summaryrefslogtreecommitdiff
path: root/js/src/jit/x86-shared/AtomicOperations-x86-shared.h
blob: b34aba7ef06f422ff4c3a2a0e7bc7057e0146355 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* For overall documentation, see jit/AtomicOperations.h */

#ifndef jit_shared_AtomicOperations_x86_shared_h
#define jit_shared_AtomicOperations_x86_shared_h

#include "mozilla/Assertions.h"
#include "mozilla/Types.h"

// Lock-freedom on x86 and x64:
//
// On x86 and x64 there are atomic instructions for 8-byte accesses:
//
// Load and stores:
// - Loads and stores are single-copy atomic for up to 8 bytes
//   starting with the Pentium; the store requires a post-fence for
//   sequential consistency
//
// CompareExchange:
// - On x64 CMPXCHGQ can always be used
// - On x86 CMPXCHG8B can be used starting with the first Pentium
//
// Exchange:
// - On x64 XCHGQ can always be used
// - On x86 one has to use a CompareExchange loop
//
// Observe also that the JIT will not be enabled unless we have SSE2,
// which was introduced with the Pentium 4.  Ergo the JIT will be able
// to use atomic instructions for up to 8 bytes on all x86 platforms
// for the primitives we care about.
//
// However, C++ compilers and libraries may not provide access to
// those 8-byte instructions directly.  Clang in 32-bit mode does not
// provide 8-byte atomic primitives at all (even with eg -arch i686
// specified).  On Windows 32-bit, MSVC does not provide
// _InterlockedExchange64 since it does not map directly to an
// instruction.
//
// There are thus sundry workarounds below to handle known corner
// cases.

#if defined(__clang__) || defined(__GNUC__)

// The default implementation tactic for gcc/clang is to use the newer
// __atomic intrinsics added for use in C++11 <atomic>.  Where that
// isn't available, we use GCC's older __sync functions instead.
//
// ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS is kept as a backward
// compatible option for older compilers: enable this to use GCC's old
// __sync functions instead of the newer __atomic functions.  This
// will be required for GCC 4.6.x and earlier, and probably for Clang
// 3.1, should we need to use those versions.

// #define ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS

// Lock-free 8-byte atomics are assumed on x86 but must be disabled in
// corner cases, see comments below and in isLockfree8().

# define LOCKFREE8

// This pertains to Clang compiling with -m32, in this case the 64-bit
// __atomic builtins are not available (observed on various Mac OS X
// versions with Apple Clang and on Linux with Clang 3.5).
//
// For now just punt: disable lock-free 8-word data.  The JIT will
// call isLockfree8() to determine what to do and will stay in sync.
// (Bug 1146817 tracks the work to improve on this.)

# if defined(__clang__) && defined(__i386)
#  undef LOCKFREE8
# endif

inline bool
js::jit::AtomicOperations::isLockfree8()
{
# ifndef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    MOZ_ASSERT(__atomic_always_lock_free(sizeof(int8_t), 0));
    MOZ_ASSERT(__atomic_always_lock_free(sizeof(int16_t), 0));
    MOZ_ASSERT(__atomic_always_lock_free(sizeof(int32_t), 0));
# endif
# ifdef LOCKFREE8
#  ifndef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    MOZ_ASSERT(__atomic_always_lock_free(sizeof(int64_t), 0));
#  endif
    return true;
# else
    return false;
# endif
}

inline void
js::jit::AtomicOperations::fenceSeqCst()
{
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    __sync_synchronize();
# else
    __atomic_thread_fence(__ATOMIC_SEQ_CST);
# endif
}

template<typename T>
inline T
js::jit::AtomicOperations::loadSeqCst(T* addr)
{
    MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    // Inhibit compiler reordering with a volatile load.  The x86 does
    // not reorder loads with respect to subsequent loads or stores
    // and no ordering barrier is required here.  See more elaborate
    // comments in storeSeqCst.
    T v = *static_cast<T volatile*>(addr);
# else
    T v;
    __atomic_load(addr, &v, __ATOMIC_SEQ_CST);
# endif
    return v;
}

# ifndef LOCKFREE8
template<>
inline int64_t
js::jit::AtomicOperations::loadSeqCst(int64_t* addr)
{
    MOZ_CRASH();
}

template<>
inline uint64_t
js::jit::AtomicOperations::loadSeqCst(uint64_t* addr)
{
    MOZ_CRASH();
}
# endif // LOCKFREE8

template<typename T>
inline void
js::jit::AtomicOperations::storeSeqCst(T* addr, T val)
{
    MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    // Inhibit compiler reordering with a volatile store.  The x86 may
    // reorder a store with respect to a subsequent load from a
    // different location, hence there is an ordering barrier here to
    // prevent that.
    //
    // By way of background, look to eg
    // http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
    //
    // Consider:
    //
    //   uint8_t x = 0, y = 0; // to start
    //
    // thread1:
    //   sx: AtomicOperations::store(&x, 1);
    //   gy: uint8_t obs1 = AtomicOperations::loadSeqCst(&y);
    //
    // thread2:
    //   sy: AtomicOperations::store(&y, 1);
    //   gx: uint8_t obs2 = AtomicOperations::loadSeqCst(&x);
    //
    // Sequential consistency requires a total global ordering of
    // operations: sx-gy-sy-gx, sx-sy-gx-gy, sx-sy-gy-gx, sy-gx-sx-gy,
    // sy-sx-gy-gx, or sy-sx-gx-gy.  In every ordering at least one of
    // sx-before-gx or sy-before-gy happens, so *at least one* of
    // obs1/obs2 is 1.
    //
    // If AtomicOperations::{load,store}SeqCst were just volatile
    // {load,store}, x86 could reorder gx/gy before each thread's
    // prior load.  That would permit gx-gy-sx-sy: both loads would be
    // 0!  Thus after a volatile store we must synchronize to ensure
    // the store happens before the load.
    *static_cast<T volatile*>(addr) = val;
    __sync_synchronize();
# else
    __atomic_store(addr, &val, __ATOMIC_SEQ_CST);
# endif
}

# ifndef LOCKFREE8
template<>
inline void
js::jit::AtomicOperations::storeSeqCst(int64_t* addr, int64_t val)
{
    MOZ_CRASH();
}

template<>
inline void
js::jit::AtomicOperations::storeSeqCst(uint64_t* addr, uint64_t val)
{
    MOZ_CRASH();
}
# endif // LOCKFREE8

template<typename T>
inline T
js::jit::AtomicOperations::exchangeSeqCst(T* addr, T val)
{
    MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    T v;
    do {
        // Here I assume the compiler will not hoist the load.  It
        // shouldn't, because the CAS could affect* addr.
        v = *addr;
    } while (!__sync_bool_compare_and_swap(addr, v, val));
    return v;
# else
    T v;
    __atomic_exchange(addr, &val, &v, __ATOMIC_SEQ_CST);
    return v;
# endif
}

# ifndef LOCKFREE8
template<>
inline int64_t
js::jit::AtomicOperations::exchangeSeqCst(int64_t* addr, int64_t val)
{
    MOZ_CRASH();
}

template<>
inline uint64_t
js::jit::AtomicOperations::exchangeSeqCst(uint64_t* addr, uint64_t val)
{
    MOZ_CRASH();
}
# endif // LOCKFREE8

template<typename T>
inline T
js::jit::AtomicOperations::compareExchangeSeqCst(T* addr, T oldval, T newval)
{
    MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    return __sync_val_compare_and_swap(addr, oldval, newval);
# else
    __atomic_compare_exchange(addr, &oldval, &newval, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);
    return oldval;
# endif
}

# ifndef LOCKFREE8
template<>
inline int64_t
js::jit::AtomicOperations::compareExchangeSeqCst(int64_t* addr, int64_t oldval, int64_t newval)
{
    MOZ_CRASH();
}

template<>
inline uint64_t
js::jit::AtomicOperations::compareExchangeSeqCst(uint64_t* addr, uint64_t oldval, uint64_t newval)
{
    MOZ_CRASH();
}
# endif // LOCKFREE8

template<typename T>
inline T
js::jit::AtomicOperations::fetchAddSeqCst(T* addr, T val)
{
    static_assert(sizeof(T) <= 4, "not available for 8-byte values yet");
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    return __sync_fetch_and_add(addr, val);
# else
    return __atomic_fetch_add(addr, val, __ATOMIC_SEQ_CST);
# endif
}

template<typename T>
inline T
js::jit::AtomicOperations::fetchSubSeqCst(T* addr, T val)
{
    static_assert(sizeof(T) <= 4, "not available for 8-byte values yet");
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    return __sync_fetch_and_sub(addr, val);
# else
    return __atomic_fetch_sub(addr, val, __ATOMIC_SEQ_CST);
# endif
}

template<typename T>
inline T
js::jit::AtomicOperations::fetchAndSeqCst(T* addr, T val)
{
    static_assert(sizeof(T) <= 4, "not available for 8-byte values yet");
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    return __sync_fetch_and_and(addr, val);
# else
    return __atomic_fetch_and(addr, val, __ATOMIC_SEQ_CST);
# endif
}

template<typename T>
inline T
js::jit::AtomicOperations::fetchOrSeqCst(T* addr, T val)
{
    static_assert(sizeof(T) <= 4, "not available for 8-byte values yet");
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    return __sync_fetch_and_or(addr, val);
# else
    return __atomic_fetch_or(addr, val, __ATOMIC_SEQ_CST);
# endif
}

template<typename T>
inline T
js::jit::AtomicOperations::fetchXorSeqCst(T* addr, T val)
{
    static_assert(sizeof(T) <= 4, "not available for 8-byte values yet");
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    return __sync_fetch_and_xor(addr, val);
# else
    return __atomic_fetch_xor(addr, val, __ATOMIC_SEQ_CST);
# endif
}

template<typename T>
inline T
js::jit::AtomicOperations::loadSafeWhenRacy(T* addr)
{
    return *addr;               // FIXME (1208663): not yet safe
}

template<typename T>
inline void
js::jit::AtomicOperations::storeSafeWhenRacy(T* addr, T val)
{
    *addr = val;                // FIXME (1208663): not yet safe
}

inline void
js::jit::AtomicOperations::memcpySafeWhenRacy(void* dest, const void* src, size_t nbytes)
{
    ::memcpy(dest, src, nbytes); // FIXME (1208663): not yet safe
}

inline void
js::jit::AtomicOperations::memmoveSafeWhenRacy(void* dest, const void* src, size_t nbytes)
{
    ::memmove(dest, src, nbytes); // FIXME (1208663): not yet safe
}

template<size_t nbytes>
inline void
js::jit::RegionLock::acquire(void* addr)
{
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    while (!__sync_bool_compare_and_swap(&spinlock, 0, 1))
        continue;
# else
    uint32_t zero = 0;
    uint32_t one = 1;
    while (!__atomic_compare_exchange(&spinlock, &zero, &one, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE)) {
        zero = 0;
        continue;
    }
# endif
}

template<size_t nbytes>
inline void
js::jit::RegionLock::release(void* addr)
{
    MOZ_ASSERT(AtomicOperations::loadSeqCst(&spinlock) == 1, "releasing unlocked region lock");
# ifdef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
    __sync_sub_and_fetch(&spinlock, 1); // Should turn into LOCK XADD
# else
    uint32_t zero = 0;
    __atomic_store(&spinlock, &zero, __ATOMIC_SEQ_CST);
# endif
}

# undef ATOMICS_IMPLEMENTED_WITH_SYNC_INTRINSICS
# undef LOCKFREE8

#elif defined(_MSC_VER)

// On 32-bit CPUs there is no 64-bit XCHG instruction, one must
// instead use a loop with CMPXCHG8B.  Since MSVC provides
// _InterlockedExchange64 only if it maps directly to XCHG, the
// workaround must be manual.

# define HAVE_EXCHANGE64

# if !_WIN64
#  undef HAVE_EXCHANGE64
# endif

// Below, _ReadWriteBarrier is a compiler directive, preventing
// reordering of instructions and reuse of memory values across it.

inline bool
js::jit::AtomicOperations::isLockfree8()
{
    // See general comments at the start of this file.
    //
    // The MSDN docs suggest very strongly that if code is compiled for
    // Pentium or better the 64-bit primitives will be lock-free, see
    // eg the "Remarks" secion of the page for _InterlockedCompareExchange64,
    // currently here:
    // https://msdn.microsoft.com/en-us/library/ttk2z1ws%28v=vs.85%29.aspx
    //
    // But I've found no way to assert that at compile time or run time,
    // there appears to be no WinAPI is_lock_free() test.
    return true;
}

inline void
js::jit::AtomicOperations::fenceSeqCst()
{
    _ReadWriteBarrier();
# if JS_BITS_PER_WORD == 32
    // If configured for SSE2+ we can use the MFENCE instruction, available
    // through the _mm_mfence intrinsic.  But for non-SSE2 systems we have
    // to do something else.  Linux uses "lock add [esp], 0", so why not?
    __asm lock add [esp], 0;
# else
    _mm_mfence();
# endif
}

template<typename T>
inline T
js::jit::AtomicOperations::loadSeqCst(T* addr)
{
    MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());
    _ReadWriteBarrier();
    T v = *addr;
    _ReadWriteBarrier();
    return v;
}

template<typename T>
inline void
js::jit::AtomicOperations::storeSeqCst(T* addr, T val)
{
    MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());
    _ReadWriteBarrier();
    *addr = val;
    fenceSeqCst();
}

# define MSC_EXCHANGEOP(T, U, xchgop)                           \
    template<> inline T                                         \
    js::jit::AtomicOperations::exchangeSeqCst(T* addr, T val) { \
        MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());        \
        return (T)xchgop((U volatile*)addr, (U)val);            \
    }

# define MSC_EXCHANGEOP_CAS(T, U, cmpxchg)                           \
    template<> inline T                                              \
    js::jit::AtomicOperations::exchangeSeqCst(T* addr, T newval) {   \
        MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());             \
        T oldval;                                                    \
        do {                                                         \
            _ReadWriteBarrier();                                     \
            oldval = *addr;                                          \
        } while (!cmpxchg((U volatile*)addr, (U)newval, (U)oldval)); \
        return oldval;                                               \
    }

MSC_EXCHANGEOP(int8_t, char, _InterlockedExchange8)
MSC_EXCHANGEOP(uint8_t, char, _InterlockedExchange8)
MSC_EXCHANGEOP(int16_t, short, _InterlockedExchange16)
MSC_EXCHANGEOP(uint16_t, short, _InterlockedExchange16)
MSC_EXCHANGEOP(int32_t, long, _InterlockedExchange)
MSC_EXCHANGEOP(uint32_t, long, _InterlockedExchange)
# ifdef HAVE_EXCHANGE64
MSC_EXCHANGEOP(int64_t, __int64, _InterlockedExchange64)
MSC_EXCHANGEOP(uint64_t, __int64, _InterlockedExchange64)
# else
MSC_EXCHANGEOP_CAS(int64_t, __int64, _InterlockedCompareExchange64)
MSC_EXCHANGEOP_CAS(uint64_t, __int64, _InterlockedCompareExchange64)
# endif

# undef MSC_EXCHANGEOP
# undef MSC_EXCHANGEOP_CAS

# define MSC_CAS(T, U, cmpxchg)                                                     \
    template<> inline T                                                             \
    js::jit::AtomicOperations::compareExchangeSeqCst(T* addr, T oldval, T newval) { \
        MOZ_ASSERT(sizeof(T) < 8 || isLockfree8());                            \
        return (T)cmpxchg((U volatile*)addr, (U)newval, (U)oldval);                 \
    }

MSC_CAS(int8_t, char, _InterlockedCompareExchange8)
MSC_CAS(uint8_t, char, _InterlockedCompareExchange8)
MSC_CAS(int16_t, short, _InterlockedCompareExchange16)
MSC_CAS(uint16_t, short, _InterlockedCompareExchange16)
MSC_CAS(int32_t, long, _InterlockedCompareExchange)
MSC_CAS(uint32_t, long, _InterlockedCompareExchange)
MSC_CAS(int64_t, __int64, _InterlockedCompareExchange64)
MSC_CAS(uint64_t, __int64, _InterlockedCompareExchange64)

# undef MSC_CAS

# define MSC_FETCHADDOP(T, U, xadd)                                           \
    template<> inline T                                                       \
    js::jit::AtomicOperations::fetchAddSeqCst(T* addr, T val) {               \
        static_assert(sizeof(T) <= 4, "not available for 8-byte values yet"); \
        return (T)xadd((U volatile*)addr, (U)val);                            \
    }                                                                         \
    template<> inline T                                                       \
    js::jit::AtomicOperations::fetchSubSeqCst(T* addr, T val) {               \
        static_assert(sizeof(T) <= 4, "not available for 8-byte values yet"); \
        return (T)xadd((U volatile*)addr, -(U)val);                           \
    }

MSC_FETCHADDOP(int8_t, char, _InterlockedExchangeAdd8)
MSC_FETCHADDOP(uint8_t, char, _InterlockedExchangeAdd8)
MSC_FETCHADDOP(int16_t, short, _InterlockedExchangeAdd16)
MSC_FETCHADDOP(uint16_t, short, _InterlockedExchangeAdd16)
MSC_FETCHADDOP(int32_t, long, _InterlockedExchangeAdd)
MSC_FETCHADDOP(uint32_t, long, _InterlockedExchangeAdd)

# undef MSC_FETCHADDOP

# define MSC_FETCHBITOP(T, U, andop, orop, xorop)                             \
    template<> inline T                                                       \
    js::jit::AtomicOperations::fetchAndSeqCst(T* addr, T val) {               \
        static_assert(sizeof(T) <= 4, "not available for 8-byte values yet"); \
        return (T)andop((U volatile*)addr, (U)val);                           \
    }                                                                         \
    template<> inline T                                                       \
    js::jit::AtomicOperations::fetchOrSeqCst(T* addr, T val) {                \
        static_assert(sizeof(T) <= 4, "not available for 8-byte values yet"); \
        return (T)orop((U volatile*)addr, (U)val);                            \
    }                                                                         \
    template<> inline T                                                       \
    js::jit::AtomicOperations::fetchXorSeqCst(T* addr, T val) {               \
        static_assert(sizeof(T) <= 4, "not available for 8-byte values yet"); \
        return (T)xorop((U volatile*)addr, (U)val);                           \
    }

MSC_FETCHBITOP(int8_t, char, _InterlockedAnd8, _InterlockedOr8, _InterlockedXor8)
MSC_FETCHBITOP(uint8_t, char, _InterlockedAnd8, _InterlockedOr8, _InterlockedXor8)
MSC_FETCHBITOP(int16_t, short, _InterlockedAnd16, _InterlockedOr16, _InterlockedXor16)
MSC_FETCHBITOP(uint16_t, short, _InterlockedAnd16, _InterlockedOr16, _InterlockedXor16)
MSC_FETCHBITOP(int32_t, long,  _InterlockedAnd, _InterlockedOr, _InterlockedXor)
MSC_FETCHBITOP(uint32_t, long, _InterlockedAnd, _InterlockedOr, _InterlockedXor)

# undef MSC_FETCHBITOP

template<typename T>
inline T
js::jit::AtomicOperations::loadSafeWhenRacy(T* addr)
{
    return *addr;               // FIXME (1208663): not yet safe
}

template<typename T>
inline void
js::jit::AtomicOperations::storeSafeWhenRacy(T* addr, T val)
{
    *addr = val;                // FIXME (1208663): not yet safe
}

inline void
js::jit::AtomicOperations::memcpySafeWhenRacy(void* dest, const void* src, size_t nbytes)
{
    ::memcpy(dest, src, nbytes); // FIXME (1208663): not yet safe
}

inline void
js::jit::AtomicOperations::memmoveSafeWhenRacy(void* dest, const void* src, size_t nbytes)
{
    ::memmove(dest, src, nbytes); // FIXME (1208663): not yet safe
}

template<size_t nbytes>
inline void
js::jit::RegionLock::acquire(void* addr)
{
    while (_InterlockedCompareExchange((long*)&spinlock, /*newval=*/1, /*oldval=*/0) == 1)
        continue;
}

template<size_t nbytes>
inline void
js::jit::RegionLock::release(void* addr)
{
    MOZ_ASSERT(AtomicOperations::loadSeqCst(&spinlock) == 1, "releasing unlocked region lock");
    _InterlockedExchange((long*)&spinlock, 0);
}

# undef HAVE_EXCHANGE64

#elif defined(ENABLE_SHARED_ARRAY_BUFFER)

# error "Either disable JS shared memory at compile time, use GCC, Clang, or MSVC, or add code here"

#endif // platform

#endif // jit_shared_AtomicOperations_x86_shared_h