == nsCSSAnonBoxes::scrolledContent),
"The only way a nsFlexContainerFrame can have 'display:block' "
"should be if it's the inner part of a scrollable or button "
"element");
isLegacyBox = IsDisplayValueLegacyBox(parentStyleContext->StyleDisplay());
}
if (isLegacyBox) {
AddStateBits(NS_STATE_FLEX_IS_LEGACY_WEBKIT_BOX);
}
}
template<bool IsLessThanOrEqual(nsIFrame*, nsIFrame*)>
/* static */ bool
nsFlexContainerFrame::SortChildrenIfNeeded()
{
if (nsIFrame::IsFrameListSorted<IsLessThanOrEqual>(mFrames)) {
return false;
}
nsIFrame::SortFrameList<IsLessThanOrEqual>(mFrames);
return true;
}
/* virtual */
nsIAtom*
nsFlexContainerFrame::GetType() const
{
return nsGkAtoms::flexContainerFrame;
}
#ifdef DEBUG_FRAME_DUMP
nsresult
nsFlexContainerFrame::GetFrameName(nsAString& aResult) const
{
return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult);
}
#endif
nscoord
nsFlexContainerFrame::GetLogicalBaseline(mozilla::WritingMode aWM) const
{
NS_ASSERTION(mBaselineFromLastReflow != NS_INTRINSIC_WIDTH_UNKNOWN,
"baseline has not been set");
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
// Return a baseline synthesized from our margin-box.
return nsContainerFrame::GetLogicalBaseline(aWM);
}
return mBaselineFromLastReflow;
}
// Helper for BuildDisplayList, to implement this special-case for flex items
// from the spec:
// Flex items paint exactly the same as block-level elements in the
// normal flow, except that 'z-index' values other than 'auto' create
// a stacking context even if 'position' is 'static'.
// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#painting
uint32_t
GetDisplayFlagsForFlexItem(nsIFrame* aFrame)
{
MOZ_ASSERT(aFrame->IsFlexItem(), "Should only be called on flex items");
const nsStylePosition* pos = aFrame->StylePosition();
if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) {
return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT;
}
return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT;
}
void
nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists)
{
// XXXdholbert hacky temporary band-aid for bug 1059138: Trivially pass this
// assertion (skip it, basically) if the first child is part of a shadow DOM.
// (IsOrderLEQWithDOMFallback doesn't know how to compare tree-position of a
// shadow-DOM element vs. a non-shadow-DOM element.)
NS_ASSERTION(
(!mFrames.IsEmpty() &&
mFrames.FirstChild()->GetContent()->GetContainingShadow()) ||
nsIFrame::IsFrameListSorted<IsOrderLEQWithDOMFallback>(mFrames),
"Child frames aren't sorted correctly");
DisplayBorderBackgroundOutline(aBuilder, aLists);
// Our children are all block-level, so their borders/backgrounds all go on
// the BlockBorderBackgrounds list.
nsDisplayListSet childLists(aLists, aLists.BlockBorderBackgrounds());
for (nsIFrame* childFrame : mFrames) {
BuildDisplayListForChild(aBuilder, childFrame, childLists,
GetDisplayFlagsForFlexItem(childFrame));
}
}
void
FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow)
{
// After we've established the type of flexing we're doing (growing vs.
// shrinking), and before we try to flex any items, we freeze items that
// obviously *can't* flex.
//
// Quoting the spec:
// # Freeze, setting its target main size to its hypothetical main size...
// # - any item that has a flex factor of zero
// # - if using the flex grow factor: any item that has a flex base size
// # greater than its hypothetical main size
// # - if using the flex shrink factor: any item that has a flex base size
// # smaller than its hypothetical main size
// http://dev.w3.org/csswg/css-flexbox/#resolve-flexible-lengths-flex-factors
//
// (NOTE: At this point, item->GetMainSize() *is* the item's hypothetical
// main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the
// item hasn't had a chance to flex away from that yet.)
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst();
numUnfrozenItemsToBeSeen > 0; item = item->getNext()) {
MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
bool shouldFreeze = (0.0f == item->GetFlexFactor(aIsUsingFlexGrow));
if (!shouldFreeze) {
if (aIsUsingFlexGrow) {
if (item->GetFlexBaseSize() > item->GetMainSize()) {
shouldFreeze = true;
}
} else { // using flex-shrink
if (item->GetFlexBaseSize() < item->GetMainSize()) {
shouldFreeze = true;
}
}
}
if (shouldFreeze) {
// Freeze item! (at its hypothetical main size)
item->Freeze();
mNumFrozenItems++;
}
}
}
}
// Based on the sign of aTotalViolation, this function freezes a subset of our
// flexible sizes, and restores the remaining ones to their initial pref sizes.
void
FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration)
{
enum FreezeType {
eFreezeEverything,
eFreezeMinViolations,
eFreezeMaxViolations
};
FreezeType freezeType;
if (aTotalViolation == 0) {
freezeType = eFreezeEverything;
} else if (aTotalViolation > 0) {
freezeType = eFreezeMinViolations;
} else { // aTotalViolation < 0
freezeType = eFreezeMaxViolations;
}
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst();
numUnfrozenItemsToBeSeen > 0; item = item->getNext()) {
MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
MOZ_ASSERT(!item->HadMinViolation() || !item->HadMaxViolation(),
"Can have either min or max violation, but not both");
if (eFreezeEverything == freezeType ||
(eFreezeMinViolations == freezeType && item->HadMinViolation()) ||
(eFreezeMaxViolations == freezeType && item->HadMaxViolation())) {
MOZ_ASSERT(item->GetMainSize() >= item->GetMainMinSize(),
"Freezing item at a size below its minimum");
MOZ_ASSERT(item->GetMainSize() <= item->GetMainMaxSize(),
"Freezing item at a size above its maximum");
item->Freeze();
mNumFrozenItems++;
} else if (MOZ_UNLIKELY(aIsFinalIteration)) {
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
// assertion to be fatal except in documents with enormous lengths.
NS_ERROR("Final iteration still has unfrozen items, this shouldn't"
" happen unless there was nscoord under/overflow.");
item->Freeze();
mNumFrozenItems++;
} // else, we'll reset this item's main size to its flex base size on the
// next iteration of this algorithm.
// Clear this item's violation(s), now that we've dealt with them
item->ClearViolationFlags();
}
}
}
void
FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize)
{
MOZ_LOG(gFlexContainerLog, LogLevel::Debug, ("ResolveFlexibleLengths\n"));
// Determine whether we're going to be growing or shrinking items.
const bool isUsingFlexGrow =
(mTotalOuterHypotheticalMainSize < aFlexContainerMainSize);
// Do an "early freeze" for flex items that obviously can't flex in the
// direction we've chosen:
FreezeItemsEarly(isUsingFlexGrow);
if (mNumFrozenItems == mNumItems) {
// All our items are frozen, so we have no flexible lengths to resolve.
return;
}
MOZ_ASSERT(!IsEmpty(), "empty lines should take the early-return above");
// Subtract space occupied by our items' margins/borders/padding/gaps, so
// we can just be dealing with the space available for our flex items'
// content boxes.
nscoord spaceAvailableForFlexItemsContentBoxes =
aFlexContainerMainSize - (mTotalInnerHypotheticalMainSize +
GetSumOfGaps());
nscoord origAvailableFreeSpace;
bool isOrigAvailFreeSpaceInitialized = false;
// NOTE: I claim that this chunk of the algorithm (the looping part) needs to
// run the loop at MOST mNumItems times. This claim should hold up
// because we'll freeze at least one item on each loop iteration, and once
// we've run out of items to freeze, there's nothing left to do. However,
// in most cases, we'll break out of this loop long before we hit that many
// iterations.
for (uint32_t iterationCounter = 0;
iterationCounter < mNumItems; iterationCounter++) {
// Set every not-yet-frozen item's used main size to its
// flex base size, and subtract all the used main sizes from our
// total amount of space to determine the 'available free space'
// (positive or negative) to be distributed among our flexible items.
nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
if (!item->IsFrozen()) {
item->SetMainSize(item->GetFlexBaseSize());
}
availableFreeSpace -= item->GetMainSize();
}
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" available free space = %d\n", availableFreeSpace));
// The sign of our free space should agree with the type of flexing
// (grow/shrink) that we're doing (except if we've had integer overflow;
// then, all bets are off). Any disagreement should've made us use the
// other type of flexing, or should've been resolved in FreezeItemsEarly.
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
// assertion to be fatal except in documents with enormous lengths.
NS_ASSERTION((isUsingFlexGrow && availableFreeSpace >= 0) ||
(!isUsingFlexGrow && availableFreeSpace <= 0),
"availableFreeSpace's sign should match isUsingFlexGrow");
// If we have any free space available, give each flexible item a portion
// of availableFreeSpace.
if (availableFreeSpace != 0) {
// The first time we do this, we initialize origAvailableFreeSpace.
if (!isOrigAvailFreeSpaceInitialized) {
origAvailableFreeSpace = availableFreeSpace;
isOrigAvailFreeSpaceInitialized = true;
}
// STRATEGY: On each item, we compute & store its "share" of the total
// weight that we've seen so far:
// curWeight / weightSum
//
// Then, when we go to actually distribute the space (in the next loop),
// we can simply walk backwards through the elements and give each item
// its "share" multiplied by the remaining available space.
//
// SPECIAL CASE: If the sum of the weights is larger than the
// maximum representable float (overflowing to infinity), then we can't
// sensibly divide out proportional shares anymore. In that case, we
// simply treat the flex item(s) with the largest weights as if
// their weights were infinite (dwarfing all the others), and we
// distribute all of the available space among them.
float weightSum = 0.0f;
float flexFactorSum = 0.0f;
float largestWeight = 0.0f;
uint32_t numItemsWithLargestWeight = 0;
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst();
numUnfrozenItemsToBeSeen > 0; item = item->getNext()) {
MOZ_ASSERT(item,
"numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
float curWeight = item->GetWeight(isUsingFlexGrow);
float curFlexFactor = item->GetFlexFactor(isUsingFlexGrow);
MOZ_ASSERT(curWeight >= 0.0f, "weights are non-negative");
MOZ_ASSERT(curFlexFactor >= 0.0f, "flex factors are non-negative");
weightSum += curWeight;
flexFactorSum += curFlexFactor;
if (IsFinite(weightSum)) {
if (curWeight == 0.0f) {
item->SetShareOfWeightSoFar(0.0f);
} else {
item->SetShareOfWeightSoFar(curWeight / weightSum);
}
} // else, the sum of weights overflows to infinity, in which
// case we don't bother with "SetShareOfWeightSoFar" since
// we know we won't use it. (instead, we'll just give every
// item with the largest weight an equal share of space.)
// Update our largest-weight tracking vars
if (curWeight > largestWeight) {
largestWeight = curWeight;
numItemsWithLargestWeight = 1;
} else if (curWeight == largestWeight) {
numItemsWithLargestWeight++;
}
}
}
if (weightSum != 0.0f) {
MOZ_ASSERT(flexFactorSum != 0.0f,
"flex factor sum can't be 0, if a weighted sum "
"of its components (weightSum) is nonzero");
if (flexFactorSum < 1.0f) {
// Our unfrozen flex items don't want all of the original free space!
// (Their flex factors add up to something less than 1.)
// Hence, make sure we don't distribute any more than the portion of
// our original free space that these items actually want.
nscoord totalDesiredPortionOfOrigFreeSpace =
NSToCoordRound(origAvailableFreeSpace * flexFactorSum);
// Clamp availableFreeSpace to be no larger than that ^^.
// (using min or max, depending on sign).
// This should not change the sign of availableFreeSpace (except
// possibly by setting it to 0), as enforced by this assertion:
MOZ_ASSERT(totalDesiredPortionOfOrigFreeSpace == 0 ||
((totalDesiredPortionOfOrigFreeSpace > 0) ==
(availableFreeSpace > 0)),
"When we reduce available free space for flex factors < 1,"
"we shouldn't change the sign of the free space...");
if (availableFreeSpace > 0) {
availableFreeSpace = std::min(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
} else {
availableFreeSpace = std::max(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
}
}
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" Distributing available space:"));
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
// NOTE: It's important that we traverse our items in *reverse* order
// here, for correct width distribution according to the items'
// "ShareOfWeightSoFar" progressively-calculated values.
for (FlexItem* item = mItems.getLast();
numUnfrozenItemsToBeSeen > 0; item = item->getPrevious()) {
MOZ_ASSERT(item,
"numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
// To avoid rounding issues, we compute the change in size for this
// item, and then subtract it from the remaining available space.
nscoord sizeDelta = 0;
if (IsFinite(weightSum)) {
float myShareOfRemainingSpace =
item->GetShareOfWeightSoFar();
MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f &&
myShareOfRemainingSpace <= 1.0f,
"my share should be nonnegative fractional amount");
if (myShareOfRemainingSpace == 1.0f) {
// (We special-case 1.0f to avoid float error from converting
// availableFreeSpace from integer*1.0f --> float --> integer)
sizeDelta = availableFreeSpace;
} else if (myShareOfRemainingSpace > 0.0f) {
sizeDelta = NSToCoordRound(availableFreeSpace *
myShareOfRemainingSpace);
}
} else if (item->GetWeight(isUsingFlexGrow) == largestWeight) {
// Total flexibility is infinite, so we're just distributing
// the available space equally among the items that are tied for
// having the largest weight (and this is one of those items).
sizeDelta =
NSToCoordRound(availableFreeSpace /
float(numItemsWithLargestWeight));
numItemsWithLargestWeight--;
}
availableFreeSpace -= sizeDelta;
item->SetMainSize(item->GetMainSize() + sizeDelta);
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" child %p receives %d, for a total of %d\n",
item, sizeDelta, item->GetMainSize()));
}
}
}
}
// Fix min/max violations:
nscoord totalViolation = 0; // keeps track of adjustments for min/max
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" Checking for violations:"));
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst();
numUnfrozenItemsToBeSeen > 0; item = item->getNext()) {
MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
if (item->GetMainSize() < item->GetMainMinSize()) {
// min violation
totalViolation += item->GetMainMinSize() - item->GetMainSize();
item->SetMainSize(item->GetMainMinSize());
item->SetHadMinViolation();
} else if (item->GetMainSize() > item->GetMainMaxSize()) {
// max violation
totalViolation += item->GetMainMaxSize() - item->GetMainSize();
item->SetMainSize(item->GetMainMaxSize());
item->SetHadMaxViolation();
}
}
}
FreezeOrRestoreEachFlexibleSize(totalViolation,
iterationCounter + 1 == mNumItems);
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" Total violation: %d\n", totalViolation));
if (mNumFrozenItems == mNumItems) {
break;
}
MOZ_ASSERT(totalViolation != 0,
"Zero violation should've made us freeze all items & break");
}
#ifdef DEBUG
// Post-condition: all items should've been frozen.
// Make sure the counts match:
MOZ_ASSERT(mNumFrozenItems == mNumItems, "All items should be frozen");
// For good measure, check each item directly, in case our counts are busted:
for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
MOZ_ASSERT(item->IsFrozen(), "All items should be frozen");
}
#endif // DEBUG
}
MainAxisPositionTracker::
MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker,
const FlexLine* aLine,
uint8_t aJustifyContent,
nscoord aContentBoxMainSize)
: PositionTracker(aAxisTracker.GetMainAxis(),
aAxisTracker.IsMainAxisReversed()),
mPackingSpaceRemaining(aContentBoxMainSize), // we chip away at this below
mNumAutoMarginsInMainAxis(0),
mNumPackingSpacesRemaining(0),
mJustifyContent(aJustifyContent)
{
// 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start',
// in the main axis
// https://drafts.csswg.org/css-align-3/#propdef-justify-content
if (mJustifyContent == NS_STYLE_JUSTIFY_NORMAL ||
mJustifyContent == NS_STYLE_JUSTIFY_STRETCH) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START;
}
// XXX strip off the <overflow-position> bit until we implement that
mJustifyContent &= ~NS_STYLE_JUSTIFY_FLAG_BITS;
// mPackingSpaceRemaining is initialized to the container's main size. Now
// we'll subtract out the main sizes of our flex items, so that it ends up
// with the *actual* amount of packing space.
for (const FlexItem* item = aLine->GetFirstItem(); item;
item = item->getNext()) {
mPackingSpaceRemaining -= item->GetOuterMainSize(mAxis);
mNumAutoMarginsInMainAxis += item->GetNumAutoMarginsInAxis(mAxis);
}
// Subtract space required for row/col gap from the remaining packing space
mPackingSpaceRemaining -= aLine->GetSumOfGaps();
if (mPackingSpaceRemaining <= 0) {
// No available packing space to use for resolving auto margins.
mNumAutoMarginsInMainAxis = 0;
}
// If packing space is negative, 'space-between' falls back to 'flex-start',
// and 'space-around' & 'space-evenly' fall back to 'center'. In those cases,
// it's simplest to just pretend we have a different 'justify-content' value
// and share code.
if (mPackingSpaceRemaining < 0) {
if (mJustifyContent == NS_STYLE_JUSTIFY_SPACE_BETWEEN) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START;
} else if (mJustifyContent == NS_STYLE_JUSTIFY_SPACE_AROUND ||
mJustifyContent == NS_STYLE_JUSTIFY_SPACE_EVENLY) {
mJustifyContent = NS_STYLE_JUSTIFY_CENTER;
}
}
// Map 'left'/'right' to 'start'/'end'
if (mJustifyContent == NS_STYLE_JUSTIFY_LEFT ||
mJustifyContent == NS_STYLE_JUSTIFY_RIGHT) {
if (aAxisTracker.IsColumnOriented()) {
// Container's alignment axis is not parallel to the inline axis,
// so we map both 'left' and 'right' to 'start'.
mJustifyContent = NS_STYLE_JUSTIFY_START;
} else {
// Row-oriented, so we map 'left' and 'right' to 'start' or 'end',
// depending on left-to-right writing mode.
const bool isLTR = aAxisTracker.GetWritingMode().IsBidiLTR();
const bool isJustifyLeft = (mJustifyContent == NS_STYLE_JUSTIFY_LEFT);
mJustifyContent = (isJustifyLeft == isLTR) ? NS_STYLE_JUSTIFY_START
: NS_STYLE_JUSTIFY_END;
}
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mJustifyContent == NS_STYLE_JUSTIFY_START) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START;
} else if (mJustifyContent == NS_STYLE_JUSTIFY_END) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_END;
}
// If our main axis is (internally) reversed, swap the justify-content
// "flex-start" and "flex-end" behaviors:
if (aAxisTracker.AreAxesInternallyReversed()) {
if (mJustifyContent == NS_STYLE_JUSTIFY_FLEX_START) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_END;
} else if (mJustifyContent == NS_STYLE_JUSTIFY_FLEX_END) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START;
}
}
// Figure out how much space we'll set aside for auto margins or
// packing spaces, and advance past any leading packing-space.
if (mNumAutoMarginsInMainAxis == 0 &&
mPackingSpaceRemaining != 0 &&
!aLine->IsEmpty()) {
switch (mJustifyContent) {
case NS_STYLE_JUSTIFY_BASELINE:
case NS_STYLE_JUSTIFY_LAST_BASELINE:
NS_WARNING("NYI: justify-content:left/right/baseline/last baseline");
MOZ_FALLTHROUGH;
case NS_STYLE_JUSTIFY_FLEX_START:
// All packing space should go at the end --> nothing to do here.
break;
case NS_STYLE_JUSTIFY_FLEX_END:
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
break;
case NS_STYLE_JUSTIFY_CENTER:
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
break;
case NS_STYLE_JUSTIFY_SPACE_BETWEEN:
case NS_STYLE_JUSTIFY_SPACE_AROUND:
case NS_STYLE_JUSTIFY_SPACE_EVENLY:
nsFlexContainerFrame::CalculatePackingSpace(aLine->NumItems(),
mJustifyContent,
&mPosition,
&mNumPackingSpacesRemaining,
&mPackingSpaceRemaining);
break;
default:
MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value");
}
}
MOZ_ASSERT(mNumPackingSpacesRemaining == 0 ||
mNumAutoMarginsInMainAxis == 0,
"extra space should either go to packing space or to "
"auto margins, but not to both");
}
void
MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem)
{
if (mNumAutoMarginsInMainAxis) {
const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (uint32_t i = 0; i < eNumAxisEdges; i++) {
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][i];
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curAutoMarginSize =
mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"resolve them");
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
mNumAutoMarginsInMainAxis--;
mPackingSpaceRemaining -= curAutoMarginSize;
}
}
}
}
void
MainAxisPositionTracker::TraversePackingSpace()
{
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_SPACE_BETWEEN ||
mJustifyContent == NS_STYLE_JUSTIFY_SPACE_AROUND ||
mJustifyContent == NS_STYLE_JUSTIFY_SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
CrossAxisPositionTracker::
CrossAxisPositionTracker(FlexLine* aFirstLine,
const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize,
bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker,
const nscoord aCrossGapSize)
: PositionTracker(aAxisTracker.GetCrossAxis(),
aAxisTracker.IsCrossAxisReversed()),
mPackingSpaceRemaining(0),
mNumPackingSpacesRemaining(0),
mAlignContent(aReflowInput.mStylePosition->mAlignContent),
mCrossGapSize(aCrossGapSize)
{
MOZ_ASSERT(aFirstLine, "null first line pointer");
// 'normal' behaves as 'stretch'
if (mAlignContent == NS_STYLE_ALIGN_NORMAL) {
mAlignContent = NS_STYLE_ALIGN_STRETCH;
}
// XXX strip of the <overflow-position> bit until we implement that
mAlignContent &= ~NS_STYLE_ALIGN_FLAG_BITS;
const bool isSingleLine =
NS_STYLE_FLEX_WRAP_NOWRAP == aReflowInput.mStylePosition->mFlexWrap;
if (isSingleLine) {
MOZ_ASSERT(!aFirstLine->getNext(),
"If we're styled as single-line, we should only have 1 line");
// "If the flex container is single-line and has a definite cross size, the
// cross size of the flex line is the flex container's inner cross size."
//
// SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line
// NOTE: This means (by definition) that there's no packing space, which
// means we don't need to be concerned with "align-conent" at all and we
// can return early. This is handy, because this is the usual case (for
// single-line flexbox).
if (aIsCrossSizeDefinite) {
aFirstLine->SetLineCrossSize(aContentBoxCrossSize);
return;
}
// "If the flex container is single-line, then clamp the line's
// cross-size to be within the container's computed min and max cross-size
// properties."
aFirstLine->SetLineCrossSize(NS_CSS_MINMAX(aFirstLine->GetLineCrossSize(),
aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize()));
}
// NOTE: The rest of this function should essentially match
// MainAxisPositionTracker's constructor, though with FlexLines instead of
// FlexItems, and with the additional value "stretch" (and of course with
// cross sizes instead of main sizes.)
// Figure out how much packing space we have (container's cross size minus
// all the lines' cross sizes). Also, share this loop to count how many
// lines we have. (We need that count in some cases below.)
mPackingSpaceRemaining = aContentBoxCrossSize;
uint32_t numLines = 0;
for (FlexLine* line = aFirstLine; line; line = line->getNext()) {
mPackingSpaceRemaining -= line->GetLineCrossSize();
numLines++;
}
// Subtract space required for row/col gap from the remaining packing space
MOZ_ASSERT(numLines >= 1,
"GenerateFlexLines should've produced at least 1 line");
mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1);
// If packing space is negative, 'space-between' and 'stretch' behave like
// 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'.
// In those cases, it's simplest to just pretend we have a different
// 'align-content' value and share code.
if (mPackingSpaceRemaining < 0) {
if (mAlignContent == NS_STYLE_ALIGN_SPACE_BETWEEN ||
mAlignContent == NS_STYLE_ALIGN_STRETCH) {
mAlignContent = NS_STYLE_ALIGN_FLEX_START;
} else if (mAlignContent == NS_STYLE_ALIGN_SPACE_AROUND ||
mAlignContent == NS_STYLE_ALIGN_SPACE_EVENLY) {
mAlignContent = NS_STYLE_ALIGN_CENTER;
}
}
// Map 'left'/'right' to 'start'/'end'
if (mAlignContent == NS_STYLE_ALIGN_LEFT ||
mAlignContent == NS_STYLE_ALIGN_RIGHT) {
if (aAxisTracker.IsRowOriented()) {
// Container's alignment axis is not parallel to the inline axis,
// so we map both 'left' and 'right' to 'start'.
mAlignContent = NS_STYLE_ALIGN_START;
} else {
// Column-oriented, so we map 'left' and 'right' to 'start' or 'end',
// depending on left-to-right writing mode.
const bool isLTR = aAxisTracker.GetWritingMode().IsBidiLTR();
const bool isAlignLeft = (mAlignContent == NS_STYLE_ALIGN_LEFT);
mAlignContent = (isAlignLeft == isLTR) ? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_END;
}
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mAlignContent == NS_STYLE_ALIGN_START) {
mAlignContent = NS_STYLE_ALIGN_FLEX_START;
} else if (mAlignContent == NS_STYLE_ALIGN_END) {
mAlignContent = NS_STYLE_ALIGN_FLEX_END;
}
// If our cross axis is (internally) reversed, swap the align-content
// "flex-start" and "flex-end" behaviors:
if (aAxisTracker.AreAxesInternallyReversed()) {
if (mAlignContent == NS_STYLE_ALIGN_FLEX_START) {
mAlignContent = NS_STYLE_ALIGN_FLEX_END;
} else if (mAlignContent == NS_STYLE_ALIGN_FLEX_END) {
mAlignContent = NS_STYLE_ALIGN_FLEX_START;
}
}
// Figure out how much space we'll set aside for packing spaces, and advance
// past any leading packing-space.
if (mPackingSpaceRemaining != 0) {
switch (mAlignContent) {
case NS_STYLE_ALIGN_SELF_START:
case NS_STYLE_ALIGN_SELF_END:
case NS_STYLE_ALIGN_BASELINE:
case NS_STYLE_ALIGN_LAST_BASELINE:
NS_WARNING("NYI: align-items/align-self:left/right/self-start/self-end/baseline/last baseline");
MOZ_FALLTHROUGH;
case NS_STYLE_ALIGN_FLEX_START:
// All packing space should go at the end --> nothing to do here.
break;
case NS_STYLE_ALIGN_FLEX_END:
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
break;
case NS_STYLE_ALIGN_CENTER:
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
break;
case NS_STYLE_ALIGN_SPACE_BETWEEN:
case NS_STYLE_ALIGN_SPACE_AROUND:
case NS_STYLE_ALIGN_SPACE_EVENLY:
nsFlexContainerFrame::CalculatePackingSpace(numLines,
mAlignContent,
&mPosition,
&mNumPackingSpacesRemaining,
&mPackingSpaceRemaining);
break;
case NS_STYLE_ALIGN_STRETCH: {
// Split space equally between the lines:
MOZ_ASSERT(mPackingSpaceRemaining > 0,
"negative packing space should make us use 'flex-start' "
"instead of 'stretch' (and we shouldn't bother with this "
"code if we have 0 packing space)");
uint32_t numLinesLeft = numLines;
for (FlexLine* line = aFirstLine; line; line = line->getNext()) {
// Our share is the amount of space remaining, divided by the number
// of lines remainig.
MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines");
nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft;
nscoord newSize = line->GetLineCrossSize() + shareOfExtraSpace;
line->SetLineCrossSize(newSize);
mPackingSpaceRemaining -= shareOfExtraSpace;
numLinesLeft--;
}
MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines");
break;
}
default:
MOZ_ASSERT_UNREACHABLE("Unexpected align-content value");
}
}
}
void
CrossAxisPositionTracker::TraversePackingSpace()
{
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mAlignContent == NS_STYLE_ALIGN_SPACE_BETWEEN ||
mAlignContent == NS_STYLE_ALIGN_SPACE_AROUND ||
mAlignContent == NS_STYLE_ALIGN_SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
SingleLineCrossAxisPositionTracker::
SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker)
: PositionTracker(aAxisTracker.GetCrossAxis(),
aAxisTracker.IsCrossAxisReversed())
{
}
void
FlexLine::ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker)
{
nscoord crossStartToFurthestFirstBaseline = nscoord_MIN;
nscoord crossEndToFurthestFirstBaseline = nscoord_MIN;
nscoord crossStartToFurthestLastBaseline = nscoord_MIN;
nscoord crossEndToFurthestLastBaseline = nscoord_MIN;
nscoord largestOuterCrossSize = 0;
for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
nscoord curOuterCrossSize =
item->GetOuterCrossSize(aAxisTracker.GetCrossAxis());
if ((item->GetAlignSelf() == NS_STYLE_ALIGN_BASELINE ||
item->GetAlignSelf() == NS_STYLE_ALIGN_LAST_BASELINE) &&
item->GetNumAutoMarginsInAxis(aAxisTracker.GetCrossAxis()) == 0) {
const bool useFirst = (item->GetAlignSelf() == NS_STYLE_ALIGN_BASELINE);
// FIXME: Once we support "writing-mode", we'll have to do baseline
// alignment in vertical flex containers here (w/ horizontal cross-axes).
// Find distance from our item's cross-start and cross-end margin-box
// edges to its baseline.
//
// Here's a diagram of a flex-item that we might be doing this on.
// "mmm" is the margin-box, "bbb" is the border-box. The bottom of
// the text "BASE" is the baseline.
//
// ---(cross-start)---
// ___ ___ ___
// mmmmmmmmmmmm | |margin-start |
// m m | _|_ ___ |
// m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline
// m b b m | |ascent |
// m b BASE b m | _|_ _|_
// m b b m | |
// m bbbbbbbb m | |crossEndToBaseline
// m m | |
// mmmmmmmmmmmm _|_ _|_
//
// ---(cross-end)---
//
// We already have the curOuterCrossSize, margin-start, and the ascent.
// * We can get crossStartToBaseline by adding margin-start + ascent.
// * If we subtract that from the curOuterCrossSize, we get
// crossEndToBaseline.
nscoord crossStartToBaseline =
item->GetBaselineOffsetFromOuterCrossEdge(eAxisEdge_Start,
aAxisTracker,
useFirst);
nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;
// Now, update our "largest" values for these (across all the flex items
// in this flex line), so we can use them in computing the line's cross
// size below:
if (useFirst) {
crossStartToFurthestFirstBaseline =
std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline);
crossEndToFurthestFirstBaseline =
std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline);
} else {
crossStartToFurthestLastBaseline =
std::max(crossStartToFurthestLastBaseline, crossStartToBaseline);
crossEndToFurthestLastBaseline =
std::max(crossEndToFurthestLastBaseline, crossEndToBaseline);
}
} else {
largestOuterCrossSize = std::max(largestOuterCrossSize, curOuterCrossSize);
}
}
// The line's baseline offset is the distance from the line's edge (start or
// end, depending on whether we've flipped the axes) to the furthest
// item-baseline. The item(s) with that baseline will be exactly aligned with
// the line's edge.
mFirstBaselineOffset = aAxisTracker.AreAxesInternallyReversed() ?
crossEndToFurthestFirstBaseline : crossStartToFurthestFirstBaseline;
mLastBaselineOffset = aAxisTracker.AreAxesInternallyReversed() ?
crossStartToFurthestLastBaseline : crossEndToFurthestLastBaseline;
// The line's cross-size is the larger of:
// (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all baseline-aligned items with no cross-axis auto margins...
// and
// (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all last baseline-aligned items with no cross-axis auto margins...
// and
// (c) largest cross-size of all other children.
mLineCrossSize = std::max(
std::max(crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline,
crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline),
largestOuterCrossSize);
}
void
FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize,
const FlexboxAxisTracker& aAxisTracker)
{
AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis();
// We stretch IFF we are align-self:stretch, have no auto margins in
// cross axis, and have cross-axis size property == "auto". If any of those
// conditions don't hold up, we won't stretch.
if (mAlignSelf != NS_STYLE_ALIGN_STRETCH ||
GetNumAutoMarginsInAxis(crossAxis) != 0 ||
eStyleUnit_Auto != aAxisTracker.ComputedCrossSize(mFrame).GetUnit()) {
return;
}
// If we've already been stretched, we can bail out early, too.
// No need to redo the calculation.
if (mIsStretched) {
return;
}
// Reserve space for margins & border & padding, and then use whatever
// remains as our item's cross-size (clamped to its min/max range).
nscoord stretchedSize = aLineCrossSize -
GetMarginBorderPaddingSizeInAxis(crossAxis);
stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize);
// Update the cross-size & make a note that it's stretched, so we know to
// override the reflow state's computed cross-size in our final reflow.
SetCrossSize(stretchedSize);
mIsStretched = true;
}
void
SingleLineCrossAxisPositionTracker::
ResolveAutoMarginsInCrossAxis(const FlexLine& aLine,
FlexItem& aItem)
{
// Subtract the space that our item is already occupying, to see how much
// space (if any) is available for its auto margins.
nscoord spaceForAutoMargins = aLine.GetLineCrossSize() -
aItem.GetOuterCrossSize(mAxis);
if (spaceForAutoMargins <= 0) {
return; // No available space --> nothing to do
}
uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis);
if (numAutoMargins == 0) {
return; // No auto margins --> nothing to do.
}
// OK, we have at least one auto margin and we have some available space.
// Give each auto margin a share of the space.
const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (uint32_t i = 0; i < eNumAxisEdges; i++) {
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][i];
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"update them");
// NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
// If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
numAutoMargins--;
spaceForAutoMargins -= curAutoMarginSize;
}
}
}
void
SingleLineCrossAxisPositionTracker::
EnterAlignPackingSpace(const FlexLine& aLine,
const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker)
{
// We don't do align-self alignment on items that have auto margins
// in the cross axis.
if (aItem.GetNumAutoMarginsInAxis(mAxis)) {
return;
}
uint8_t alignSelf = aItem.GetAlignSelf();
// NOTE: 'stretch' behaves like 'flex-start' once we've stretched any
// auto-sized items (which we've already done).
if (alignSelf == NS_STYLE_ALIGN_STRETCH) {
alignSelf = NS_STYLE_ALIGN_FLEX_START;
}
// Map 'left'/'right' to 'start'/'end'
if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) {
if (aAxisTracker.IsRowOriented()) {
// Container's alignment axis is not parallel to the inline axis,
// so we map both 'left' and 'right' to 'start'.
alignSelf = NS_STYLE_ALIGN_START;
} else {
// Column-oriented, so we map 'left' and 'right' to 'start' or 'end',
// depending on left-to-right writing mode.
const bool isLTR = aAxisTracker.GetWritingMode().IsBidiLTR();
const bool isAlignLeft = (alignSelf == NS_STYLE_ALIGN_LEFT);
alignSelf = (isAlignLeft == isLTR) ? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_END;
}
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (alignSelf == NS_STYLE_ALIGN_START) {
alignSelf = NS_STYLE_ALIGN_FLEX_START;
} else if (alignSelf == NS_STYLE_ALIGN_END) {
alignSelf = NS_STYLE_ALIGN_FLEX_END;
}
// If our cross axis is (internally) reversed, swap the align-self
// "flex-start" and "flex-end" behaviors:
if (aAxisTracker.AreAxesInternallyReversed()) {
if (alignSelf == NS_STYLE_ALIGN_FLEX_START) {
alignSelf = NS_STYLE_ALIGN_FLEX_END;
} else if (alignSelf == NS_STYLE_ALIGN_FLEX_END) {
alignSelf = NS_STYLE_ALIGN_FLEX_START;
}
}
switch (alignSelf) {
case NS_STYLE_ALIGN_SELF_START:
case NS_STYLE_ALIGN_SELF_END:
NS_WARNING("NYI: align-items/align-self:left/right/self-start/self-end");
MOZ_FALLTHROUGH;
case NS_STYLE_ALIGN_FLEX_START:
// No space to skip over -- we're done.
break;
case NS_STYLE_ALIGN_FLEX_END:
mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis);
break;
case NS_STYLE_ALIGN_CENTER:
// Note: If cross-size is odd, the "after" space will get the extra unit.
mPosition +=
(aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis)) / 2;
break;
case NS_STYLE_ALIGN_BASELINE:
case NS_STYLE_ALIGN_LAST_BASELINE: {
const bool useFirst = (alignSelf == NS_STYLE_ALIGN_BASELINE);
// Normally, baseline-aligned items are collectively aligned with the
// line's cross-start edge; however, if our cross axis is (internally)
// reversed, we instead align them with the cross-end edge.
// A similar logic holds for last baseline-aligned items, but in reverse.
AxisEdgeType baselineAlignEdge =
aAxisTracker.AreAxesInternallyReversed() == useFirst ?
eAxisEdge_End : eAxisEdge_Start;
nscoord itemBaselineOffset =
aItem.GetBaselineOffsetFromOuterCrossEdge(baselineAlignEdge,
aAxisTracker,
useFirst);
nscoord lineBaselineOffset = useFirst ? aLine.GetFirstBaselineOffset()
: aLine.GetLastBaselineOffset();
NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset,
"failed at finding largest baseline offset");
// How much do we need to adjust our position (from the line edge),
// to get the item's baseline to hit the line's baseline offset:
nscoord baselineDiff = lineBaselineOffset - itemBaselineOffset;
if (aAxisTracker.AreAxesInternallyReversed() == useFirst) {
// Advance to align item w/ line's flex-end edge (as in FLEX_END case):
mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis);
// ...and step *back* by the baseline adjustment:
mPosition -= baselineDiff;
} else {
// mPosition is already at line's flex-start edge.
// From there, we step *forward* by the baseline adjustment:
mPosition += baselineDiff;
}
break;
}
default:
MOZ_ASSERT_UNREACHABLE("Unexpected align-self value");
break;
}
}
// Utility function to convert an InlineDir to an AxisOrientationType
static inline AxisOrientationType
InlineDirToAxisOrientation(WritingMode::InlineDir aInlineDir)
{
switch (aInlineDir) {
case WritingMode::eInlineLTR:
return eAxis_LR;
case WritingMode::eInlineRTL:
return eAxis_RL;
case WritingMode::eInlineTTB:
return eAxis_TB;
case WritingMode::eInlineBTT:
return eAxis_BT;
}
MOZ_ASSERT_UNREACHABLE("Unhandled InlineDir");
return eAxis_LR; // in case of unforseen error, assume English LTR text flow.
}
// Utility function to convert a BlockDir to an AxisOrientationType
static inline AxisOrientationType
BlockDirToAxisOrientation(WritingMode::BlockDir aBlockDir)
{
switch (aBlockDir) {
case WritingMode::eBlockLR:
return eAxis_LR;
case WritingMode::eBlockRL:
return eAxis_RL;
case WritingMode::eBlockTB:
return eAxis_TB;
// NOTE: WritingMode::eBlockBT (bottom-to-top) does not exist.
}
MOZ_ASSERT_UNREACHABLE("Unhandled BlockDir");
return eAxis_TB; // in case of unforseen error, assume English TTB block-flow
}
FlexboxAxisTracker::FlexboxAxisTracker(
const nsFlexContainerFrame* aFlexContainer,
const WritingMode& aWM,
AxisTrackerFlags aFlags)
: mWM(aWM),
mAreAxesInternallyReversed(false)
{
if (IsLegacyBox(aFlexContainer)) {
InitAxesFromLegacyProps(aFlexContainer);
} else {
InitAxesFromModernProps(aFlexContainer);
}
// Master switch to enable/disable bug 983427's code for reversing our axes
// and reversing some logic, to avoid reflowing children in bottom-to-top
// order. (This switch can be removed eventually, but for now, it allows
// this special-case code path to be compared against the normal code path.)
static bool sPreventBottomToTopChildOrdering = true;
// Note: if the eAllowBottomToTopChildOrdering flag is set, that overrides
// the static boolean and makes us skip this special case.
if (!(aFlags & AxisTrackerFlags::eAllowBottomToTopChildOrdering) &&
sPreventBottomToTopChildOrdering) {
// If either axis is bottom-to-top, we flip both axes (and set a flag
// so that we can flip some logic to make the reversal transparent).
if (eAxis_BT == mMainAxis || eAxis_BT == mCrossAxis) {
mMainAxis = GetReverseAxis(mMainAxis);
mCrossAxis = GetReverseAxis(mCrossAxis);
mAreAxesInternallyReversed = true;
mIsMainAxisReversed = !mIsMainAxisReversed;
mIsCrossAxisReversed = !mIsCrossAxisReversed;
}
}
}
void
FlexboxAxisTracker::InitAxesFromLegacyProps(
const nsFlexContainerFrame* aFlexContainer)
{
const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL();
const bool boxOrientIsVertical = (styleXUL->mBoxOrient ==
StyleBoxOrient::Vertical);
const bool wmIsVertical = mWM.IsVertical();
// If box-orient agrees with our writing-mode, then we're "row-oriented"
// (i.e. the flexbox main axis is the same as our writing mode's inline
// direction). Otherwise, we're column-oriented (i.e. the flexbox's main
// axis is perpendicular to the writing-mode's inline direction).
mIsRowOriented = (boxOrientIsVertical == wmIsVertical);
// XXXdholbert BEGIN CODE TO SET DEPRECATED MEMBER-VARS
if (boxOrientIsVertical) {
mMainAxis = eAxis_TB;
mCrossAxis = eAxis_LR;
} else {
mMainAxis = eAxis_LR;
mCrossAxis = eAxis_TB;
}
// "direction: rtl" reverses the writing-mode's inline axis.
// So, we need to reverse the corresponding flex axis to match.
// (Note this we don't toggle "mIsMainAxisReversed" for this condition,
// because the main axis will still match mWM's inline direction.)
if (!mWM.IsBidiLTR()) {
AxisOrientationType& axisToFlip = mIsRowOriented ? mMainAxis : mCrossAxis;
axisToFlip = GetReverseAxis(axisToFlip);
}
// XXXdholbert END CODE TO SET DEPRECATED MEMBER-VARS
// Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the
// main axis (so it runs in the reverse direction of the inline axis):
if (styleXUL->mBoxDirection == StyleBoxDirection::Reverse) {
mMainAxis = GetReverseAxis(mMainAxis);
mIsMainAxisReversed = true;
} else {
mIsMainAxisReversed = false;
}
// Legacy flexbox does not support reversing the cross axis -- it has no
// equivalent of modern flexbox's "flex-wrap: wrap-reverse".
mIsCrossAxisReversed = false;
}
void
FlexboxAxisTracker::InitAxesFromModernProps(
const nsFlexContainerFrame* aFlexContainer)
{
const nsStylePosition* stylePos = aFlexContainer->StylePosition();
uint32_t flexDirection = stylePos->mFlexDirection;
// Inline dimension ("start-to-end"):
// (NOTE: I'm intentionally not calling these "inlineAxis"/"blockAxis", since
// those terms have explicit definition in the writing-modes spec, which are
// the opposite of how I'd be using them here.)
AxisOrientationType inlineDimension =
InlineDirToAxisOrientation(mWM.GetInlineDir());
AxisOrientationType blockDimension =
BlockDirToAxisOrientation(mWM.GetBlockDir());
// Determine main axis:
switch (flexDirection) {
case NS_STYLE_FLEX_DIRECTION_ROW:
mMainAxis = inlineDimension;
mIsRowOriented = true;
mIsMainAxisReversed = false;
break;
case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE:
mMainAxis = GetReverseAxis(inlineDimension);
mIsRowOriented = true;
mIsMainAxisReversed = true;
break;
case NS_STYLE_FLEX_DIRECTION_COLUMN:
mMainAxis = blockDimension;
mIsRowOriented = false;
mIsMainAxisReversed = false;
break;
case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE:
mMainAxis = GetReverseAxis(blockDimension);
mIsRowOriented = false;
mIsMainAxisReversed = true;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unexpected flex-direction value");
}
// Determine cross axis:
// (This is set up so that a bogus |flexDirection| value will
// give us blockDimension.
if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN ||
flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) {
mCrossAxis = inlineDimension;
} else {
mCrossAxis = blockDimension;
}
// "flex-wrap: wrap-reverse" reverses our cross axis.
if (stylePos->mFlexWrap == NS_STYLE_FLEX_WRAP_WRAP_REVERSE) {
mCrossAxis = GetReverseAxis(mCrossAxis);
mIsCrossAxisReversed = true;
} else {
mIsCrossAxisReversed = false;
}
}
// Allocates a new FlexLine, adds it to the given LinkedList (at the front or
// back depending on aShouldInsertAtFront), and returns a pointer to it.
static FlexLine*
AddNewFlexLineToList(LinkedList<FlexLine>& aLines,
bool aShouldInsertAtFront,
nscoord aMainGapSize)
{
FlexLine* newLine = new FlexLine(aMainGapSize);
if (aShouldInsertAtFront) {
aLines.insertFront(newLine);
} else {
aLines.insertBack(newLine);
}
return newLine;
}
void
nsFlexContainerFrame::GenerateFlexLines(
nsPresContext* aPresContext,
const ReflowInput& aReflowInput,
nscoord aContentBoxMainSize,
nscoord aAvailableBSizeForContent,
const nsTArray<StrutInfo>& aStruts,
const FlexboxAxisTracker& aAxisTracker,
nscoord aMainGapSize,
nsTArray<nsIFrame*>& aPlaceholders, /* out */
LinkedList<FlexLine>& aLines /* out */)
{
MOZ_ASSERT(aLines.isEmpty(), "Expecting outparam to start out empty");
const bool isSingleLine =
NS_STYLE_FLEX_WRAP_NOWRAP == aReflowInput.mStylePosition->mFlexWrap;
// If we're transparently reversing axes, then we'll need to link up our
// FlexItems and FlexLines in the reverse order, so that the rest of flex
// layout (with flipped axes) will still produce the correct result.
// Here, we declare a convenience bool that we'll pass when adding a new
// FlexLine or FlexItem, to make us insert it at the beginning of its list
// (so the list ends up reversed).
const bool shouldInsertAtFront = aAxisTracker.AreAxesInternallyReversed();
// We have at least one FlexLine. Even an empty flex container has a single
// (empty) flex line.
FlexLine* curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront,
aMainGapSize);
nscoord wrapThreshold;
if (isSingleLine) {
// Not wrapping. Set threshold to sentinel value that tells us not to wrap.
wrapThreshold = NS_UNCONSTRAINEDSIZE;
} else {
// Wrapping! Set wrap threshold to flex container's content-box main-size.
wrapThreshold = aContentBoxMainSize;
// If the flex container doesn't have a definite content-box main-size
// (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at
// least wrap when we hit its max main-size.
if (wrapThreshold == NS_UNCONSTRAINEDSIZE) {
const nscoord flexContainerMaxMainSize =
GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, aAxisTracker.GetWritingMode(),
aReflowInput.ComputedMaxISize(),
aReflowInput.ComputedMaxBSize());
wrapThreshold = flexContainerMaxMainSize;
}
// Also: if we're column-oriented and paginating in the block dimension,
// we may need to wrap to a new flex line sooner (before we grow past the
// available BSize, potentially running off the end of the page).
if (aAxisTracker.IsColumnOriented() &&
aAvailableBSizeForContent != NS_UNCONSTRAINEDSIZE) {
wrapThreshold = std::min(wrapThreshold, aAvailableBSizeForContent);
}
}
// Tracks the index of the next strut, in aStruts (and when this hits
// aStruts.Length(), that means there are no more struts):
uint32_t nextStrutIdx = 0;
// Overall index of the current flex item in the flex container. (This gets
// checked against entries in aStruts.)
uint32_t itemIdxInContainer = 0;
for (nsIFrame* childFrame : mFrames) {
// Don't create flex items / lines for placeholder frames:
if (childFrame->GetType() == nsGkAtoms::placeholderFrame) {
aPlaceholders.AppendElement(childFrame);
continue;
}
// Honor "page-break-before", if we're multi-line and this line isn't empty:
if (!isSingleLine && !curLine->IsEmpty() &&
childFrame->StyleDisplay()->mBreakBefore) {
curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront,
aMainGapSize);
}
UniquePtr<FlexItem> item;
if (nextStrutIdx < aStruts.Length() &&
aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) {
// Use the simplified "strut" FlexItem constructor:
item = MakeUnique<FlexItem>(childFrame, aStruts[nextStrutIdx].mStrutCrossSize,
aReflowInput.GetWritingMode());
nextStrutIdx++;
} else {
item = GenerateFlexItemForChild(aPresContext, childFrame,
aReflowInput, aAxisTracker);
}
nscoord itemInnerHypotheticalMainSize = item->GetMainSize();
nscoord itemOuterHypotheticalMainSize =
item->GetOuterMainSize(aAxisTracker.GetMainAxis());
// Check if we need to wrap |item| to a new line
// (i.e. check if its outer hypothetical main size pushes our line over
// the threshold)
// Don't wrap if unconstrained and if this will be line's first item.
if (wrapThreshold != NS_UNCONSTRAINEDSIZE && !curLine->IsEmpty()) {
nscoord newOuterSize = curLine->GetTotalOuterHypotheticalMainSize() +
itemOuterHypotheticalMainSize;
// Account for gap between this line's previous item and this item
newOuterSize += aMainGapSize;
if (newOuterSize == nscoord_MAX || newOuterSize > wrapThreshold) {
curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront,
aMainGapSize);
}
}
// Add item to current flex line (and update the line's bookkeeping about
// how large its items collectively are).
curLine->AddItem(item.release(), shouldInsertAtFront,
itemInnerHypotheticalMainSize,
itemOuterHypotheticalMainSize);
// Honor "page-break-after", if we're multi-line and have more children:
if (!isSingleLine && childFrame->GetNextSibling() &&
childFrame->StyleDisplay()->mBreakAfter) {
curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront,
aMainGapSize);
}
itemIdxInContainer++;
}
}
// Retrieves the content-box main-size of our flex container from the
// reflow state (specifically, the main-size of *this continuation* of the
// flex container).
nscoord
nsFlexContainerFrame::GetMainSizeFromReflowInput(
const ReflowInput& aReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
if (aAxisTracker.IsRowOriented()) {
// Row-oriented --> our main axis is the inline axis, so our main size
// is our inline size (which should already be resolved).
NS_WARNING_ASSERTION(
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result from huge sizes "
"(not intrinsic sizing w/ orthogonal flows)");
return aReflowInput.ComputedISize();
}
// Note: This may be unconstrained, if our block size is "auto":
return GetEffectiveComputedBSize(aReflowInput);
}
// Returns the largest outer hypothetical main-size of any line in |aLines|.
// (i.e. the hypothetical main-size of the largest line)
static nscoord
GetLargestLineMainSize(const FlexLine* aFirstLine)
{
nscoord largestLineOuterSize = 0;
for (const FlexLine* line = aFirstLine; line; line = line->getNext()) {
largestLineOuterSize = std::max(largestLineOuterSize,
line->GetTotalOuterHypotheticalMainSize());
}
return largestLineOuterSize;
}
/* Resolves the content-box main-size of a flex container frame,
* primarily based on:
* - the "tentative" main size, taken from the reflow state ("tentative"
* because it may be unconstrained or may run off the page).
* - the available BSize (needed if the main axis is the block axis).
* - the sizes of our lines of flex items.
*
* Guaranteed to return a definite length, i.e. not NS_UNCONSTRAINEDSIZE,
* aside from cases with huge lengths which happen to compute to that value.
*
* (Note: This function should be structurally similar to 'ComputeCrossSize()',
* except that here, the caller has already grabbed the tentative size from the
* reflow state.)
*/
static nscoord
ResolveFlexContainerMainSize(const ReflowInput& aReflowInput,
const FlexboxAxisTracker& aAxisTracker,
nscoord aTentativeMainSize,
nscoord aAvailableBSizeForContent,
const FlexLine* aFirstLine,
nsReflowStatus& aStatus)
{
MOZ_ASSERT(aFirstLine, "null first line pointer");
if (aAxisTracker.IsRowOriented()) {
// Row-oriented --> our main axis is the inline axis, so our main size
// is our inline size (which should already be resolved).
return aTentativeMainSize;
}
if (aTentativeMainSize != NS_INTRINSICSIZE) {
// Column-oriented case, with fixed BSize:
if (aAvailableBSizeForContent == NS_UNCONSTRAINEDSIZE ||
aTentativeMainSize < aAvailableBSizeForContent) {
// Not in a fragmenting context, OR no need to fragment because we have
// more available BSize than we need. Either way, we don't need to clamp.
// (Note that the reflow state has already done the appropriate
// min/max-BSize clamping.)
return aTentativeMainSize;
}
// Fragmenting *and* our fixed BSize is larger than available BSize:
// Mark incomplete so we get a next-in-flow, and take up all of the
// available BSize (or the amount of BSize required by our children, if
// that's larger; but of course not more than our own computed BSize).
// XXXdholbert For now, we don't support pushing children to our next
// continuation or splitting children, so "amount of BSize required by
// our children" is just the main-size (BSize) of our longest flex line.
NS_FRAME_SET_INCOMPLETE(aStatus);
nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine);
if (largestLineOuterSize <= aAvailableBSizeForContent) {
return aAvailableBSizeForContent;
}
return std::min(aTentativeMainSize, largestLineOuterSize);
}
// Column-oriented case, with auto BSize:
// Resolve auto BSize to the largest FlexLine length, clamped to our
// computed min/max main-size properties.
// XXXdholbert Handle constrained-aAvailableBSizeForContent case here.
nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine);
return NS_CSS_MINMAX(largestLineOuterSize,
aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize());
}
nscoord
nsFlexContainerFrame::ComputeCrossSize(const ReflowInput& aReflowInput,
const FlexboxAxisTracker& aAxisTracker,
nscoord aSumLineCrossSizes,
nscoord aAvailableBSizeForContent,
bool* aIsDefinite,
nsReflowStatus& aStatus)
{
MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null");
if (aAxisTracker.IsColumnOriented()) {
// Column-oriented --> our cross axis is the inline axis, so our cross size
// is our inline size (which should already be resolved).
NS_WARNING_ASSERTION(
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result from huge sizes "
"(not intrinsic sizing w/ orthogonal flows)");
*aIsDefinite = true;
return aReflowInput.ComputedISize();
}
nscoord effectiveComputedBSize = GetEffectiveComputedBSize(aReflowInput);
if (effectiveComputedBSize != NS_INTRINSICSIZE) {
// Row-oriented case (cross axis is block-axis), with fixed BSize:
*aIsDefinite = true;
if (aAvailableBSizeForContent == NS_UNCONSTRAINEDSIZE ||
effectiveComputedBSize < aAvailableBSizeForContent) {
// Not in a fragmenting context, OR no need to fragment because we have
// more available BSize than we need. Either way, just use our fixed
// BSize. (Note that the reflow state has already done the appropriate
// min/max-BSize clamping.)
return effectiveComputedBSize;
}
// Fragmenting *and* our fixed BSize is too tall for available BSize:
// Mark incomplete so we get a next-in-flow, and take up all of the
// available BSize (or the amount of BSize required by our children, if
// that's larger; but of course not more than our own computed BSize).
// XXXdholbert For now, we don't support pushing children to our next
// continuation or splitting children, so "amount of BSize required by
// our children" is just the sum of our FlexLines' BSizes (cross sizes).
NS_FRAME_SET_INCOMPLETE(aStatus);
if (aSumLineCrossSizes <= aAvailableBSizeForContent) {
return aAvailableBSizeForContent;
}
return std::min(effectiveComputedBSize, aSumLineCrossSizes);
}
// Row-oriented case (cross axis is block axis), with auto BSize:
// Shrink-wrap our line(s), subject to our min-size / max-size
// constraints in that (block) axis.
// XXXdholbert Handle constrained-aAvailableBSizeForContent case here.
*aIsDefinite = false;
return NS_CSS_MINMAX(aSumLineCrossSizes,
aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize());
}
void
FlexLine::PositionItemsInMainAxis(uint8_t aJustifyContent,
nscoord aContentBoxMainSize,
const FlexboxAxisTracker& aAxisTracker)
{
MainAxisPositionTracker mainAxisPosnTracker(aAxisTracker, this,
aJustifyContent,
aContentBoxMainSize);
for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
nscoord itemMainBorderBoxSize =
item->GetMainSize() +
item->GetBorderPaddingSizeInAxis(mainAxisPosnTracker.GetAxis());
// Resolve any main-axis 'auto' margins on aChild to an actual value.
mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(*item);
// Advance our position tracker to child's upper-left content-box corner,
// and use that as its position in the main axis.
mainAxisPosnTracker.EnterMargin(item->GetMargin());
mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);
item->SetMainPosition(mainAxisPosnTracker.GetPosition());
mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
mainAxisPosnTracker.ExitMargin(item->GetMargin());
mainAxisPosnTracker.TraversePackingSpace();
if (item->getNext()) {
mainAxisPosnTracker.TraverseGap(mMainGapSize);
}
}
}
/**
* Given the flex container's "flex-relative ascent" (i.e. distance from the
* flex container's content-box cross-start edge to its baseline), returns
* its actual physical ascent value (the distance from the *border-box* top
* edge to its baseline).
*/
static nscoord
ComputePhysicalAscentFromFlexRelativeAscent(
nscoord aFlexRelativeAscent,
nscoord aContentBoxCrossSize,
const ReflowInput& aReflowInput,
const FlexboxAxisTracker& aAxisTracker)
{
return aReflowInput.ComputedPhysicalBorderPadding().top +
PhysicalCoordFromFlexRelativeCoord(aFlexRelativeAscent,
aContentBoxCrossSize,
aAxisTracker.GetCrossAxis());
}
void
nsFlexContainerFrame::SizeItemInCrossAxis(
nsPresContext* aPresContext,
const FlexboxAxisTracker& aAxisTracker,
ReflowInput& aChildReflowInput,
FlexItem& aItem)
{
// If cross axis is the item's inline axis, just use ISize from reflow state,
// and don't bother with a full reflow.
if (aItem.IsInlineAxisCrossAxis()) {
aItem.SetCrossSize(aChildReflowInput.ComputedISize());
return;
}
MOZ_ASSERT(!aItem.HadMeasuringReflow(),
"We shouldn't need more than one measuring reflow");
if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_STRETCH) {
// This item's got "align-self: stretch", so we probably imposed a
// stretched computed cross-size on it during its previous
// reflow. We're not imposing that BSize for *this* "measuring" reflow, so
// we need to tell it to treat this reflow as a resize in its block axis
// (regardless of whether any of its ancestors are actually being resized).
// (Note: we know that the cross axis is the item's *block* axis -- if it
// weren't, then we would've taken the early-return above.)
aChildReflowInput.SetBResize(true);
}
// Potentially reflow the item, and get the sizing info.
const CachedMeasuringReflowResult& reflowResult =
MeasureAscentAndBSizeForFlexItem(aItem, aPresContext, aChildReflowInput);
// Save the sizing info that we learned from this reflow
// -----------------------------------------------------
// Tentatively store the child's desired content-box cross-size.
// Note that childDesiredSize is the border-box size, so we have to
// subtract border & padding to get the content-box size.
// (Note that at this point in the code, we know our cross axis is vertical,
// so we don't bother with making aAxisTracker pick the cross-axis component
// for us.)
nscoord crossAxisBorderPadding = aItem.GetBorderPadding().TopBottom();
if (reflowResult.BSize() < crossAxisBorderPadding) {
// Child's requested size isn't large enough for its border/padding!
// This is OK for the trivial nsFrame::Reflow() impl, but other frame
// classes should know better. So, if we get here, the child had better be
// an instance of nsFrame (i.e. it should return null from GetType()).
// XXXdholbert Once we've fixed bug 765861, we should upgrade this to an
// assertion that trivially passes if bug 765861's flag has been flipped.
NS_WARNING_ASSERTION(
!aItem.Frame()->GetType(),
"Child should at least request space for border/padding");
aItem.SetCrossSize(0);
} else {
// (normal case)
aItem.SetCrossSize(reflowResult.BSize() - crossAxisBorderPadding);
}
aItem.SetAscent(reflowResult.Ascent());
}
void
FlexLine::PositionItemsInCrossAxis(nscoord aLineStartPosition,
const FlexboxAxisTracker& aAxisTracker)
{
SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker);
for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
// First, stretch the item's cross size (if appropriate), and resolve any
// auto margins in this axis.
item->ResolveStretchedCrossSize(mLineCrossSize, aAxisTracker);
lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, *item);
// Compute the cross-axis position of this item
nscoord itemCrossBorderBoxSize =
item->GetCrossSize() +
item->GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis());
lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, *item, aAxisTracker);
lineCrossAxisPosnTracker.EnterMargin(item->GetMargin());
lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);
item->SetCrossPosition(aLineStartPosition +
lineCrossAxisPosnTracker.GetPosition());
// Back out to cross-axis edge of the line.
lineCrossAxisPosnTracker.ResetPosition();
}
}
void
nsFlexContainerFrame::Reflow(nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus)
{
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
("Reflow() for nsFlexContainerFrame %p\n", this));
if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
return;
}
// We (and our children) can only depend on our ancestor's bsize if we have
// a percent-bsize, or if we're positioned and we have "block-start" and "block-end"
// set and have block-size:auto. (There are actually other cases, too -- e.g. if
// our parent is itself a block-dir flex container and we're flexible -- but
// we'll let our ancestors handle those sorts of cases.)
WritingMode wm = aReflowInput.GetWritingMode();
const nsStylePosition* stylePos = StylePosition();
const nsStyleCoord& bsize = stylePos->BSize(wm);
if (bsize.HasPercent() ||
(StyleDisplay()->IsAbsolutelyPositionedStyle() &&
eStyleUnit_Auto == bsize.GetUnit() &&
eStyleUnit_Auto != stylePos->mOffset.GetBStartUnit(wm) &&
eStyleUnit_Auto != stylePos->mOffset.GetBEndUnit(wm))) {
AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
// If we've never reordered our children, then we can trust that they're
// already in DOM-order, and we only need to consider their "order" property
// when checking them for sortedness & sorting them.
//
// After we actually sort them, though, we can't trust that they're in DOM
// order anymore. So, from that point on, our sort & sorted-order-checking
// operations need to use a fancier LEQ function that also takes DOM order
// into account, so that we can honor the spec's requirement that frames w/
// equal "order" values are laid out in DOM order.
if (!HasAnyStateBits(NS_STATE_FLEX_CHILDREN_REORDERED)) {
if (SortChildrenIfNeeded<IsOrderLEQ>()) {
AddStateBits(NS_STATE_FLEX_CHILDREN_REORDERED);
}
} else {
SortChildrenIfNeeded<IsOrderLEQWithDOMFallback>();
}
RenumberList();
const FlexboxAxisTracker axisTracker(this, aReflowInput.GetWritingMode());
// If we're being fragmented into a constrained BSize, then subtract off
// borderpadding BStart from that constrained BSize, to get the available
// BSize for our content box. (No need to subtract the borderpadding BStart
// if we're already skipping it via GetLogicalSkipSides, though.)
nscoord availableBSizeForContent = aReflowInput.AvailableBSize();
if (availableBSizeForContent != NS_UNCONSTRAINEDSIZE &&
!(GetLogicalSkipSides(&aReflowInput).BStart())) {
availableBSizeForContent -=
aReflowInput.ComputedLogicalBorderPadding().BStart(wm);
// (Don't let that push availableBSizeForContent below zero, though):
availableBSizeForContent = std::max(availableBSizeForContent, 0);
}
nscoord contentBoxMainSize = GetMainSizeFromReflowInput(aReflowInput,
axisTracker);
// Calculate gap size for main and cross axis
nscoord mainGapSize;
nscoord crossGapSize;
if (axisTracker.IsRowOriented()) {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
contentBoxMainSize);
crossGapSize =
nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
GetEffectiveComputedBSize(aReflowInput));
} else {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
contentBoxMainSize);
NS_WARNING_ASSERTION(aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result "
"from huge sizes (not intrinsic sizing w/ orthogonal "
"flows)");
crossGapSize =
nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
aReflowInput.ComputedISize());
}
AutoTArray<StrutInfo, 1> struts;
DoFlexLayout(aPresContext, aDesiredSize, aReflowInput, aStatus,
contentBoxMainSize, availableBSizeForContent,
struts, axisTracker, mainGapSize, crossGapSize);
if (!struts.IsEmpty()) {
// We're restarting flex layout, with new knowledge of collapsed items.
DoFlexLayout(aPresContext, aDesiredSize, aReflowInput, aStatus,
contentBoxMainSize, availableBSizeForContent,
struts, axisTracker, mainGapSize, crossGapSize);
}
}
// RAII class to clean up a list of FlexLines.
// Specifically, this removes each line from the list, deletes all the
// FlexItems in its list, and deletes the FlexLine.
class MOZ_RAII AutoFlexLineListClearer
{
public:
explicit AutoFlexLineListClearer(LinkedList<FlexLine>& aLines
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: mLines(aLines)
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
}
~AutoFlexLineListClearer()
{
while (FlexLine* line = mLines.popFirst()) {
while (FlexItem* item = line->mItems.popFirst()) {
delete item;
}
delete line;
}
}
private:
LinkedList<FlexLine>& mLines;
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
};
// Class to let us temporarily provide an override value for the the main-size
// CSS property ('width' or 'height') on a flex item, for use in
// nsFrame::ComputeSizeWithIntrinsicDimensions.
// (We could use this overridden size more broadly, too, but it's probably
// better to avoid property-table accesses. So, where possible, we communicate
// the resolved main-size to the child via modifying its reflow state directly,
// instead of using this class.)
class MOZ_RAII AutoFlexItemMainSizeOverride final
{
public:
explicit AutoFlexItemMainSizeOverride(FlexItem& aItem
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: mItemFrame(aItem.Frame())
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
MOZ_ASSERT(!mItemFrame->HasProperty(nsIFrame::FlexItemMainSizeOverride()),
"FlexItemMainSizeOverride prop shouldn't be set already; "
"it should only be set temporarily (& not recursively)");
NS_ASSERTION(aItem.HasIntrinsicRatio(),
"This should only be needed for items with an aspect ratio");
mItemFrame->SetProperty(nsIFrame::FlexItemMainSizeOverride(),
aItem.GetMainSize());
}
~AutoFlexItemMainSizeOverride() {
mItemFrame->RemoveProperty(nsIFrame::FlexItemMainSizeOverride());
}
private:
nsIFrame* mItemFrame;
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
};
void
nsFlexContainerFrame::CalculatePackingSpace(uint32_t aNumThingsToPack,
uint8_t aAlignVal,
nscoord* aFirstSubjectOffset,
uint32_t* aNumPackingSpacesRemaining,
nscoord* aPackingSpaceRemaining)
{
MOZ_ASSERT(NS_STYLE_ALIGN_SPACE_BETWEEN == NS_STYLE_JUSTIFY_SPACE_BETWEEN &&
NS_STYLE_ALIGN_SPACE_AROUND == NS_STYLE_JUSTIFY_SPACE_AROUND &&
NS_STYLE_ALIGN_SPACE_EVENLY == NS_STYLE_JUSTIFY_SPACE_EVENLY,
"CalculatePackingSpace assumes that NS_STYLE_ALIGN_SPACE and "
"NS_STYLE_JUSTIFY_SPACE constants are interchangeable");
MOZ_ASSERT(aAlignVal == NS_STYLE_ALIGN_SPACE_BETWEEN ||
aAlignVal == NS_STYLE_ALIGN_SPACE_AROUND ||
aAlignVal == NS_STYLE_ALIGN_SPACE_EVENLY,
"Unexpected alignment value");
MOZ_ASSERT(*aPackingSpaceRemaining >= 0,
"Should not be called with negative packing space");
MOZ_ASSERT(aNumThingsToPack >= 1,
"Should not be called with less than 1 thing to pack");
// Packing spaces between items:
*aNumPackingSpacesRemaining = aNumThingsToPack - 1;
if (aAlignVal == NS_STYLE_ALIGN_SPACE_BETWEEN) {
// No need to reserve space at beginning/end, so we're done.
return;
}
// We need to add 1 or 2 packing spaces, split between beginning/end, for
// space-around / space-evenly:
size_t numPackingSpacesForEdges =
aAlignVal == NS_STYLE_JUSTIFY_SPACE_AROUND ? 1 : 2;
// How big will each "full" packing space be:
nscoord packingSpaceSize = *aPackingSpaceRemaining /
(*aNumPackingSpacesRemaining + numPackingSpacesForEdges);
// How much packing-space are we allocating to the edges:
nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize;
// Use half of that edge packing space right now:
*aFirstSubjectOffset += totalEdgePackingSpace / 2;
// ...but we need to subtract all of it right away, so that we won't
// hand out any of it to intermediate packing spaces.
*aPackingSpaceRemaining -= totalEdgePackingSpace;
}
/* static */
bool
nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame)
{
MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item");
const WritingMode flexItemWM = aFrame->GetWritingMode();
const nsIFrame* flexContainer = aFrame->GetParent();
if (IsLegacyBox(flexContainer)) {
// For legacy boxes, the main axis is determined by "box-orient", and we can
// just directly check if that's vertical, and compare that to whether the
// item's WM is also vertical:
bool boxOrientIsVertical =
(flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical);
return flexItemWM.IsVertical() == boxOrientIsVertical;
}
// For modern CSS flexbox, we get our return value by asking two questions
// and comparing their answers.
// Question 1: does aFrame have the same inline axis as its flex container?
bool itemInlineAxisIsParallelToParent =
!flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode());
// Question 2: is aFrame's flex container row-oriented? (This tells us
// whether the flex container's main axis is its inline axis.)
auto flexDirection = flexContainer->StylePosition()->mFlexDirection;
bool flexContainerIsRowOriented =
flexDirection == NS_STYLE_FLEX_DIRECTION_ROW ||
flexDirection == NS_STYLE_FLEX_DIRECTION_ROW_REVERSE;
// aFrame's inline axis is its flex container's main axis IFF the above
// questions have the same answer.
return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent;
}
void
nsFlexContainerFrame::DoFlexLayout(nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus,
nscoord aContentBoxMainSize,
nscoord aAvailableBSizeForContent,
nsTArray<StrutInfo>& aStruts,
const FlexboxAxisTracker& aAxisTracker,
nscoord aMainGapSize,
nscoord aCrossGapSize)
{
aStatus = NS_FRAME_COMPLETE;
LinkedList<FlexLine> lines;
nsTArray<nsIFrame*> placeholderKids;
AutoFlexLineListClearer cleanupLines(lines);
GenerateFlexLines(aPresContext, aReflowInput,
aContentBoxMainSize,
aAvailableBSizeForContent,
aStruts, aAxisTracker,
aMainGapSize,
placeholderKids, lines);
if (lines.getFirst()->IsEmpty() &&
!lines.getFirst()->getNext()) {
// We have no flex items, our parent should synthesize a baseline if needed.
AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
} else {
RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
}
aContentBoxMainSize =
ResolveFlexContainerMainSize(aReflowInput, aAxisTracker,
aContentBoxMainSize, aAvailableBSizeForContent,
lines.getFirst(), aStatus);
for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) {
line->ResolveFlexibleLengths(aContentBoxMainSize);
}
// Cross Size Determination - Flexbox spec section 9.4
// ===================================================
// Calculate the hypothetical cross size of each item:
nscoord sumLineCrossSizes = 0;
for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) {
for (FlexItem* item = line->GetFirstItem(); item; item = item->getNext()) {
// The item may already have the correct cross-size; only recalculate
// if the item's main size resolution (flexing) could have influenced it:
if (item->CanMainSizeInfluenceCrossSize(aAxisTracker)) {
Maybe<AutoFlexItemMainSizeOverride> sizeOverride;
if (item->HasIntrinsicRatio()) {
// For flex items with an aspect ratio, we have to impose an override
// for the main-size property *before* we even instantiate the reflow
// state, in order for aspect ratio calculations to produce the right
// cross size in the reflow state. (For other flex items, it's OK
// (and cheaper) to impose our main size *after* the reflow state has
// been constructed, since the main size shouldn't influence anything
// about cross-size measurement until we actually reflow the child.)
sizeOverride.emplace(*item);
}
WritingMode wm = item->Frame()->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput childReflowInput(aPresContext, aReflowInput,
item->Frame(), availSize);
if (!sizeOverride) {
// Directly override the computed main-size, by tweaking reflow state:
if (aAxisTracker.IsMainAxisHorizontal()) {
childReflowInput.SetComputedWidth(item->GetMainSize());
} else {
childReflowInput.SetComputedHeight(item->GetMainSize());
}
}
SizeItemInCrossAxis(aPresContext, aAxisTracker,
childReflowInput, *item);
}
}
// Now that we've finished with this line's items, size the line itself:
line->ComputeCrossSizeAndBaseline(aAxisTracker);
sumLineCrossSizes += line->GetLineCrossSize();
// Add the cross axis gap space if this is not the last line
if (line->getNext()) {
sumLineCrossSizes += aCrossGapSize;
}
}
bool isCrossSizeDefinite;
const nscoord contentBoxCrossSize =
ComputeCrossSize(aReflowInput, aAxisTracker, sumLineCrossSizes,
aAvailableBSizeForContent, &isCrossSizeDefinite, aStatus);
// Set up state for cross-axis alignment, at a high level (outside the
// scope of a particular flex line)
CrossAxisPositionTracker
crossAxisPosnTracker(lines.getFirst(),
aReflowInput, contentBoxCrossSize,
isCrossSizeDefinite, aAxisTracker,
aCrossGapSize);
// Now that we know the cross size of each line (including
// "align-content:stretch" adjustments, from the CrossAxisPositionTracker
// constructor), we can create struts for any flex items with
// "visibility: collapse" (and restart flex layout).
if (aStruts.IsEmpty()) { // (Don't make struts if we already did)
BuildStrutInfoFromCollapsedItems(lines.getFirst(), aStruts);
if (!aStruts.IsEmpty()) {
// Restart flex layout, using our struts.
return;
}
}
// If the container should derive its baseline from the first FlexLine,
// do that here (while crossAxisPosnTracker is conveniently pointing
// at the cross-start edge of that line, which the line's baseline offset is
// measured from):
nscoord flexContainerAscent;
if (!aAxisTracker.AreAxesInternallyReversed()) {
nscoord firstLineBaselineOffset = lines.getFirst()->GetFirstBaselineOffset();
if (firstLineBaselineOffset == nscoord_MIN) {
// No baseline-aligned items in line. Use sentinel value to prompt us to
// get baseline from the first FlexItem after we've reflowed it.
flexContainerAscent = nscoord_MIN;
} else {
flexContainerAscent =
ComputePhysicalAscentFromFlexRelativeAscent(
crossAxisPosnTracker.GetPosition() + firstLineBaselineOffset,
contentBoxCrossSize, aReflowInput, aAxisTracker);
}
}
const auto justifyContent = IsLegacyBox(aReflowInput.mFrame) ?
ConvertLegacyStyleToJustifyContent(StyleXUL()) :
aReflowInput.mStylePosition->mJustifyContent;
for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) {
// Main-Axis Alignment - Flexbox spec section 9.5
// ==============================================
line->PositionItemsInMainAxis(justifyContent,
aContentBoxMainSize,
aAxisTracker);
// Cross-Axis Alignment - Flexbox spec section 9.6
// ===============================================
line->PositionItemsInCrossAxis(crossAxisPosnTracker.GetPosition(),
aAxisTracker);
crossAxisPosnTracker.TraverseLine(*line);
crossAxisPosnTracker.TraversePackingSpace();
if (line->getNext()) {
crossAxisPosnTracker.TraverseGap();
}
}
// If the container should derive its baseline from the last FlexLine,
// do that here (while crossAxisPosnTracker is conveniently pointing
// at the cross-end edge of that line, which the line's baseline offset is
// measured from):
if (aAxisTracker.AreAxesInternallyReversed()) {
nscoord lastLineBaselineOffset = lines.getLast()->GetFirstBaselineOffset();
if (lastLineBaselineOffset == nscoord_MIN) {
// No baseline-aligned items in line. Use sentinel value to prompt us to
// get baseline from the last FlexItem after we've reflowed it.
flexContainerAscent = nscoord_MIN;
} else {
flexContainerAscent =
ComputePhysicalAscentFromFlexRelativeAscent(
crossAxisPosnTracker.GetPosition() - lastLineBaselineOffset,
contentBoxCrossSize, aReflowInput, aAxisTracker);
}
}
// Before giving each child a final reflow, calculate the origin of the
// flex container's content box (with respect to its border-box), so that
// we can compute our flex item's final positions.
WritingMode flexWM = aReflowInput.GetWritingMode();
LogicalMargin containerBP = aReflowInput.ComputedLogicalBorderPadding();
// Unconditionally skip block-end border & padding for now, regardless of
// writing-mode/GetLogicalSkipSides. We add it lower down, after we've
// established baseline and decided whether bottom border-padding fits (if
// we're fragmented).
const nscoord blockEndContainerBP = containerBP.BEnd(flexWM);
const LogicalSides skipSides =
GetLogicalSkipSides(&aReflowInput) | LogicalSides(eLogicalSideBitsBEnd);
containerBP.ApplySkipSides(skipSides);
const LogicalPoint containerContentBoxOrigin(flexWM,
containerBP.IStart(flexWM),
containerBP.BStart(flexWM));
// Determine flex container's border-box size (used in positioning children):
LogicalSize logSize =
aAxisTracker.LogicalSizeFromFlexRelativeSizes(aContentBoxMainSize,
contentBoxCrossSize);
logSize += aReflowInput.ComputedLogicalBorderPadding().Size(flexWM);
nsSize containerSize = logSize.GetPhysicalSize(flexWM);
// If the flex container has no baseline-aligned items, it will use this item
// (the first item, discounting any under-the-hood reversing that we've done)
// to determine its baseline:
const FlexItem* const firstItem =
aAxisTracker.AreAxesInternallyReversed()
? lines.getLast()->GetLastItem()
: lines.getFirst()->GetFirstItem();
// FINAL REFLOW: Give each child frame another chance to reflow, now that
// we know its final size and position.
for (const FlexLine* line = lines.getFirst(); line; line = line->getNext()) {
for (const FlexItem* item = line->GetFirstItem(); item;
item = item->getNext()) {
LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint(
item->GetMainPosition(),
item->GetCrossPosition(),
aContentBoxMainSize,
contentBoxCrossSize);
// Adjust framePos to be relative to the container's border-box
// (i.e. its frame rect), instead of the container's content-box:
framePos += containerContentBoxOrigin;
// (Intentionally snapshotting this before ApplyRelativePositioning, to
// maybe use for setting the flex container's baseline.)
const nscoord itemNormalBPos = framePos.B(flexWM);
// Check if we actually need to reflow the item -- if we already reflowed
// it with the right size, we can just reposition it as-needed.
bool itemNeedsReflow = true; // (Start out assuming the worst.)
if (item->HadMeasuringReflow()) {
LogicalSize finalFlexItemCBSize =
aAxisTracker.LogicalSizeFromFlexRelativeSizes(item->GetMainSize(),
item->GetCrossSize());
// We've already reflowed the child once. Was the size we gave it in
// that reflow the same as its final (post-flexing/stretching) size?
if (finalFlexItemCBSize ==
LogicalSize(flexWM,
item->Frame()->GetContentRectRelativeToSelf().Size())) {
// Even if our size hasn't changed, some of our descendants might
// care that our bsize is now considered "definite" (whereas it
// wasn't in our previous "measuring" reflow), if they have a
// relative bsize.
if (!(item->Frame()->GetStateBits() &
NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
// Item has the correct size (and its children don't care that
// it's now "definite"). Let's just make sure it's at the right
// position.
itemNeedsReflow = false;
MoveFlexItemToFinalPosition(aReflowInput, *item, framePos,
containerSize);
}
}
}
if (itemNeedsReflow) {
ReflowFlexItem(aPresContext, aAxisTracker, aReflowInput,
*item, framePos, containerSize);
}
// If this is our first item and we haven't established a baseline for
// the container yet (i.e. if we don't have 'align-self: baseline' on any
// children), then use this child's first baseline as the container's
// baseline.
if (item == firstItem &&
flexContainerAscent == nscoord_MIN) {
flexContainerAscent = itemNormalBPos + item->ResolvedAscent(true);
}
}
}
if (!placeholderKids.IsEmpty()) {
ReflowPlaceholders(aPresContext, aReflowInput,
placeholderKids, containerContentBoxOrigin,
containerSize);
}
// Compute flex container's desired size (in its own writing-mode),
// starting w/ content-box size & growing from there:
LogicalSize desiredSizeInFlexWM =
aAxisTracker.LogicalSizeFromFlexRelativeSizes(aContentBoxMainSize,
contentBoxCrossSize);
// Add border/padding (w/ skipSides already applied):
desiredSizeInFlexWM.ISize(flexWM) += containerBP.IStartEnd(flexWM);
desiredSizeInFlexWM.BSize(flexWM) += containerBP.BStartEnd(flexWM);
if (flexContainerAscent == nscoord_MIN) {
// Still don't have our baseline set -- this happens if we have no
// children (or if our children are huge enough that they have nscoord_MIN
// as their baseline... in which case, we'll use the wrong baseline, but no
// big deal)
NS_WARNING_ASSERTION(
lines.getFirst()->IsEmpty(),
"Have flex items but didn't get an ascent - that's odd (or there are "
"just gigantic sizes involved)");
// Per spec, synthesize baseline from the flex container's content box
// (i.e. use block-end side of content-box)
// XXXdholbert This only makes sense if parent's writing mode is
// horizontal (& even then, really we should be using the BSize in terms
// of the parent's writing mode, not ours). Clean up in bug 1155322.
flexContainerAscent = desiredSizeInFlexWM.BSize(flexWM);
}
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
// This will force our parent to call GetLogicalBaseline, which will
// synthesize a margin-box baseline.
aDesiredSize.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE);
} else {
// XXXdholbert flexContainerAscent needs to be in terms of
// our parent's writing-mode here. See bug 1155322.
aDesiredSize.SetBlockStartAscent(flexContainerAscent);
}
// Now: If we're complete, add bottom border/padding to desired height (which
// we skipped via skipSides) -- unless that pushes us over available height,
// in which case we become incomplete (unless we already weren't asking for
// any height, in which case we stay complete to avoid looping forever).
// NOTE: If we're auto-height, we allow our bottom border/padding to push us
// over the available height without requesting a continuation, for
// consistency with the behavior of "display:block" elements.
if (NS_FRAME_IS_COMPLETE(aStatus)) {
nscoord desiredBSizeWithBEndBP =
desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP;
if (aReflowInput.AvailableBSize() == NS_UNCONSTRAINEDSIZE ||
desiredSizeInFlexWM.BSize(flexWM) == 0 ||
desiredBSizeWithBEndBP <= aReflowInput.AvailableBSize() ||
aReflowInput.ComputedBSize() == NS_INTRINSICSIZE) {
// Update desired height to include block-end border/padding
desiredSizeInFlexWM.BSize(flexWM) = desiredBSizeWithBEndBP;
} else {
// We couldn't fit bottom border/padding, so we'll need a continuation.
NS_FRAME_SET_INCOMPLETE(aStatus);
}
}
// Calculate the container baselines so that our parent can baseline-align us.
mBaselineFromLastReflow = flexContainerAscent;
mLastBaselineFromLastReflow = lines.getLast()->GetLastBaselineOffset();
if (mLastBaselineFromLastReflow == nscoord_MIN) {
// XXX we fall back to a mirrored first baseline here for now, but this
// should probably use the last baseline of the last item or something.
mLastBaselineFromLastReflow =
desiredSizeInFlexWM.BSize(flexWM) - flexContainerAscent;
}
// Convert flex container's final desired size to parent's WM, for outparam.
aDesiredSize.SetSize(flexWM, desiredSizeInFlexWM);
// Overflow area = union(my overflow area, kids' overflow areas)
aDesiredSize.SetOverflowAreasToDesiredBounds();
for (nsIFrame* childFrame : mFrames) {
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, childFrame);
}
FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize,
aReflowInput, aStatus);
NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize)
}
void
nsFlexContainerFrame::MoveFlexItemToFinalPosition(
const ReflowInput& aReflowInput,
const FlexItem& aItem,
LogicalPoint& aFramePos,
const nsSize& aContainerSize)
{
WritingMode outerWM = aReflowInput.GetWritingMode();
// If item is relpos, look up its offsets (cached from prev reflow)
LogicalMargin logicalOffsets(outerWM);
if (NS_STYLE_POSITION_RELATIVE == aItem.Frame()->StyleDisplay()->mPosition) {
nsMargin* cachedOffsets = aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty());
MOZ_ASSERT(cachedOffsets,
"relpos previously-reflowed frame should've cached its offsets");
logicalOffsets = LogicalMargin(outerWM, *cachedOffsets);
}
ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM,
logicalOffsets, &aFramePos,
aContainerSize);
aItem.Frame()->SetPosition(outerWM, aFramePos, aContainerSize);
PositionFrameView(aItem.Frame());
PositionChildViews(aItem.Frame());
}
void
nsFlexContainerFrame::ReflowFlexItem(nsPresContext* aPresContext,
const FlexboxAxisTracker& aAxisTracker,
const ReflowInput& aReflowInput,
const FlexItem& aItem,
LogicalPoint& aFramePos,
const nsSize& aContainerSize)
{
WritingMode outerWM = aReflowInput.GetWritingMode();
WritingMode wm = aItem.Frame()->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput childReflowInput(aPresContext, aReflowInput,
aItem.Frame(), availSize);
// Keep track of whether we've overriden the child's computed height
// and/or width, so we can set its resize flags accordingly.
bool didOverrideComputedWidth = false;
bool didOverrideComputedHeight = false;
// Override computed main-size
if (aAxisTracker.IsMainAxisHorizontal()) {
childReflowInput.SetComputedWidth(aItem.GetMainSize());
didOverrideComputedWidth = true;
} else {
childReflowInput.SetComputedHeight(aItem.GetMainSize());
didOverrideComputedHeight = true;
}
// Override reflow state's computed cross-size if either:
// - the item was stretched (in which case we're imposing a cross size)
// ...or...
// - the item it has an aspect ratio (in which case the cross-size that's
// currently in the reflow state is based on arithmetic involving a stale
// main-size value that we just stomped on above). (Note that we could handle
// this case using an AutoFlexItemMainSizeOverride, as we do elsewhere; but
// given that we *already know* the correct cross size to use here, it's
// cheaper to just directly set it instead of setting a frame property.)
if (aItem.IsStretched() ||
aItem.HasIntrinsicRatio()) {
if (aAxisTracker.IsCrossAxisHorizontal()) {
childReflowInput.SetComputedWidth(aItem.GetCrossSize());
didOverrideComputedWidth = true;
} else {
childReflowInput.SetComputedHeight(aItem.GetCrossSize());
didOverrideComputedHeight = true;
}
}
if (aItem.IsStretched() && !aAxisTracker.IsCrossAxisHorizontal()) {
// If this item's height is stretched, it's a relative height.
aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
// XXXdholbert Might need to actually set the correct margins in the
// reflow state at some point, so that they can be saved on the frame for
// UsedMarginProperty(). Maybe doesn't matter though...?
// If we're overriding the computed width or height, *and* we had an
// earlier "measuring" reflow, then this upcoming reflow needs to be
// treated as a resize.
if (aItem.HadMeasuringReflow()) {
if (didOverrideComputedWidth) {
// (This is somewhat redundant, since the reflow state already
// sets mHResize whenever our computed width has changed since the
// previous reflow. Still, it's nice for symmetry, and it may become
// necessary once we support orthogonal flows.)
childReflowInput.SetHResize(true);
}
if (didOverrideComputedHeight) {
childReflowInput.SetVResize(true);
}
}
// NOTE: Be very careful about doing anything else with childReflowInput
// after this point, because some of its methods (e.g. SetComputedWidth)
// internally call InitResizeFlags and stomp on mVResize & mHResize.
ReflowOutput childDesiredSize(childReflowInput);
nsReflowStatus childReflowStatus;
ReflowChild(aItem.Frame(), aPresContext,
childDesiredSize, childReflowInput,
outerWM, aFramePos, aContainerSize,
ReflowChildFlags::Default,
childReflowStatus);
// XXXdholbert Once we do pagination / splitting, we'll need to actually
// handle incomplete childReflowStatuses. But for now, we give our kids
// unconstrained available height, which means they should always
// complete.
MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
"We gave flex item unconstrained available height, so it "
"should be complete");
LogicalMargin offsets =
childReflowInput.ComputedLogicalOffsets().ConvertTo(outerWM, wm);
ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM,
offsets, &aFramePos,
aContainerSize);
FinishReflowChild(aItem.Frame(), aPresContext, childDesiredSize,
&childReflowInput, outerWM, aFramePos, aContainerSize,
ReflowChildFlags::Default);
aItem.SetAscent(childDesiredSize.BlockStartAscent());
}
void
nsFlexContainerFrame::ReflowPlaceholders(nsPresContext* aPresContext,
const ReflowInput& aReflowInput,
nsTArray<nsIFrame*>& aPlaceholders,
const LogicalPoint& aContentBoxOrigin,
const nsSize& aContainerSize)
{
WritingMode outerWM = aReflowInput.GetWritingMode();
// As noted in this method's documentation, we'll reflow every entry in
// |aPlaceholders| at the container's content-box origin.
for (nsIFrame* placeholder : aPlaceholders) {
MOZ_ASSERT(placeholder->GetType() == nsGkAtoms::placeholderFrame,
"placeholders array should only contain placeholder frames");
WritingMode wm = placeholder->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
ReflowInput childReflowInput(aPresContext, aReflowInput,
placeholder, availSize);
ReflowOutput childDesiredSize(childReflowInput);
nsReflowStatus childReflowStatus;
ReflowChild(placeholder, aPresContext, childDesiredSize, childReflowInput,
outerWM, aContentBoxOrigin, aContainerSize,
ReflowChildFlags::Default, childReflowStatus);
FinishReflowChild(placeholder, aPresContext, childDesiredSize,
&childReflowInput, outerWM, aContentBoxOrigin,
aContainerSize, ReflowChildFlags::Default);
// Mark the placeholder frame to indicate that it's not actually at the
// element's static position, because we need to apply CSS Alignment after
// we determine the OOF's size:
placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
}
}
nscoord
nsFlexContainerFrame::GetIntrinsicISize(nsRenderingContext* aRenderingContext,
IntrinsicISizeType aType)
{
nscoord containerISize = 0;
RenumberList();
const nsStylePosition* stylePos = StylePosition();
const FlexboxAxisTracker axisTracker(this, GetWritingMode());
nscoord mainGapSize;
if (axisTracker.IsRowOriented()) {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
NS_UNCONSTRAINEDSIZE);
} else {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
NS_UNCONSTRAINEDSIZE);
}
// The loop below sets aside space for a gap before each item besides the
// first. This bool helps us handle that special-case.
bool onFirstChild = true;
for (nsIFrame* childFrame : mFrames) {
// Skip out-of-flow children because they don't participate in flex layout.
if (childFrame->GetType() == nsGkAtoms::placeholderFrame) {
continue;
}
nscoord childISize = nsLayoutUtils::IntrinsicForContainer(
aRenderingContext, childFrame, aType);
// * For a row-oriented single-line flex container, the intrinsic
// {min/pref}-isize is the sum of its items' {min/pref}-isizes and
// (n-1) column gaps.
// * For a column-oriented flex container, the intrinsic min isize
// is the max of its items' min isizes.
// * For a row-oriented multi-line flex container, the intrinsic
// pref isize is former (sum), and its min isize is the latter (max).
bool isSingleLine = (NS_STYLE_FLEX_WRAP_NOWRAP == stylePos->mFlexWrap);
if (axisTracker.IsRowOriented() &&
(isSingleLine || aType == nsLayoutUtils::PREF_ISIZE)) {
containerISize += childISize;
if (!onFirstChild) {
containerISize += mainGapSize;
}
onFirstChild = false;
} else {
// col-oriented, or MIN_ISIZE for multi-line row flex container
containerISize = std::max(containerISize, childISize);
}
}
return containerISize;
}
/* virtual */ nscoord
nsFlexContainerFrame::GetMinISize(nsRenderingContext* aRenderingContext)
{
nscoord minISize = 0;
DISPLAY_MIN_WIDTH(this, minISize);
// TODO: See bug 1454822
minISize = GetIntrinsicISize(aRenderingContext, nsLayoutUtils::MIN_ISIZE);
return minISize;
}
/* virtual */ nscoord
nsFlexContainerFrame::GetPrefISize(nsRenderingContext* aRenderingContext)
{
nscoord prefISize = 0;
DISPLAY_PREF_WIDTH(this, prefISize);
// TODO: See bug 1454822
prefISize = GetIntrinsicISize(aRenderingContext, nsLayoutUtils::PREF_ISIZE);
return prefISize;
}
|