summaryrefslogtreecommitdiff
path: root/js/src/wasm/WasmSignalHandlers.cpp
blob: dae590acbae1ff7e356d90019d064a2a4644cb4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 *
 * Copyright 2014 Mozilla Foundation
 * Copyright 2021 Moonchild Productions
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "wasm/WasmSignalHandlers.h"

#include "mozilla/DebugOnly.h"
#include "mozilla/PodOperations.h"

#include "jit/AtomicOperations.h"
#include "jit/Disassembler.h"
#include "vm/Runtime.h"
#include "wasm/WasmInstance.h"

using namespace js;
using namespace js::jit;
using namespace js::wasm;

using JS::GenericNaN;
using mozilla::DebugOnly;
using mozilla::PodArrayZero;

// For platforms where the signal/exception handler runs on the same
// thread/stack as the victim (Unix and Windows), we can use TLS to find any
// currently executing wasm code.
static JSRuntime*
RuntimeForCurrentThread()
{
    PerThreadData* threadData = TlsPerThreadData.get();
    if (!threadData)
        return nullptr;

    return threadData->runtimeIfOnOwnerThread();
}

// Crashing inside the signal handler can cause the handler to be recursively
// invoked, eventually blowing the stack without actually showing a crash
// report dialog via Breakpad. To guard against this we watch for such
// recursion and fall through to the next handler immediately rather than
// trying to handle it.
class AutoSetHandlingSegFault
{
    JSRuntime* rt;

  public:
    explicit AutoSetHandlingSegFault(JSRuntime* rt)
      : rt(rt)
    {
        MOZ_ASSERT(!rt->handlingSegFault);
        rt->handlingSegFault = true;
    }

    ~AutoSetHandlingSegFault()
    {
        MOZ_ASSERT(rt->handlingSegFault);
        rt->handlingSegFault = false;
    }
};

#if defined(XP_WIN)
# define XMM_sig(p,i) ((p)->Xmm##i)
# define EIP_sig(p) ((p)->Eip)
# define RIP_sig(p) ((p)->Rip)
# define RAX_sig(p) ((p)->Rax)
# define RCX_sig(p) ((p)->Rcx)
# define RDX_sig(p) ((p)->Rdx)
# define RBX_sig(p) ((p)->Rbx)
# define RSP_sig(p) ((p)->Rsp)
# define RBP_sig(p) ((p)->Rbp)
# define RSI_sig(p) ((p)->Rsi)
# define RDI_sig(p) ((p)->Rdi)
# define R8_sig(p) ((p)->R8)
# define R9_sig(p) ((p)->R9)
# define R10_sig(p) ((p)->R10)
# define R11_sig(p) ((p)->R11)
# define R12_sig(p) ((p)->R12)
# define R13_sig(p) ((p)->R13)
# define R14_sig(p) ((p)->R14)
# define R15_sig(p) ((p)->R15)
#elif defined(__OpenBSD__)
# define XMM_sig(p,i) ((p)->sc_fpstate->fx_xmm[i])
# define EIP_sig(p) ((p)->sc_eip)
# define RIP_sig(p) ((p)->sc_rip)
# define RAX_sig(p) ((p)->sc_rax)
# define RCX_sig(p) ((p)->sc_rcx)
# define RDX_sig(p) ((p)->sc_rdx)
# define RBX_sig(p) ((p)->sc_rbx)
# define RSP_sig(p) ((p)->sc_rsp)
# define RBP_sig(p) ((p)->sc_rbp)
# define RSI_sig(p) ((p)->sc_rsi)
# define RDI_sig(p) ((p)->sc_rdi)
# define R8_sig(p) ((p)->sc_r8)
# define R9_sig(p) ((p)->sc_r9)
# define R10_sig(p) ((p)->sc_r10)
# define R11_sig(p) ((p)->sc_r11)
# define R12_sig(p) ((p)->sc_r12)
# define R13_sig(p) ((p)->sc_r13)
# define R14_sig(p) ((p)->sc_r14)
# if defined(__arm__)
#  define R15_sig(p) ((p)->sc_pc)
# else
#  define R15_sig(p) ((p)->sc_r15)
# endif
# if defined(__aarch64__)
#  define EPC_sig(p) ((p)->sc_elr)
#  define RFP_sig(p) ((p)->sc_x[29])
# endif
# if defined(__mips__)
#  define EPC_sig(p) ((p)->sc_pc)
#  define RFP_sig(p) ((p)->sc_regs[30])
# endif
#elif defined(__linux__) || defined(__sun)
# if defined(__linux__)
#  define XMM_sig(p,i) ((p)->uc_mcontext.fpregs->_xmm[i])
#  define EIP_sig(p) ((p)->uc_mcontext.gregs[REG_EIP])
# else // defined(__sun)
/* See https://www.illumos.org/issues/5876. They keep arguing over whether 
 * <ucontext.h> should provide the register index defines in regset.h or 
 * require applications to request them specifically, and we need them here. */
#include <ucontext.h>
#include <sys/regset.h>
#  define XMM_sig(p,i) ((p)->uc_mcontext.fpregs.fp_reg_set.fpchip_state.xmm[i])
#  define EIP_sig(p) ((p)->uc_mcontext.gregs[REG_PC])
# endif
# define RIP_sig(p) ((p)->uc_mcontext.gregs[REG_RIP])
# define RAX_sig(p) ((p)->uc_mcontext.gregs[REG_RAX])
# define RCX_sig(p) ((p)->uc_mcontext.gregs[REG_RCX])
# define RDX_sig(p) ((p)->uc_mcontext.gregs[REG_RDX])
# define RBX_sig(p) ((p)->uc_mcontext.gregs[REG_RBX])
# define RSP_sig(p) ((p)->uc_mcontext.gregs[REG_RSP])
# define RBP_sig(p) ((p)->uc_mcontext.gregs[REG_RBP])
# define RSI_sig(p) ((p)->uc_mcontext.gregs[REG_RSI])
# define RDI_sig(p) ((p)->uc_mcontext.gregs[REG_RDI])
# define R8_sig(p) ((p)->uc_mcontext.gregs[REG_R8])
# define R9_sig(p) ((p)->uc_mcontext.gregs[REG_R9])
# define R10_sig(p) ((p)->uc_mcontext.gregs[REG_R10])
# define R11_sig(p) ((p)->uc_mcontext.gregs[REG_R11])
# define R12_sig(p) ((p)->uc_mcontext.gregs[REG_R12])
# define R13_sig(p) ((p)->uc_mcontext.gregs[REG_R13])
# define R14_sig(p) ((p)->uc_mcontext.gregs[REG_R14])
# if defined(__linux__) && defined(__arm__)
#  define R15_sig(p) ((p)->uc_mcontext.arm_pc)
# else
#  define R15_sig(p) ((p)->uc_mcontext.gregs[REG_R15])
# endif
# if defined(__linux__) && defined(__aarch64__)
#  define EPC_sig(p) ((p)->uc_mcontext.pc)
# endif
# if defined(__linux__) && defined(__mips__)
#  define EPC_sig(p) ((p)->uc_mcontext.pc)
#  define RSP_sig(p) ((p)->uc_mcontext.gregs[29])
#  define RFP_sig(p) ((p)->uc_mcontext.gregs[30])
# endif
#elif defined(__NetBSD__)
# define XMM_sig(p,i) (((struct fxsave64*)(p)->uc_mcontext.__fpregs)->fx_xmm[i])
# define EIP_sig(p) ((p)->uc_mcontext.__gregs[_REG_EIP])
# define RIP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RIP])
# define RAX_sig(p) ((p)->uc_mcontext.__gregs[_REG_RAX])
# define RCX_sig(p) ((p)->uc_mcontext.__gregs[_REG_RCX])
# define RDX_sig(p) ((p)->uc_mcontext.__gregs[_REG_RDX])
# define RBX_sig(p) ((p)->uc_mcontext.__gregs[_REG_RBX])
# define RSP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RSP])
# define RBP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RBP])
# define RSI_sig(p) ((p)->uc_mcontext.__gregs[_REG_RSI])
# define RDI_sig(p) ((p)->uc_mcontext.__gregs[_REG_RDI])
# define R8_sig(p) ((p)->uc_mcontext.__gregs[_REG_R8])
# define R9_sig(p) ((p)->uc_mcontext.__gregs[_REG_R9])
# define R10_sig(p) ((p)->uc_mcontext.__gregs[_REG_R10])
# define R11_sig(p) ((p)->uc_mcontext.__gregs[_REG_R11])
# define R12_sig(p) ((p)->uc_mcontext.__gregs[_REG_R12])
# define R13_sig(p) ((p)->uc_mcontext.__gregs[_REG_R13])
# define R14_sig(p) ((p)->uc_mcontext.__gregs[_REG_R14])
# define R15_sig(p) ((p)->uc_mcontext.__gregs[_REG_R15])
# if defined(__aarch64__)
#  define EPC_sig(p) ((p)->uc_mcontext.__gregs[_REG_PC])
#  define RFP_sig(p) ((p)->uc_mcontext.__gregs[_REG_X29])
# endif
# if defined(__mips__)
#  define EPC_sig(p) ((p)->uc_mcontext.__gregs[_REG_EPC])
#  define RFP_sig(p) ((p)->uc_mcontext.__gregs[_REG_S8])
# endif
#elif defined(__DragonFly__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
# if defined(__DragonFly__)
#  define XMM_sig(p,i) (((union savefpu*)(p)->uc_mcontext.mc_fpregs)->sv_xmm.sv_xmm[i])
# else
#  define XMM_sig(p,i) (((struct savefpu*)(p)->uc_mcontext.mc_fpstate)->sv_xmm[i])
# endif
# define EIP_sig(p) ((p)->uc_mcontext.mc_eip)
# define RIP_sig(p) ((p)->uc_mcontext.mc_rip)
# define RAX_sig(p) ((p)->uc_mcontext.mc_rax)
# define RCX_sig(p) ((p)->uc_mcontext.mc_rcx)
# define RDX_sig(p) ((p)->uc_mcontext.mc_rdx)
# define RBX_sig(p) ((p)->uc_mcontext.mc_rbx)
# define RSP_sig(p) ((p)->uc_mcontext.mc_rsp)
# define RBP_sig(p) ((p)->uc_mcontext.mc_rbp)
# define RSI_sig(p) ((p)->uc_mcontext.mc_rsi)
# define RDI_sig(p) ((p)->uc_mcontext.mc_rdi)
# define R8_sig(p) ((p)->uc_mcontext.mc_r8)
# define R9_sig(p) ((p)->uc_mcontext.mc_r9)
# define R10_sig(p) ((p)->uc_mcontext.mc_r10)
# define R11_sig(p) ((p)->uc_mcontext.mc_r11)
# define R12_sig(p) ((p)->uc_mcontext.mc_r12)
# define R13_sig(p) ((p)->uc_mcontext.mc_r13)
# define R14_sig(p) ((p)->uc_mcontext.mc_r14)
# if defined(__FreeBSD__) && defined(__arm__)
#  define R15_sig(p) ((p)->uc_mcontext.__gregs[_REG_R15])
# else
#  define R15_sig(p) ((p)->uc_mcontext.mc_r15)
# endif
# if defined(__FreeBSD__) && defined(__aarch64__)
#  define EPC_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_elr)
#  define RFP_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_x[29])
# endif
# if defined(__FreeBSD__) && defined(__mips__)
#  define EPC_sig(p) ((p)->uc_mcontext.mc_pc)
#  define RFP_sig(p) ((p)->uc_mcontext.mc_regs[30])
# endif
#else
# error "Don't know how to read/write to the thread state via the mcontext_t."
#endif

#if defined(XP_WIN)
# include "jswin.h"
#else
# include <signal.h>
# include <sys/mman.h>
#endif

#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
# include <sys/ucontext.h> // for ucontext_t, mcontext_t
#endif

#if defined(JS_CPU_X64)
# if defined(__DragonFly__)
#  include <machine/npx.h> // for union savefpu
# elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || \
       defined(__NetBSD__) || defined(__OpenBSD__)
#  include <machine/fpu.h> // for struct savefpu/fxsave64
# endif
#endif

#if !defined(XP_WIN)
# define CONTEXT ucontext_t
#endif

// Define a context type for use in the emulator code. This is usually just
// the same as CONTEXT.
# define EMULATOR_CONTEXT CONTEXT

#if defined(JS_CPU_X64)
# define PC_sig(p) RIP_sig(p)
#elif defined(JS_CPU_X86)
# define PC_sig(p) EIP_sig(p)
#elif defined(JS_CPU_ARM)
# define PC_sig(p) R15_sig(p)
#elif defined(__aarch64__)
# define PC_sig(p) EPC_sig(p)
#elif defined(JS_CPU_MIPS)
# define PC_sig(p) EPC_sig(p)
#endif

static uint8_t**
ContextToPC(CONTEXT* context)
{
#ifdef JS_CODEGEN_NONE
    MOZ_CRASH();
#else
    return reinterpret_cast<uint8_t**>(&PC_sig(context));
#endif
}

#if defined(WASM_HUGE_MEMORY)
MOZ_COLD static void
SetFPRegToNaN(size_t size, void* fp_reg)
{
    MOZ_RELEASE_ASSERT(size <= Simd128DataSize);
    memset(fp_reg, 0, Simd128DataSize);
    switch (size) {
      case 4: *static_cast<float*>(fp_reg) = GenericNaN(); break;
      case 8: *static_cast<double*>(fp_reg) = GenericNaN(); break;
      default:
        // All SIMD accesses throw on OOB.
        MOZ_CRASH("unexpected size in SetFPRegToNaN");
    }
}

MOZ_COLD static void
SetGPRegToZero(void* gp_reg)
{
    memset(gp_reg, 0, sizeof(intptr_t));
}

MOZ_COLD static void
SetFPRegToLoadedValue(SharedMem<void*> addr, size_t size, void* fp_reg)
{
    MOZ_RELEASE_ASSERT(size <= Simd128DataSize);
    memset(fp_reg, 0, Simd128DataSize);
    AtomicOperations::memcpySafeWhenRacy(fp_reg, addr, size);
}

MOZ_COLD static void
SetGPRegToLoadedValue(SharedMem<void*> addr, size_t size, void* gp_reg)
{
    MOZ_RELEASE_ASSERT(size <= sizeof(void*));
    memset(gp_reg, 0, sizeof(void*));
    AtomicOperations::memcpySafeWhenRacy(gp_reg, addr, size);
}

MOZ_COLD static void
SetGPRegToLoadedValueSext32(SharedMem<void*> addr, size_t size, void* gp_reg)
{
    MOZ_RELEASE_ASSERT(size <= sizeof(int32_t));
    int8_t msb = AtomicOperations::loadSafeWhenRacy(addr.cast<uint8_t*>() + (size - 1));
    memset(gp_reg, 0, sizeof(void*));
    memset(gp_reg, msb >> 7, sizeof(int32_t));
    AtomicOperations::memcpySafeWhenRacy(gp_reg, addr, size);
}

MOZ_COLD static void
StoreValueFromFPReg(SharedMem<void*> addr, size_t size, const void* fp_reg)
{
    MOZ_RELEASE_ASSERT(size <= Simd128DataSize);
    AtomicOperations::memcpySafeWhenRacy(addr, const_cast<void*>(fp_reg), size);
}

MOZ_COLD static void
StoreValueFromGPReg(SharedMem<void*> addr, size_t size, const void* gp_reg)
{
    MOZ_RELEASE_ASSERT(size <= sizeof(void*));
    AtomicOperations::memcpySafeWhenRacy(addr, const_cast<void*>(gp_reg), size);
}

MOZ_COLD static void
StoreValueFromGPImm(SharedMem<void*> addr, size_t size, int32_t imm)
{
    MOZ_RELEASE_ASSERT(size <= sizeof(imm));
    AtomicOperations::memcpySafeWhenRacy(addr, static_cast<void*>(&imm), size);
}

MOZ_COLD static void*
AddressOfFPRegisterSlot(CONTEXT* context, FloatRegisters::Encoding encoding)
{
    switch (encoding) {
      case X86Encoding::xmm0:  return &XMM_sig(context, 0);
      case X86Encoding::xmm1:  return &XMM_sig(context, 1);
      case X86Encoding::xmm2:  return &XMM_sig(context, 2);
      case X86Encoding::xmm3:  return &XMM_sig(context, 3);
      case X86Encoding::xmm4:  return &XMM_sig(context, 4);
      case X86Encoding::xmm5:  return &XMM_sig(context, 5);
      case X86Encoding::xmm6:  return &XMM_sig(context, 6);
      case X86Encoding::xmm7:  return &XMM_sig(context, 7);
      case X86Encoding::xmm8:  return &XMM_sig(context, 8);
      case X86Encoding::xmm9:  return &XMM_sig(context, 9);
      case X86Encoding::xmm10: return &XMM_sig(context, 10);
      case X86Encoding::xmm11: return &XMM_sig(context, 11);
      case X86Encoding::xmm12: return &XMM_sig(context, 12);
      case X86Encoding::xmm13: return &XMM_sig(context, 13);
      case X86Encoding::xmm14: return &XMM_sig(context, 14);
      case X86Encoding::xmm15: return &XMM_sig(context, 15);
      default: break;
    }
    MOZ_CRASH();
}

MOZ_COLD static void*
AddressOfGPRegisterSlot(EMULATOR_CONTEXT* context, Registers::Code code)
{
    switch (code) {
      case X86Encoding::rax: return &RAX_sig(context);
      case X86Encoding::rcx: return &RCX_sig(context);
      case X86Encoding::rdx: return &RDX_sig(context);
      case X86Encoding::rbx: return &RBX_sig(context);
      case X86Encoding::rsp: return &RSP_sig(context);
      case X86Encoding::rbp: return &RBP_sig(context);
      case X86Encoding::rsi: return &RSI_sig(context);
      case X86Encoding::rdi: return &RDI_sig(context);
      case X86Encoding::r8:  return &R8_sig(context);
      case X86Encoding::r9:  return &R9_sig(context);
      case X86Encoding::r10: return &R10_sig(context);
      case X86Encoding::r11: return &R11_sig(context);
      case X86Encoding::r12: return &R12_sig(context);
      case X86Encoding::r13: return &R13_sig(context);
      case X86Encoding::r14: return &R14_sig(context);
      case X86Encoding::r15: return &R15_sig(context);
      default: break;
    }
    MOZ_CRASH();
}

MOZ_COLD static void
SetRegisterToCoercedUndefined(EMULATOR_CONTEXT* context, size_t size,
                              const Disassembler::OtherOperand& value)
{
    if (value.kind() == Disassembler::OtherOperand::FPR)
        SetFPRegToNaN(size, AddressOfFPRegisterSlot(context, value.fpr()));
    else
        SetGPRegToZero(AddressOfGPRegisterSlot(context, value.gpr()));
}

MOZ_COLD static void
SetRegisterToLoadedValue(EMULATOR_CONTEXT* context, SharedMem<void*> addr, size_t size,
                         const Disassembler::OtherOperand& value)
{
    if (value.kind() == Disassembler::OtherOperand::FPR)
        SetFPRegToLoadedValue(addr, size, AddressOfFPRegisterSlot(context, value.fpr()));
    else
        SetGPRegToLoadedValue(addr, size, AddressOfGPRegisterSlot(context, value.gpr()));
}

MOZ_COLD static void
SetRegisterToLoadedValueSext32(EMULATOR_CONTEXT* context, SharedMem<void*> addr, size_t size,
                               const Disassembler::OtherOperand& value)
{
    SetGPRegToLoadedValueSext32(addr, size, AddressOfGPRegisterSlot(context, value.gpr()));
}

MOZ_COLD static void
StoreValueFromRegister(EMULATOR_CONTEXT* context, SharedMem<void*> addr, size_t size,
                       const Disassembler::OtherOperand& value)
{
    if (value.kind() == Disassembler::OtherOperand::FPR)
        StoreValueFromFPReg(addr, size, AddressOfFPRegisterSlot(context, value.fpr()));
    else if (value.kind() == Disassembler::OtherOperand::GPR)
        StoreValueFromGPReg(addr, size, AddressOfGPRegisterSlot(context, value.gpr()));
    else
        StoreValueFromGPImm(addr, size, value.imm());
}

MOZ_COLD static uint8_t*
ComputeAccessAddress(EMULATOR_CONTEXT* context, const Disassembler::ComplexAddress& address)
{
    MOZ_RELEASE_ASSERT(!address.isPCRelative(), "PC-relative addresses not supported yet");

    uintptr_t result = address.disp();

    if (address.hasBase()) {
        uintptr_t base;
        StoreValueFromGPReg(SharedMem<void*>::unshared(&base), sizeof(uintptr_t),
                            AddressOfGPRegisterSlot(context, address.base()));
        result += base;
    }

    if (address.hasIndex()) {
        uintptr_t index;
        StoreValueFromGPReg(SharedMem<void*>::unshared(&index), sizeof(uintptr_t),
                            AddressOfGPRegisterSlot(context, address.index()));
        MOZ_ASSERT(address.scale() < 32, "address shift overflow");
        result += index * (uintptr_t(1) << address.scale());
    }

    return reinterpret_cast<uint8_t*>(result);
}

MOZ_COLD static void
HandleMemoryAccess(EMULATOR_CONTEXT* context, uint8_t* pc, uint8_t* faultingAddress,
                   const Instance& instance, uint8_t** ppc)
{
    MOZ_RELEASE_ASSERT(instance.codeSegment().containsFunctionPC(pc));

    const MemoryAccess* memoryAccess = instance.code().lookupMemoryAccess(pc);
    if (!memoryAccess) {
        // If there is no associated MemoryAccess for the faulting PC, this must be
        // experimental SIMD.js or Atomics. When these are converted to
        // non-experimental wasm features, this case, as well as outOfBoundsCode,
        // can be removed.
        *ppc = instance.codeSegment().outOfBoundsCode();
        return;
    }

    MOZ_RELEASE_ASSERT(memoryAccess->insnOffset() == (pc - instance.codeBase()));

    // On WASM_HUGE_MEMORY platforms, asm.js code may fault. asm.js does not
    // trap on fault and so has no trap out-of-line path. Instead, stores are
    // silently ignored (by advancing the pc past the store and resuming) and
    // loads silently succeed with a JS-semantics-determined value.

    if (memoryAccess->hasTrapOutOfLineCode()) {
        *ppc = memoryAccess->trapOutOfLineCode(instance.codeBase());
        return;
    }

    MOZ_RELEASE_ASSERT(instance.isAsmJS());

    // Disassemble the instruction which caused the trap so that we can extract
    // information about it and decide what to do.
    Disassembler::HeapAccess access;
    uint8_t* end = Disassembler::DisassembleHeapAccess(pc, &access);
    const Disassembler::ComplexAddress& address = access.address();
    MOZ_RELEASE_ASSERT(end > pc);
    MOZ_RELEASE_ASSERT(instance.codeSegment().containsFunctionPC(end));

    // Check x64 asm.js heap access invariants.
    MOZ_RELEASE_ASSERT(address.disp() >= 0);
    MOZ_RELEASE_ASSERT(address.base() == HeapReg.code());
    MOZ_RELEASE_ASSERT(!address.hasIndex() || address.index() != HeapReg.code());
    MOZ_RELEASE_ASSERT(address.scale() == 0);
    if (address.hasBase()) {
        uintptr_t base;
        StoreValueFromGPReg(SharedMem<void*>::unshared(&base), sizeof(uintptr_t),
                            AddressOfGPRegisterSlot(context, address.base()));
        MOZ_RELEASE_ASSERT(reinterpret_cast<uint8_t*>(base) == instance.memoryBase());
    }
    if (address.hasIndex()) {
        uintptr_t index;
        StoreValueFromGPReg(SharedMem<void*>::unshared(&index), sizeof(uintptr_t),
                            AddressOfGPRegisterSlot(context, address.index()));
        MOZ_RELEASE_ASSERT(uint32_t(index) == index);
    }

    // Determine the actual effective address of the faulting access. We can't
    // rely on the faultingAddress given to us by the OS, because we need the
    // address of the start of the access, and the OS may sometimes give us an
    // address somewhere in the middle of the heap access.
    uint8_t* accessAddress = ComputeAccessAddress(context, address);
    MOZ_RELEASE_ASSERT(size_t(faultingAddress - accessAddress) < access.size(),
                       "Given faulting address does not appear to be within computed "
                       "faulting address range");
    MOZ_RELEASE_ASSERT(accessAddress >= instance.memoryBase(),
                       "Access begins outside the asm.js heap");
    MOZ_RELEASE_ASSERT(accessAddress + access.size() <= instance.memoryBase() +
                       instance.memoryMappedSize(),
                       "Access extends beyond the asm.js heap guard region");
    MOZ_RELEASE_ASSERT(accessAddress + access.size() > instance.memoryBase() +
                       instance.memoryLength(),
                       "Computed access address is not actually out of bounds");

    // The basic sandbox model is that all heap accesses are a heap base
    // register plus an index, and the index is always computed with 32-bit
    // operations, so we know it can only be 4 GiB off of the heap base.
    //
    // However, we wish to support the optimization of folding immediates
    // and scaled indices into addresses, and any address arithmetic we fold
    // gets done at full pointer width, so it doesn't get properly wrapped.
    // We support this by extending HugeMappedSize to the greatest size that
    // could be reached by such an unwrapped address, and then when we arrive
    // here in the signal handler for such an access, we compute the fully
    // wrapped address, and perform the load or store on it.
    //
    // Taking a signal is really slow, but in theory programs really shouldn't
    // be hitting this anyway.
    intptr_t unwrappedOffset = accessAddress - instance.memoryBase().unwrap(/* for value */);
    uint32_t wrappedOffset = uint32_t(unwrappedOffset);
    size_t size = access.size();
    MOZ_RELEASE_ASSERT(wrappedOffset + size > wrappedOffset);
    bool inBounds = wrappedOffset + size < instance.memoryLength();

    if (inBounds) {
        // We now know that this is an access that is actually in bounds when
        // properly wrapped. Complete the load or store with the wrapped
        // address.
        SharedMem<uint8_t*> wrappedAddress = instance.memoryBase() + wrappedOffset;
        MOZ_RELEASE_ASSERT(wrappedAddress >= instance.memoryBase());
        MOZ_RELEASE_ASSERT(wrappedAddress + size > wrappedAddress);
        MOZ_RELEASE_ASSERT(wrappedAddress + size <= instance.memoryBase() + instance.memoryLength());
        switch (access.kind()) {
          case Disassembler::HeapAccess::Load:
            SetRegisterToLoadedValue(context, wrappedAddress.cast<void*>(), size, access.otherOperand());
            break;
          case Disassembler::HeapAccess::LoadSext32:
            SetRegisterToLoadedValueSext32(context, wrappedAddress.cast<void*>(), size, access.otherOperand());
            break;
          case Disassembler::HeapAccess::Store:
            StoreValueFromRegister(context, wrappedAddress.cast<void*>(), size, access.otherOperand());
            break;
          case Disassembler::HeapAccess::LoadSext64:
            MOZ_CRASH("no int64 accesses in asm.js");
          case Disassembler::HeapAccess::Unknown:
            MOZ_CRASH("Failed to disassemble instruction");
        }
    } else {
        // We now know that this is an out-of-bounds access made by an asm.js
        // load/store that we should handle.
        switch (access.kind()) {
          case Disassembler::HeapAccess::Load:
          case Disassembler::HeapAccess::LoadSext32:
            // Assign the JS-defined result value to the destination register
            // (ToInt32(undefined) or ToNumber(undefined), determined by the
            // type of the destination register). Very conveniently, we can
            // infer the type from the register class, since all SIMD accesses
            // throw on out of bounds (see above), so the only types using FP
            // registers are float32 and double.
            SetRegisterToCoercedUndefined(context, access.size(), access.otherOperand());
            break;
          case Disassembler::HeapAccess::Store:
            // Do nothing.
            break;
          case Disassembler::HeapAccess::LoadSext64:
            MOZ_CRASH("no int64 accesses in asm.js");
          case Disassembler::HeapAccess::Unknown:
            MOZ_CRASH("Failed to disassemble instruction");
        }
    }

    *ppc = end;
}

#else // WASM_HUGE_MEMORY

MOZ_COLD static void
HandleMemoryAccess(EMULATOR_CONTEXT* context, uint8_t* pc, uint8_t* faultingAddress,
                   const Instance& instance, uint8_t** ppc)
{
    MOZ_RELEASE_ASSERT(instance.codeSegment().containsFunctionPC(pc));

    const MemoryAccess* memoryAccess = instance.code().lookupMemoryAccess(pc);
    if (!memoryAccess) {
        // See explanation in the WASM_HUGE_MEMORY HandleMemoryAccess.
        *ppc = instance.codeSegment().outOfBoundsCode();
        return;
    }

    MOZ_RELEASE_ASSERT(memoryAccess->hasTrapOutOfLineCode());
    *ppc = memoryAccess->trapOutOfLineCode(instance.codeBase());
}

#endif // WASM_HUGE_MEMORY

MOZ_COLD static bool
IsHeapAccessAddress(const Instance &instance, uint8_t* faultingAddress)
{
    size_t accessLimit = instance.memoryMappedSize();

    return instance.metadata().usesMemory() &&
           faultingAddress >= instance.memoryBase() &&
           faultingAddress < instance.memoryBase() + accessLimit;
}

#if defined(XP_WIN)

static bool
HandleFault(PEXCEPTION_POINTERS exception)
{
    EXCEPTION_RECORD* record = exception->ExceptionRecord;
    CONTEXT* context = exception->ContextRecord;

    if (record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
        return false;

    uint8_t** ppc = ContextToPC(context);
    uint8_t* pc = *ppc;

    if (record->NumberParameters < 2)
        return false;

    // Don't allow recursive handling of signals, see AutoSetHandlingSegFault.
    JSRuntime* rt = RuntimeForCurrentThread();
    if (!rt || rt->handlingSegFault)
        return false;
    AutoSetHandlingSegFault handling(rt);

    WasmActivation* activation = rt->wasmActivationStack();
    if (!activation)
        return false;

    const Instance* instance = activation->compartment()->wasm.lookupInstanceDeprecated(pc);
    if (!instance)
        return false;

    uint8_t* faultingAddress = reinterpret_cast<uint8_t*>(record->ExceptionInformation[1]);

    // This check isn't necessary, but, since we can, check anyway to make
    // sure we aren't covering up a real bug.
    if (!IsHeapAccessAddress(*instance, faultingAddress))
        return false;

    if (!instance->codeSegment().containsFunctionPC(pc)) {
        // On Windows, it is possible for InterruptRunningCode to execute
        // between a faulting heap access and the handling of the fault due
        // to InterruptRunningCode's use of SuspendThread. When this happens,
        // after ResumeThread, the exception handler is called with pc equal to
        // instance.interrupt, which is logically wrong. The Right Thing would
        // be for the OS to make fault-handling atomic (so that CONTEXT.pc was
        // always the logically-faulting pc). Fortunately, we can detect this
        // case and silence the exception ourselves (the exception will
        // retrigger after the interrupt jumps back to resumePC).
        return pc == instance->codeSegment().interruptCode() &&
               instance->codeSegment().containsFunctionPC(activation->resumePC());
    }

    HandleMemoryAccess(context, pc, faultingAddress, *instance, ppc);
    return true;
}

static LONG WINAPI
WasmFaultHandler(LPEXCEPTION_POINTERS exception)
{
    if (HandleFault(exception))
        return EXCEPTION_CONTINUE_EXECUTION;

    // No need to worry about calling other handlers, the OS does this for us.
    return EXCEPTION_CONTINUE_SEARCH;
}

#else  // If not Windows, assume Unix-like

enum class Signal {
    SegFault,
    BusError
};

// Be very cautious and default to not handling; we don't want to accidentally
// silence real crashes from real bugs.
template<Signal signal>
static bool
HandleFault(int signum, siginfo_t* info, void* ctx)
{
    // The signals we're expecting come from access violations, accessing
    // mprotected memory. If the signal originates anywhere else, don't try
    // to handle it.
    if (signal == Signal::SegFault)
        MOZ_RELEASE_ASSERT(signum == SIGSEGV);
    else
        MOZ_RELEASE_ASSERT(signum == SIGBUS);

    CONTEXT* context = (CONTEXT*)ctx;
    uint8_t** ppc = ContextToPC(context);
    uint8_t* pc = *ppc;

    // Don't allow recursive handling of signals, see AutoSetHandlingSegFault.
    JSRuntime* rt = RuntimeForCurrentThread();
    if (!rt || rt->handlingSegFault)
        return false;
    AutoSetHandlingSegFault handling(rt);

    WasmActivation* activation = rt->wasmActivationStack();
    if (!activation)
        return false;

    const Instance* instance = activation->compartment()->wasm.lookupInstanceDeprecated(pc);
    if (!instance || !instance->codeSegment().containsFunctionPC(pc))
        return false;

    uint8_t* faultingAddress = reinterpret_cast<uint8_t*>(info->si_addr);

    // Although it's not strictly necessary, to make sure we're not covering up
    // any real bugs, check that the faulting address is indeed in the
    // instance's memory.
    if (!faultingAddress) {
        // On some Linux systems, the kernel apparently sometimes "gives up" and
        // passes a null faultingAddress with si_code set to SI_KERNEL.
        // This is observed on some automation machines for some out-of-bounds
        // atomic accesses on x86/64.
#ifdef SI_KERNEL
        if (info->si_code != SI_KERNEL)
            return false;
#else
        return false;
#endif
    } else {
        if (!IsHeapAccessAddress(*instance, faultingAddress))
            return false;
    }

#ifdef JS_CODEGEN_ARM
    if (signal == Signal::BusError) {
        *ppc = instance->codeSegment().unalignedAccessCode();
        return true;
    }
#endif

    HandleMemoryAccess(context, pc, faultingAddress, *instance, ppc);
    return true;
}

static struct sigaction sPrevSEGVHandler;
static struct sigaction sPrevSIGBUSHandler;

template<Signal signal>
static void
WasmFaultHandler(int signum, siginfo_t* info, void* context)
{
    if (HandleFault<signal>(signum, info, context))
        return;

    struct sigaction* previousSignal = signum == SIGSEGV
                                       ? &sPrevSEGVHandler
                                       : &sPrevSIGBUSHandler;

    // This signal is not for any asm.js code we expect, so we need to forward
    // the signal to the next handler. If there is no next handler (SIG_IGN or
    // SIG_DFL), then it's time to crash. To do this, we set the signal back to
    // its original disposition and return. This will cause the faulting op to
    // be re-executed which will crash in the normal way. The advantage of
    // doing this to calling _exit() is that we remove ourselves from the crash
    // stack which improves crash reports. If there is a next handler, call it.
    // It will either crash synchronously, fix up the instruction so that
    // execution can continue and return, or trigger a crash by returning the
    // signal to it's original disposition and returning.
    //
    // Note: the order of these tests matter.
    if (previousSignal->sa_flags & SA_SIGINFO)
        previousSignal->sa_sigaction(signum, info, context);
    else if (previousSignal->sa_handler == SIG_DFL || previousSignal->sa_handler == SIG_IGN)
        sigaction(signum, previousSignal, nullptr);
    else
        previousSignal->sa_handler(signum);
}
# endif // XP_WIN || assume Unix-like

static void
RedirectIonBackedgesToInterruptCheck(JSRuntime* rt)
{
    if (jit::JitRuntime* jitRuntime = rt->jitRuntime()) {
        // If the backedge list is being mutated, the pc must be in C++ code and
        // thus not in a JIT iloop. We assume that the interrupt flag will be
        // checked at least once before entering JIT code (if not, no big deal;
        // the browser will just request another interrupt in a second).
        if (!jitRuntime->preventBackedgePatching())
            jitRuntime->patchIonBackedges(rt, jit::JitRuntime::BackedgeInterruptCheck);
    }
}

// The return value indicates whether the PC was changed, not whether there was
// a failure.
static bool
RedirectJitCodeToInterruptCheck(JSRuntime* rt, CONTEXT* context)
{
    RedirectIonBackedgesToInterruptCheck(rt);

    if (WasmActivation* activation = rt->wasmActivationStack()) {
#ifdef JS_SIMULATOR
        (void)ContextToPC(context);  // silence static 'unused' errors

        void* pc = rt->simulator()->get_pc_as<void*>();

        const Instance* instance = activation->compartment()->wasm.lookupInstanceDeprecated(pc);
        if (instance && instance->codeSegment().containsFunctionPC(pc))
            rt->simulator()->set_resume_pc(instance->codeSegment().interruptCode());
#else
        uint8_t** ppc = ContextToPC(context);
        uint8_t* pc = *ppc;

        const Instance* instance = activation->compartment()->wasm.lookupInstanceDeprecated(pc);
        if (instance && instance->codeSegment().containsFunctionPC(pc)) {
            activation->setResumePC(pc);
            *ppc = instance->codeSegment().interruptCode();
            return true;
        }
#endif
    }

    return false;
}

#if !defined(XP_WIN)
// For the interrupt signal, pick a signal number that:
//  - is not otherwise used by mozilla or standard libraries
//  - defaults to nostop and noprint on gdb/lldb so that noone is bothered
// SIGVTALRM a relative of SIGALRM, so intended for user code, but, unlike
// SIGALRM, not used anywhere else in Mozilla.
static const int sInterruptSignal = SIGVTALRM;

static void
JitInterruptHandler(int signum, siginfo_t* info, void* context)
{
    if (JSRuntime* rt = RuntimeForCurrentThread()) {
        RedirectJitCodeToInterruptCheck(rt, (CONTEXT*)context);
        rt->finishHandlingJitInterrupt();
    }
}
#endif

static bool sTriedInstallSignalHandlers = false;
static bool sHaveSignalHandlers = false;

static bool
ProcessHasSignalHandlers()
{
    // We assume that there are no races creating the first JSRuntime of the process.
    if (sTriedInstallSignalHandlers)
        return sHaveSignalHandlers;
    sTriedInstallSignalHandlers = true;

    // Developers might want to forcibly disable signals to avoid seeing
    // spurious SIGSEGVs in the debugger.
    if (getenv("JS_DISABLE_SLOW_SCRIPT_SIGNALS") || getenv("JS_NO_SIGNALS"))
        return false;

    // The interrupt handler allows the main thread to be paused from another
    // thread (see InterruptRunningJitCode).
#if defined(XP_WIN)
    // Windows uses SuspendThread to stop the main thread from another thread.
#else
    struct sigaction interruptHandler;
    interruptHandler.sa_flags = SA_SIGINFO;
    interruptHandler.sa_sigaction = &JitInterruptHandler;
    sigemptyset(&interruptHandler.sa_mask);
    struct sigaction prev;
    if (sigaction(sInterruptSignal, &interruptHandler, &prev))
        MOZ_CRASH("unable to install interrupt handler");

    // There shouldn't be any other handlers installed for sInterruptSignal. If
    // there are, we could always forward, but we need to understand what we're
    // doing to avoid problematic interference.
    if ((prev.sa_flags & SA_SIGINFO && prev.sa_sigaction) ||
        (prev.sa_handler != SIG_DFL && prev.sa_handler != SIG_IGN))
    {
        MOZ_CRASH("contention for interrupt signal");
    }
#endif // defined(XP_WIN)

    // Install a SIGSEGV handler to handle safely-out-of-bounds asm.js heap
    // access and/or unaligned accesses.
# if defined(XP_WIN)
    if (!AddVectoredExceptionHandler(/* FirstHandler = */ true, WasmFaultHandler))
        return false;
# else
    // SA_NODEFER allows us to reenter the signal handler if we crash while
    // handling the signal, and fall through to the Breakpad handler by testing
    // handlingSegFault.

    // Allow handling OOB with signals on all architectures
    struct sigaction faultHandler;
    faultHandler.sa_flags = SA_SIGINFO | SA_NODEFER;
    faultHandler.sa_sigaction = WasmFaultHandler<Signal::SegFault>;
    sigemptyset(&faultHandler.sa_mask);
    if (sigaction(SIGSEGV, &faultHandler, &sPrevSEGVHandler))
        MOZ_CRASH("unable to install segv handler");

#  if defined(JS_CODEGEN_ARM)
    // On Arm Handle Unaligned Accesses
    struct sigaction busHandler;
    busHandler.sa_flags = SA_SIGINFO | SA_NODEFER;
    busHandler.sa_sigaction = WasmFaultHandler<Signal::BusError>;
    sigemptyset(&busHandler.sa_mask);
    if (sigaction(SIGBUS, &busHandler, &sPrevSIGBUSHandler))
        MOZ_CRASH("unable to install sigbus handler");
#  endif
# endif

    sHaveSignalHandlers = true;
    return true;
}

bool
wasm::EnsureSignalHandlers(JSRuntime* rt)
{
    // Nothing to do if the platform doesn't support it.
    if (!ProcessHasSignalHandlers())
        return true;

    return true;
}

bool
wasm::HaveSignalHandlers()
{
    MOZ_ASSERT(sTriedInstallSignalHandlers);
    return sHaveSignalHandlers;
}

// JSRuntime::requestInterrupt sets interrupt_ (which is checked frequently by
// C++ code at every Baseline JIT loop backedge) and jitStackLimit_ (which is
// checked at every Baseline and Ion JIT function prologue). The remaining
// sources of potential iloops (Ion loop backedges and all wasm code) are
// handled by this function:
//  1. Ion loop backedges are patched to instead point to a stub that handles
//     the interrupt;
//  2. if the main thread's pc is inside wasm code, the pc is updated to point
//     to a stub that handles the interrupt.
void
js::InterruptRunningJitCode(JSRuntime* rt)
{
    // If signal handlers weren't installed, then Ion and wasm emit normal
    // interrupt checks and don't need asynchronous interruption.
    if (!HaveSignalHandlers())
        return;

    // Do nothing if we're already handling an interrupt here, to avoid races
    // below and in JitRuntime::patchIonBackedges.
    if (!rt->startHandlingJitInterrupt())
        return;

    // If we are on runtime's main thread, then: pc is not in wasm code (so
    // nothing to do for wasm) and we can patch Ion backedges without any
    // special synchronization.
    if (rt == RuntimeForCurrentThread()) {
        RedirectIonBackedgesToInterruptCheck(rt);
        rt->finishHandlingJitInterrupt();
        return;
    }

    // We are not on the runtime's main thread, so to do 1 and 2 above, we need
    // to halt the runtime's main thread first.
#if defined(XP_WIN)
    // On Windows, we can simply suspend the main thread and work directly on
    // its context from this thread. SuspendThread can sporadically fail if the
    // thread is in the middle of a syscall. Rather than retrying in a loop,
    // just wait for the next request for interrupt.
    HANDLE thread = (HANDLE)rt->ownerThreadNative();
    if (SuspendThread(thread) != -1) {
        CONTEXT context;
        context.ContextFlags = CONTEXT_CONTROL;
        if (GetThreadContext(thread, &context)) {
            if (RedirectJitCodeToInterruptCheck(rt, &context))
                SetThreadContext(thread, &context);
        }
        ResumeThread(thread);
    }
    rt->finishHandlingJitInterrupt();
#else
    // On Unix, we instead deliver an async signal to the main thread which
    // halts the thread and callers our JitInterruptHandler (which has already
    // been installed by EnsureSignalHandlersInstalled).
    pthread_t thread = (pthread_t)rt->ownerThreadNative();
    pthread_kill(thread, sInterruptSignal);
#endif
}

MOZ_COLD bool
js::wasm::IsPCInWasmCode(void *pc)
{
    JSRuntime* rt = RuntimeForCurrentThread();
    if (!rt)
        return false;

    MOZ_RELEASE_ASSERT(!rt->handlingSegFault);

    WasmActivation* activation = rt->wasmActivationStack();
    if (!activation)
        return false;

    return !!activation->compartment()->wasm.lookupInstanceDeprecated(pc);
}