summaryrefslogtreecommitdiff
path: root/js/src/jit/x86-shared/MacroAssembler-x86-shared.cpp
blob: 7d86e8edfa5c84eed0d8142aaa65ef1993454c67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/x86-shared/MacroAssembler-x86-shared.h"

#include "jit/JitFrames.h"
#include "jit/MacroAssembler.h"

#include "jit/MacroAssembler-inl.h"

using namespace js;
using namespace js::jit;

// Note: this function clobbers the input register.
void
MacroAssembler::clampDoubleToUint8(FloatRegister input, Register output)
{
    ScratchDoubleScope scratch(*this);
    MOZ_ASSERT(input != scratch);
    Label positive, done;

    // <= 0 or NaN --> 0
    zeroDouble(scratch);
    branchDouble(DoubleGreaterThan, input, scratch, &positive);
    {
        move32(Imm32(0), output);
        jump(&done);
    }

    bind(&positive);

    // Add 0.5 and truncate.
    loadConstantDouble(0.5, scratch);
    addDouble(scratch, input);

    Label outOfRange;

    // Truncate to int32 and ensure the result <= 255. This relies on the
    // processor setting output to a value > 255 for doubles outside the int32
    // range (for instance 0x80000000).
    vcvttsd2si(input, output);
    branch32(Assembler::Above, output, Imm32(255), &outOfRange);
    {
        // Check if we had a tie.
        convertInt32ToDouble(output, scratch);
        branchDouble(DoubleNotEqual, input, scratch, &done);

        // It was a tie. Mask out the ones bit to get an even value.
        // See also js_TypedArray_uint8_clamp_double.
        and32(Imm32(~1), output);
        jump(&done);
    }

    // > 255 --> 255
    bind(&outOfRange);
    {
        move32(Imm32(255), output);
    }

    bind(&done);
}

void
MacroAssembler::alignFrameForICArguments(AfterICSaveLive& aic)
{
    // Exists for MIPS compatibility.
}

void
MacroAssembler::restoreFrameAlignmentForICArguments(AfterICSaveLive& aic)
{
    // Exists for MIPS compatibility.
}

bool
MacroAssemblerX86Shared::buildOOLFakeExitFrame(void* fakeReturnAddr)
{
    uint32_t descriptor = MakeFrameDescriptor(asMasm().framePushed(), JitFrame_IonJS,
                                              ExitFrameLayout::Size());
    asMasm().Push(Imm32(descriptor));
    asMasm().Push(ImmPtr(fakeReturnAddr));
    return true;
}

void
MacroAssemblerX86Shared::branchNegativeZero(FloatRegister reg,
                                            Register scratch,
                                            Label* label,
                                            bool maybeNonZero)
{
    // Determines whether the low double contained in the XMM register reg
    // is equal to -0.0.

#if defined(JS_CODEGEN_X86)
    Label nonZero;

    // if not already compared to zero
    if (maybeNonZero) {
        ScratchDoubleScope scratchDouble(asMasm());

        // Compare to zero. Lets through {0, -0}.
        zeroDouble(scratchDouble);

        // If reg is non-zero, jump to nonZero.
        asMasm().branchDouble(DoubleNotEqual, reg, scratchDouble, &nonZero);
    }
    // Input register is either zero or negative zero. Retrieve sign of input.
    vmovmskpd(reg, scratch);

    // If reg is 1 or 3, input is negative zero.
    // If reg is 0 or 2, input is a normal zero.
    asMasm().branchTest32(NonZero, scratch, Imm32(1), label);

    bind(&nonZero);
#elif defined(JS_CODEGEN_X64)
    vmovq(reg, scratch);
    cmpq(Imm32(1), scratch);
    j(Overflow, label);
#endif
}

void
MacroAssemblerX86Shared::branchNegativeZeroFloat32(FloatRegister reg,
                                                   Register scratch,
                                                   Label* label)
{
    vmovd(reg, scratch);
    cmp32(scratch, Imm32(1));
    j(Overflow, label);
}

MacroAssembler&
MacroAssemblerX86Shared::asMasm()
{
    return *static_cast<MacroAssembler*>(this);
}

const MacroAssembler&
MacroAssemblerX86Shared::asMasm() const
{
    return *static_cast<const MacroAssembler*>(this);
}

template<typename T>
void
MacroAssemblerX86Shared::compareExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem,
                                                        Register oldval, Register newval,
                                                        Register temp, AnyRegister output)
{
    switch (arrayType) {
      case Scalar::Int8:
        compareExchange8SignExtend(mem, oldval, newval, output.gpr());
        break;
      case Scalar::Uint8:
        compareExchange8ZeroExtend(mem, oldval, newval, output.gpr());
        break;
      case Scalar::Int16:
        compareExchange16SignExtend(mem, oldval, newval, output.gpr());
        break;
      case Scalar::Uint16:
        compareExchange16ZeroExtend(mem, oldval, newval, output.gpr());
        break;
      case Scalar::Int32:
        compareExchange32(mem, oldval, newval, output.gpr());
        break;
      case Scalar::Uint32:
        // At the moment, the code in MCallOptimize.cpp requires the output
        // type to be double for uint32 arrays.  See bug 1077305.
        MOZ_ASSERT(output.isFloat());
        compareExchange32(mem, oldval, newval, temp);
        asMasm().convertUInt32ToDouble(temp, output.fpu());
        break;
      default:
        MOZ_CRASH("Invalid typed array type");
    }
}

template void
MacroAssemblerX86Shared::compareExchangeToTypedIntArray(Scalar::Type arrayType, const Address& mem,
                                                        Register oldval, Register newval, Register temp,
                                                        AnyRegister output);
template void
MacroAssemblerX86Shared::compareExchangeToTypedIntArray(Scalar::Type arrayType, const BaseIndex& mem,
                                                        Register oldval, Register newval, Register temp,
                                                        AnyRegister output);

template<typename T>
void
MacroAssemblerX86Shared::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem,
                                                       Register value, Register temp, AnyRegister output)
{
    switch (arrayType) {
      case Scalar::Int8:
        atomicExchange8SignExtend(mem, value, output.gpr());
        break;
      case Scalar::Uint8:
        atomicExchange8ZeroExtend(mem, value, output.gpr());
        break;
      case Scalar::Int16:
        atomicExchange16SignExtend(mem, value, output.gpr());
        break;
      case Scalar::Uint16:
        atomicExchange16ZeroExtend(mem, value, output.gpr());
        break;
      case Scalar::Int32:
        atomicExchange32(mem, value, output.gpr());
        break;
      case Scalar::Uint32:
        // At the moment, the code in MCallOptimize.cpp requires the output
        // type to be double for uint32 arrays.  See bug 1077305.
        MOZ_ASSERT(output.isFloat());
        atomicExchange32(mem, value, temp);
        asMasm().convertUInt32ToDouble(temp, output.fpu());
        break;
      default:
        MOZ_CRASH("Invalid typed array type");
    }
}

template void
MacroAssemblerX86Shared::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const Address& mem,
                                                       Register value, Register temp, AnyRegister output);
template void
MacroAssemblerX86Shared::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const BaseIndex& mem,
                                                       Register value, Register temp, AnyRegister output);

template<class T, class Map>
T*
MacroAssemblerX86Shared::getConstant(const typename T::Pod& value, Map& map,
                                     Vector<T, 0, SystemAllocPolicy>& vec)
{
    typedef typename Map::AddPtr AddPtr;
    if (!map.initialized()) {
        enoughMemory_ &= map.init();
        if (!enoughMemory_)
            return nullptr;
    }
    size_t index;
    if (AddPtr p = map.lookupForAdd(value)) {
        index = p->value();
    } else {
        index = vec.length();
        enoughMemory_ &= vec.append(T(value));
        if (!enoughMemory_)
            return nullptr;
        enoughMemory_ &= map.add(p, value, index);
        if (!enoughMemory_)
            return nullptr;
    }
    return &vec[index];
}

MacroAssemblerX86Shared::Float*
MacroAssemblerX86Shared::getFloat(wasm::RawF32 f)
{
    return getConstant<Float, FloatMap>(f.bits(), floatMap_, floats_);
}

MacroAssemblerX86Shared::Double*
MacroAssemblerX86Shared::getDouble(wasm::RawF64 d)
{
    return getConstant<Double, DoubleMap>(d.bits(), doubleMap_, doubles_);
}

MacroAssemblerX86Shared::SimdData*
MacroAssemblerX86Shared::getSimdData(const SimdConstant& v)
{
    return getConstant<SimdData, SimdMap>(v, simdMap_, simds_);
}

template<class T, class Map>
static bool
MergeConstants(size_t delta, const Vector<T, 0, SystemAllocPolicy>& other,
               Map& map, Vector<T, 0, SystemAllocPolicy>& vec)
{
    typedef typename Map::AddPtr AddPtr;
    if (!map.initialized() && !map.init())
        return false;

    for (const T& c : other) {
        size_t index;
        if (AddPtr p = map.lookupForAdd(c.value)) {
            index = p->value();
        } else {
            index = vec.length();
            if (!vec.append(T(c.value)) || !map.add(p, c.value, index))
                return false;
        }
        MacroAssemblerX86Shared::UsesVector& uses = vec[index].uses;
        for (CodeOffset use : c.uses) {
            use.offsetBy(delta);
            if (!uses.append(use))
                return false;
        }
    }

    return true;
}

bool
MacroAssemblerX86Shared::asmMergeWith(const MacroAssemblerX86Shared& other)
{
    size_t sizeBefore = masm.size();
    if (!Assembler::asmMergeWith(other))
        return false;
    if (!MergeConstants<Double, DoubleMap>(sizeBefore, other.doubles_, doubleMap_, doubles_))
        return false;
    if (!MergeConstants<Float, FloatMap>(sizeBefore, other.floats_, floatMap_, floats_))
        return false;
    if (!MergeConstants<SimdData, SimdMap>(sizeBefore, other.simds_, simdMap_, simds_))
        return false;
    return true;
}

void
MacroAssemblerX86Shared::minMaxDouble(FloatRegister first, FloatRegister second, bool canBeNaN,
                                      bool isMax)
{
    Label done, nan, minMaxInst;

    // Do a vucomisd to catch equality and NaNs, which both require special
    // handling. If the operands are ordered and inequal, we branch straight to
    // the min/max instruction. If we wanted, we could also branch for less-than
    // or greater-than here instead of using min/max, however these conditions
    // will sometimes be hard on the branch predictor.
    vucomisd(second, first);
    j(Assembler::NotEqual, &minMaxInst);
    if (canBeNaN)
        j(Assembler::Parity, &nan);

    // Ordered and equal. The operands are bit-identical unless they are zero
    // and negative zero. These instructions merge the sign bits in that
    // case, and are no-ops otherwise.
    if (isMax)
        vandpd(second, first, first);
    else
        vorpd(second, first, first);
    jump(&done);

    // x86's min/max are not symmetric; if either operand is a NaN, they return
    // the read-only operand. We need to return a NaN if either operand is a
    // NaN, so we explicitly check for a NaN in the read-write operand.
    if (canBeNaN) {
        bind(&nan);
        vucomisd(first, first);
        j(Assembler::Parity, &done);
    }

    // When the values are inequal, or second is NaN, x86's min and max will
    // return the value we need.
    bind(&minMaxInst);
    if (isMax)
        vmaxsd(second, first, first);
    else
        vminsd(second, first, first);

    bind(&done);
}

void
MacroAssemblerX86Shared::minMaxFloat32(FloatRegister first, FloatRegister second, bool canBeNaN,
                                       bool isMax)
{
    Label done, nan, minMaxInst;

    // Do a vucomiss to catch equality and NaNs, which both require special
    // handling. If the operands are ordered and inequal, we branch straight to
    // the min/max instruction. If we wanted, we could also branch for less-than
    // or greater-than here instead of using min/max, however these conditions
    // will sometimes be hard on the branch predictor.
    vucomiss(second, first);
    j(Assembler::NotEqual, &minMaxInst);
    if (canBeNaN)
        j(Assembler::Parity, &nan);

    // Ordered and equal. The operands are bit-identical unless they are zero
    // and negative zero. These instructions merge the sign bits in that
    // case, and are no-ops otherwise.
    if (isMax)
        vandps(second, first, first);
    else
        vorps(second, first, first);
    jump(&done);

    // x86's min/max are not symmetric; if either operand is a NaN, they return
    // the read-only operand. We need to return a NaN if either operand is a
    // NaN, so we explicitly check for a NaN in the read-write operand.
    if (canBeNaN) {
        bind(&nan);
        vucomiss(first, first);
        j(Assembler::Parity, &done);
    }

    // When the values are inequal, or second is NaN, x86's min and max will
    // return the value we need.
    bind(&minMaxInst);
    if (isMax)
        vmaxss(second, first, first);
    else
        vminss(second, first, first);

    bind(&done);
}

//{{{ check_macroassembler_style
// ===============================================================
// MacroAssembler high-level usage.

void
MacroAssembler::flush()
{
}

void
MacroAssembler::comment(const char* msg)
{
    masm.comment(msg);
}

// ===============================================================
// Stack manipulation functions.

void
MacroAssembler::PushRegsInMask(LiveRegisterSet set)
{
    FloatRegisterSet fpuSet(set.fpus().reduceSetForPush());
    unsigned numFpu = fpuSet.size();
    int32_t diffF = fpuSet.getPushSizeInBytes();
    int32_t diffG = set.gprs().size() * sizeof(intptr_t);

    // On x86, always use push to push the integer registers, as it's fast
    // on modern hardware and it's a small instruction.
    for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) {
        diffG -= sizeof(intptr_t);
        Push(*iter);
    }
    MOZ_ASSERT(diffG == 0);

    reserveStack(diffF);
    for (FloatRegisterBackwardIterator iter(fpuSet); iter.more(); ++iter) {
        FloatRegister reg = *iter;
        diffF -= reg.size();
        numFpu -= 1;
        Address spillAddress(StackPointer, diffF);
        if (reg.isDouble())
            storeDouble(reg, spillAddress);
        else if (reg.isSingle())
            storeFloat32(reg, spillAddress);
        else if (reg.isSimd128())
            storeUnalignedSimd128Float(reg, spillAddress);
        else
            MOZ_CRASH("Unknown register type.");
    }
    MOZ_ASSERT(numFpu == 0);
    // x64 padding to keep the stack aligned on uintptr_t. Keep in sync with
    // GetPushBytesInSize.
    diffF -= diffF % sizeof(uintptr_t);
    MOZ_ASSERT(diffF == 0);
}

void
MacroAssembler::PopRegsInMaskIgnore(LiveRegisterSet set, LiveRegisterSet ignore)
{
    FloatRegisterSet fpuSet(set.fpus().reduceSetForPush());
    unsigned numFpu = fpuSet.size();
    int32_t diffG = set.gprs().size() * sizeof(intptr_t);
    int32_t diffF = fpuSet.getPushSizeInBytes();
    const int32_t reservedG = diffG;
    const int32_t reservedF = diffF;

    for (FloatRegisterBackwardIterator iter(fpuSet); iter.more(); ++iter) {
        FloatRegister reg = *iter;
        diffF -= reg.size();
        numFpu -= 1;
        if (ignore.has(reg))
            continue;

        Address spillAddress(StackPointer, diffF);
        if (reg.isDouble())
            loadDouble(spillAddress, reg);
        else if (reg.isSingle())
            loadFloat32(spillAddress, reg);
        else if (reg.isSimd128())
            loadUnalignedSimd128Float(spillAddress, reg);
        else
            MOZ_CRASH("Unknown register type.");
    }
    freeStack(reservedF);
    MOZ_ASSERT(numFpu == 0);
    // x64 padding to keep the stack aligned on uintptr_t. Keep in sync with
    // GetPushBytesInSize.
    diffF -= diffF % sizeof(uintptr_t);
    MOZ_ASSERT(diffF == 0);

    // On x86, use pop to pop the integer registers, if we're not going to
    // ignore any slots, as it's fast on modern hardware and it's a small
    // instruction.
    if (ignore.emptyGeneral()) {
        for (GeneralRegisterForwardIterator iter(set.gprs()); iter.more(); ++iter) {
            diffG -= sizeof(intptr_t);
            Pop(*iter);
        }
    } else {
        for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) {
            diffG -= sizeof(intptr_t);
            if (!ignore.has(*iter))
                loadPtr(Address(StackPointer, diffG), *iter);
        }
        freeStack(reservedG);
    }
    MOZ_ASSERT(diffG == 0);
}

void
MacroAssembler::Push(const Operand op)
{
    push(op);
    adjustFrame(sizeof(intptr_t));
}

void
MacroAssembler::Push(Register reg)
{
    push(reg);
    adjustFrame(sizeof(intptr_t));
}

void
MacroAssembler::Push(const Imm32 imm)
{
    push(imm);
    adjustFrame(sizeof(intptr_t));
}

void
MacroAssembler::Push(const ImmWord imm)
{
    push(imm);
    adjustFrame(sizeof(intptr_t));
}

void
MacroAssembler::Push(const ImmPtr imm)
{
    Push(ImmWord(uintptr_t(imm.value)));
}

void
MacroAssembler::Push(const ImmGCPtr ptr)
{
    push(ptr);
    adjustFrame(sizeof(intptr_t));
}

void
MacroAssembler::Push(FloatRegister t)
{
    push(t);
    adjustFrame(sizeof(double));
}

void
MacroAssembler::Pop(const Operand op)
{
    pop(op);
    implicitPop(sizeof(intptr_t));
}

void
MacroAssembler::Pop(Register reg)
{
    pop(reg);
    implicitPop(sizeof(intptr_t));
}

void
MacroAssembler::Pop(FloatRegister reg)
{
    pop(reg);
    implicitPop(sizeof(double));
}

void
MacroAssembler::Pop(const ValueOperand& val)
{
    popValue(val);
    implicitPop(sizeof(Value));
}

// ===============================================================
// Simple call functions.

CodeOffset
MacroAssembler::call(Register reg)
{
    return Assembler::call(reg);
}

CodeOffset
MacroAssembler::call(Label* label)
{
    return Assembler::call(label);
}

void
MacroAssembler::call(const Address& addr)
{
    Assembler::call(Operand(addr.base, addr.offset));
}

void
MacroAssembler::call(wasm::SymbolicAddress target)
{
    mov(target, eax);
    Assembler::call(eax);
}

void
MacroAssembler::call(ImmWord target)
{
    Assembler::call(target);
}

void
MacroAssembler::call(ImmPtr target)
{
    Assembler::call(target);
}

void
MacroAssembler::call(JitCode* target)
{
    Assembler::call(target);
}

CodeOffset
MacroAssembler::callWithPatch()
{
    return Assembler::callWithPatch();
}
void
MacroAssembler::patchCall(uint32_t callerOffset, uint32_t calleeOffset)
{
    Assembler::patchCall(callerOffset, calleeOffset);
}

void
MacroAssembler::callAndPushReturnAddress(Register reg)
{
    call(reg);
}

void
MacroAssembler::callAndPushReturnAddress(Label* label)
{
    call(label);
}

// ===============================================================
// Patchable near/far jumps.

CodeOffset
MacroAssembler::farJumpWithPatch()
{
    return Assembler::farJumpWithPatch();
}

void
MacroAssembler::patchFarJump(CodeOffset farJump, uint32_t targetOffset)
{
    Assembler::patchFarJump(farJump, targetOffset);
}

void
MacroAssembler::repatchFarJump(uint8_t* code, uint32_t farJumpOffset, uint32_t targetOffset)
{
    Assembler::repatchFarJump(code, farJumpOffset, targetOffset);
}

CodeOffset
MacroAssembler::nopPatchableToNearJump()
{
    return Assembler::twoByteNop();
}

void
MacroAssembler::patchNopToNearJump(uint8_t* jump, uint8_t* target)
{
    Assembler::patchTwoByteNopToJump(jump, target);
}

void
MacroAssembler::patchNearJumpToNop(uint8_t* jump)
{
    Assembler::patchJumpToTwoByteNop(jump);
}

// ===============================================================
// Jit Frames.

uint32_t
MacroAssembler::pushFakeReturnAddress(Register scratch)
{
    CodeLabel cl;

    mov(cl.patchAt(), scratch);
    Push(scratch);
    use(cl.target());
    uint32_t retAddr = currentOffset();

    addCodeLabel(cl);
    return retAddr;
}

// wasm specific methods, used in both the wasm baseline compiler and ion.

// RAII class that generates the jumps to traps when it's destructed, to
// prevent some code duplication in the outOfLineWasmTruncateXtoY methods.
struct MOZ_RAII AutoHandleWasmTruncateToIntErrors
{
    MacroAssembler& masm;
    Label inputIsNaN;
    Label fail;
    wasm::TrapOffset off;

    explicit AutoHandleWasmTruncateToIntErrors(MacroAssembler& masm, wasm::TrapOffset off)
      : masm(masm), off(off)
    { }

    ~AutoHandleWasmTruncateToIntErrors() {
        // Handle errors.
        masm.bind(&fail);
        masm.jump(wasm::TrapDesc(off, wasm::Trap::IntegerOverflow, masm.framePushed()));

        masm.bind(&inputIsNaN);
        masm.jump(wasm::TrapDesc(off, wasm::Trap::InvalidConversionToInteger, masm.framePushed()));
    }
};

void
MacroAssembler::wasmTruncateDoubleToInt32(FloatRegister input, Register output, Label* oolEntry)
{
    vcvttsd2si(input, output);
    cmp32(output, Imm32(1));
    j(Assembler::Overflow, oolEntry);
}

void
MacroAssembler::wasmTruncateFloat32ToInt32(FloatRegister input, Register output, Label* oolEntry)
{
    vcvttss2si(input, output);
    cmp32(output, Imm32(1));
    j(Assembler::Overflow, oolEntry);
}

void
MacroAssembler::outOfLineWasmTruncateDoubleToInt32(FloatRegister input, bool isUnsigned,
                                                   wasm::TrapOffset off, Label* rejoin)
{
    AutoHandleWasmTruncateToIntErrors traps(*this, off);

    // Eagerly take care of NaNs.
    branchDouble(Assembler::DoubleUnordered, input, input, &traps.inputIsNaN);

    // Handle special values (not needed for unsigned values).
    if (isUnsigned)
        return;

    // We've used vcvttsd2si. The only valid double values that can
    // truncate to INT32_MIN are in ]INT32_MIN - 1; INT32_MIN].
    loadConstantDouble(double(INT32_MIN) - 1.0, ScratchDoubleReg);
    branchDouble(Assembler::DoubleLessThanOrEqual, input, ScratchDoubleReg, &traps.fail);

    loadConstantDouble(double(INT32_MIN), ScratchDoubleReg);
    branchDouble(Assembler::DoubleGreaterThan, input, ScratchDoubleReg, &traps.fail);
    jump(rejoin);
}

void
MacroAssembler::outOfLineWasmTruncateFloat32ToInt32(FloatRegister input, bool isUnsigned,
                                                    wasm::TrapOffset off, Label* rejoin)
{
    AutoHandleWasmTruncateToIntErrors traps(*this, off);

    // Eagerly take care of NaNs.
    branchFloat(Assembler::DoubleUnordered, input, input, &traps.inputIsNaN);

    // Handle special values (not needed for unsigned values).
    if (isUnsigned)
        return;

    // We've used vcvttss2si. Check that the input wasn't
    // float(INT32_MIN), which is the only legimitate input that
    // would truncate to INT32_MIN.
    loadConstantFloat32(float(INT32_MIN), ScratchFloat32Reg);
    branchFloat(Assembler::DoubleNotEqual, input, ScratchFloat32Reg, &traps.fail);
    jump(rejoin);
}

void
MacroAssembler::outOfLineWasmTruncateDoubleToInt64(FloatRegister input, bool isUnsigned,
                                                   wasm::TrapOffset off, Label* rejoin)
{
    AutoHandleWasmTruncateToIntErrors traps(*this, off);

    // Eagerly take care of NaNs.
    branchDouble(Assembler::DoubleUnordered, input, input, &traps.inputIsNaN);

    // Handle special values.
    if (isUnsigned) {
        loadConstantDouble(-0.0, ScratchDoubleReg);
        branchDouble(Assembler::DoubleGreaterThan, input, ScratchDoubleReg, &traps.fail);
        loadConstantDouble(-1.0, ScratchDoubleReg);
        branchDouble(Assembler::DoubleLessThanOrEqual, input, ScratchDoubleReg, &traps.fail);
        jump(rejoin);
        return;
    }

    // We've used vcvtsd2sq. The only legit value whose i64
    // truncation is INT64_MIN is double(INT64_MIN): exponent is so
    // high that the highest resolution around is much more than 1.
    loadConstantDouble(double(int64_t(INT64_MIN)), ScratchDoubleReg);
    branchDouble(Assembler::DoubleNotEqual, input, ScratchDoubleReg, &traps.fail);
    jump(rejoin);
}

void
MacroAssembler::outOfLineWasmTruncateFloat32ToInt64(FloatRegister input, bool isUnsigned,
                                                    wasm::TrapOffset off, Label* rejoin)
{
    AutoHandleWasmTruncateToIntErrors traps(*this, off);

    // Eagerly take care of NaNs.
    branchFloat(Assembler::DoubleUnordered, input, input, &traps.inputIsNaN);

    // Handle special values.
    if (isUnsigned) {
        loadConstantFloat32(-0.0f, ScratchFloat32Reg);
        branchFloat(Assembler::DoubleGreaterThan, input, ScratchFloat32Reg, &traps.fail);
        loadConstantFloat32(-1.0f, ScratchFloat32Reg);
        branchFloat(Assembler::DoubleLessThanOrEqual, input, ScratchFloat32Reg, &traps.fail);
        jump(rejoin);
        return;
    }

    // We've used vcvtss2sq. See comment in outOfLineWasmTruncateDoubleToInt64.
    loadConstantFloat32(float(int64_t(INT64_MIN)), ScratchFloat32Reg);
    branchFloat(Assembler::DoubleNotEqual, input, ScratchFloat32Reg, &traps.fail);
    jump(rejoin);
}

//}}} check_macroassembler_style