1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/x64/MacroAssembler-x64.h"
#include "jit/Bailouts.h"
#include "jit/BaselineFrame.h"
#include "jit/JitCompartment.h"
#include "jit/JitFrames.h"
#include "jit/MacroAssembler.h"
#include "jit/MoveEmitter.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
void
MacroAssemblerX64::loadConstantDouble(wasm::RawF64 d, FloatRegister dest)
{
if (maybeInlineDouble(d, dest))
return;
Double* dbl = getDouble(d);
if (!dbl)
return;
// The constants will be stored in a pool appended to the text (see
// finish()), so they will always be a fixed distance from the
// instructions which reference them. This allows the instructions to use
// PC-relative addressing. Use "jump" label support code, because we need
// the same PC-relative address patching that jumps use.
JmpSrc j = masm.vmovsd_ripr(dest.encoding());
propagateOOM(dbl->uses.append(CodeOffset(j.offset())));
}
void
MacroAssemblerX64::loadConstantFloat32(wasm::RawF32 f, FloatRegister dest)
{
if (maybeInlineFloat(f, dest))
return;
Float* flt = getFloat(f);
if (!flt)
return;
// See comment in loadConstantDouble
JmpSrc j = masm.vmovss_ripr(dest.encoding());
propagateOOM(flt->uses.append(CodeOffset(j.offset())));
}
void
MacroAssemblerX64::loadConstantSimd128Int(const SimdConstant& v, FloatRegister dest)
{
if (maybeInlineSimd128Int(v, dest))
return;
SimdData* val = getSimdData(v);
if (!val)
return;
JmpSrc j = masm.vmovdqa_ripr(dest.encoding());
propagateOOM(val->uses.append(CodeOffset(j.offset())));
}
void
MacroAssemblerX64::loadConstantFloat32(float f, FloatRegister dest)
{
loadConstantFloat32(wasm::RawF32(f), dest);
}
void
MacroAssemblerX64::loadConstantDouble(double d, FloatRegister dest)
{
loadConstantDouble(wasm::RawF64(d), dest);
}
void
MacroAssemblerX64::loadConstantSimd128Float(const SimdConstant&v, FloatRegister dest)
{
if (maybeInlineSimd128Float(v, dest))
return;
SimdData* val = getSimdData(v);
if (!val)
return;
JmpSrc j = masm.vmovaps_ripr(dest.encoding());
propagateOOM(val->uses.append(CodeOffset(j.offset())));
}
void
MacroAssemblerX64::convertInt64ToDouble(Register64 input, FloatRegister output)
{
// Zero the output register to break dependencies, see convertInt32ToDouble.
zeroDouble(output);
vcvtsq2sd(input.reg, output, output);
}
void
MacroAssemblerX64::convertInt64ToFloat32(Register64 input, FloatRegister output)
{
// Zero the output register to break dependencies, see convertInt32ToDouble.
zeroFloat32(output);
vcvtsq2ss(input.reg, output, output);
}
bool
MacroAssemblerX64::convertUInt64ToDoubleNeedsTemp()
{
return false;
}
void
MacroAssemblerX64::convertUInt64ToDouble(Register64 input, FloatRegister output, Register temp)
{
MOZ_ASSERT(temp == Register::Invalid());
// Zero the output register to break dependencies, see convertInt32ToDouble.
zeroDouble(output);
// If the input's sign bit is not set we use vcvtsq2sd directly.
// Else, we divide by 2, convert to double, and multiply the result by 2.
Label done;
Label isSigned;
testq(input.reg, input.reg);
j(Assembler::Signed, &isSigned);
vcvtsq2sd(input.reg, output, output);
jump(&done);
bind(&isSigned);
ScratchRegisterScope scratch(asMasm());
mov(input.reg, scratch);
shrq(Imm32(1), scratch);
vcvtsq2sd(scratch, output, output);
vaddsd(output, output, output);
bind(&done);
}
void
MacroAssemblerX64::convertUInt64ToFloat32(Register64 input, FloatRegister output, Register temp)
{
MOZ_ASSERT(temp == Register::Invalid());
// Zero the output register to break dependencies, see convertInt32ToDouble.
zeroFloat32(output);
// If the input's sign bit is not set we use vcvtsq2ss directly.
// Else, we divide by 2, convert to float, and multiply the result by 2.
Label done;
Label isSigned;
testq(input.reg, input.reg);
j(Assembler::Signed, &isSigned);
vcvtsq2ss(input.reg, output, output);
jump(&done);
bind(&isSigned);
ScratchRegisterScope scratch(asMasm());
mov(input.reg, scratch);
shrq(Imm32(1), scratch);
vcvtsq2ss(scratch, output, output);
vaddss(output, output, output);
bind(&done);
}
void
MacroAssemblerX64::wasmTruncateDoubleToInt64(FloatRegister input, Register64 output, Label* oolEntry,
Label* oolRejoin, FloatRegister tempReg)
{
vcvttsd2sq(input, output.reg);
cmpq(Imm32(1), output.reg);
j(Assembler::Overflow, oolEntry);
bind(oolRejoin);
}
void
MacroAssemblerX64::wasmTruncateFloat32ToInt64(FloatRegister input, Register64 output, Label* oolEntry,
Label* oolRejoin, FloatRegister tempReg)
{
vcvttss2sq(input, output.reg);
cmpq(Imm32(1), output.reg);
j(Assembler::Overflow, oolEntry);
bind(oolRejoin);
}
void
MacroAssemblerX64::wasmTruncateDoubleToUInt64(FloatRegister input, Register64 output, Label* oolEntry,
Label* oolRejoin, FloatRegister tempReg)
{
// If the input < INT64_MAX, vcvttsd2sq will do the right thing, so
// we use it directly. Else, we subtract INT64_MAX, convert to int64,
// and then add INT64_MAX to the result.
Label isLarge;
ScratchDoubleScope scratch(asMasm());
loadConstantDouble(double(0x8000000000000000), scratch);
asMasm().branchDouble(Assembler::DoubleGreaterThanOrEqual, input, scratch, &isLarge);
vcvttsd2sq(input, output.reg);
testq(output.reg, output.reg);
j(Assembler::Signed, oolEntry);
jump(oolRejoin);
bind(&isLarge);
moveDouble(input, tempReg);
vsubsd(scratch, tempReg, tempReg);
vcvttsd2sq(tempReg, output.reg);
testq(output.reg, output.reg);
j(Assembler::Signed, oolEntry);
asMasm().or64(Imm64(0x8000000000000000), output);
bind(oolRejoin);
}
void
MacroAssemblerX64::wasmTruncateFloat32ToUInt64(FloatRegister input, Register64 output, Label* oolEntry,
Label* oolRejoin, FloatRegister tempReg)
{
// If the input < INT64_MAX, vcvttss2sq will do the right thing, so
// we use it directly. Else, we subtract INT64_MAX, convert to int64,
// and then add INT64_MAX to the result.
Label isLarge;
ScratchFloat32Scope scratch(asMasm());
loadConstantFloat32(float(0x8000000000000000), scratch);
asMasm().branchFloat(Assembler::DoubleGreaterThanOrEqual, input, scratch, &isLarge);
vcvttss2sq(input, output.reg);
testq(output.reg, output.reg);
j(Assembler::Signed, oolEntry);
jump(oolRejoin);
bind(&isLarge);
moveFloat32(input, tempReg);
vsubss(scratch, tempReg, tempReg);
vcvttss2sq(tempReg, output.reg);
testq(output.reg, output.reg);
j(Assembler::Signed, oolEntry);
asMasm().or64(Imm64(0x8000000000000000), output);
bind(oolRejoin);
}
void
MacroAssemblerX64::bindOffsets(const MacroAssemblerX86Shared::UsesVector& uses)
{
for (CodeOffset use : uses) {
JmpDst dst(currentOffset());
JmpSrc src(use.offset());
// Using linkJump here is safe, as explaind in the comment in
// loadConstantDouble.
masm.linkJump(src, dst);
}
}
void
MacroAssemblerX64::finish()
{
if (!doubles_.empty())
masm.haltingAlign(sizeof(double));
for (const Double& d : doubles_) {
bindOffsets(d.uses);
masm.int64Constant(d.value);
}
if (!floats_.empty())
masm.haltingAlign(sizeof(float));
for (const Float& f : floats_) {
bindOffsets(f.uses);
masm.int32Constant(f.value);
}
// SIMD memory values must be suitably aligned.
if (!simds_.empty())
masm.haltingAlign(SimdMemoryAlignment);
for (const SimdData& v : simds_) {
bindOffsets(v.uses);
masm.simd128Constant(v.value.bytes());
}
MacroAssemblerX86Shared::finish();
}
void
MacroAssemblerX64::boxValue(JSValueType type, Register src, Register dest)
{
MOZ_ASSERT(src != dest);
JSValueShiftedTag tag = (JSValueShiftedTag)JSVAL_TYPE_TO_SHIFTED_TAG(type);
#ifdef DEBUG
if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) {
Label upper32BitsZeroed;
movePtr(ImmWord(UINT32_MAX), dest);
asMasm().branchPtr(Assembler::BelowOrEqual, src, dest, &upper32BitsZeroed);
breakpoint();
bind(&upper32BitsZeroed);
}
#endif
mov(ImmShiftedTag(tag), dest);
orq(src, dest);
}
void
MacroAssemblerX64::handleFailureWithHandlerTail(void* handler)
{
// Reserve space for exception information.
subq(Imm32(sizeof(ResumeFromException)), rsp);
movq(rsp, rax);
// Call the handler.
asMasm().setupUnalignedABICall(rcx);
asMasm().passABIArg(rax);
asMasm().callWithABI(handler);
Label entryFrame;
Label catch_;
Label finally;
Label return_;
Label bailout;
loadPtr(Address(rsp, offsetof(ResumeFromException, kind)), rax);
asMasm().branch32(Assembler::Equal, rax, Imm32(ResumeFromException::RESUME_ENTRY_FRAME), &entryFrame);
asMasm().branch32(Assembler::Equal, rax, Imm32(ResumeFromException::RESUME_CATCH), &catch_);
asMasm().branch32(Assembler::Equal, rax, Imm32(ResumeFromException::RESUME_FINALLY), &finally);
asMasm().branch32(Assembler::Equal, rax, Imm32(ResumeFromException::RESUME_FORCED_RETURN), &return_);
asMasm().branch32(Assembler::Equal, rax, Imm32(ResumeFromException::RESUME_BAILOUT), &bailout);
breakpoint(); // Invalid kind.
// No exception handler. Load the error value, load the new stack pointer
// and return from the entry frame.
bind(&entryFrame);
moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
loadPtr(Address(rsp, offsetof(ResumeFromException, stackPointer)), rsp);
ret();
// If we found a catch handler, this must be a baseline frame. Restore state
// and jump to the catch block.
bind(&catch_);
loadPtr(Address(rsp, offsetof(ResumeFromException, target)), rax);
loadPtr(Address(rsp, offsetof(ResumeFromException, framePointer)), rbp);
loadPtr(Address(rsp, offsetof(ResumeFromException, stackPointer)), rsp);
jmp(Operand(rax));
// If we found a finally block, this must be a baseline frame. Push
// two values expected by JSOP_RETSUB: BooleanValue(true) and the
// exception.
bind(&finally);
ValueOperand exception = ValueOperand(rcx);
loadValue(Address(esp, offsetof(ResumeFromException, exception)), exception);
loadPtr(Address(rsp, offsetof(ResumeFromException, target)), rax);
loadPtr(Address(rsp, offsetof(ResumeFromException, framePointer)), rbp);
loadPtr(Address(rsp, offsetof(ResumeFromException, stackPointer)), rsp);
pushValue(BooleanValue(true));
pushValue(exception);
jmp(Operand(rax));
// Only used in debug mode. Return BaselineFrame->returnValue() to the caller.
bind(&return_);
loadPtr(Address(rsp, offsetof(ResumeFromException, framePointer)), rbp);
loadPtr(Address(rsp, offsetof(ResumeFromException, stackPointer)), rsp);
loadValue(Address(rbp, BaselineFrame::reverseOffsetOfReturnValue()), JSReturnOperand);
movq(rbp, rsp);
pop(rbp);
// If profiling is enabled, then update the lastProfilingFrame to refer to caller
// frame before returning.
{
Label skipProfilingInstrumentation;
AbsoluteAddress addressOfEnabled(GetJitContext()->runtime->spsProfiler().addressOfEnabled());
asMasm().branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation);
profilerExitFrame();
bind(&skipProfilingInstrumentation);
}
ret();
// If we are bailing out to baseline to handle an exception, jump to
// the bailout tail stub.
bind(&bailout);
loadPtr(Address(esp, offsetof(ResumeFromException, bailoutInfo)), r9);
mov(ImmWord(BAILOUT_RETURN_OK), rax);
jmp(Operand(rsp, offsetof(ResumeFromException, target)));
}
void
MacroAssemblerX64::profilerEnterFrame(Register framePtr, Register scratch)
{
AbsoluteAddress activation(GetJitContext()->runtime->addressOfProfilingActivation());
loadPtr(activation, scratch);
storePtr(framePtr, Address(scratch, JitActivation::offsetOfLastProfilingFrame()));
storePtr(ImmPtr(nullptr), Address(scratch, JitActivation::offsetOfLastProfilingCallSite()));
}
void
MacroAssemblerX64::profilerExitFrame()
{
jmp(GetJitContext()->runtime->jitRuntime()->getProfilerExitFrameTail());
}
MacroAssembler&
MacroAssemblerX64::asMasm()
{
return *static_cast<MacroAssembler*>(this);
}
const MacroAssembler&
MacroAssemblerX64::asMasm() const
{
return *static_cast<const MacroAssembler*>(this);
}
void
MacroAssembler::subFromStackPtr(Imm32 imm32)
{
if (imm32.value) {
// On windows, we cannot skip very far down the stack without touching the
// memory pages in-between. This is a corner-case code for situations where the
// Ion frame data for a piece of code is very large. To handle this special case,
// for frames over 1k in size we allocate memory on the stack incrementally, touching
// it as we go.
uint32_t amountLeft = imm32.value;
while (amountLeft > 4096) {
subq(Imm32(4096), StackPointer);
store32(Imm32(0), Address(StackPointer, 0));
amountLeft -= 4096;
}
subq(Imm32(amountLeft), StackPointer);
}
}
//{{{ check_macroassembler_style
// ===============================================================
// ABI function calls.
void
MacroAssembler::setupUnalignedABICall(Register scratch)
{
setupABICall();
dynamicAlignment_ = true;
movq(rsp, scratch);
andq(Imm32(~(ABIStackAlignment - 1)), rsp);
push(scratch);
}
void
MacroAssembler::callWithABIPre(uint32_t* stackAdjust, bool callFromWasm)
{
MOZ_ASSERT(inCall_);
uint32_t stackForCall = abiArgs_.stackBytesConsumedSoFar();
if (dynamicAlignment_) {
// sizeof(intptr_t) accounts for the saved stack pointer pushed by
// setupUnalignedABICall.
stackForCall += ComputeByteAlignment(stackForCall + sizeof(intptr_t),
ABIStackAlignment);
} else {
static_assert(sizeof(wasm::Frame) % ABIStackAlignment == 0,
"wasm::Frame should be part of the stack alignment.");
stackForCall += ComputeByteAlignment(stackForCall + framePushed(),
ABIStackAlignment);
}
*stackAdjust = stackForCall;
reserveStack(stackForCall);
// Position all arguments.
{
enoughMemory_ &= moveResolver_.resolve();
if (!enoughMemory_)
return;
MoveEmitter emitter(*this);
emitter.emit(moveResolver_);
emitter.finish();
}
assertStackAlignment(ABIStackAlignment);
}
void
MacroAssembler::callWithABIPost(uint32_t stackAdjust, MoveOp::Type result)
{
freeStack(stackAdjust);
if (dynamicAlignment_)
pop(rsp);
#ifdef DEBUG
MOZ_ASSERT(inCall_);
inCall_ = false;
#endif
}
static bool
IsIntArgReg(Register reg)
{
for (uint32_t i = 0; i < NumIntArgRegs; i++) {
if (IntArgRegs[i] == reg)
return true;
}
return false;
}
void
MacroAssembler::callWithABINoProfiler(Register fun, MoveOp::Type result)
{
if (IsIntArgReg(fun)) {
// Callee register may be clobbered for an argument. Move the callee to
// r10, a volatile, non-argument register.
propagateOOM(moveResolver_.addMove(MoveOperand(fun), MoveOperand(r10),
MoveOp::GENERAL));
fun = r10;
}
MOZ_ASSERT(!IsIntArgReg(fun));
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(fun);
callWithABIPost(stackAdjust, result);
}
void
MacroAssembler::callWithABINoProfiler(const Address& fun, MoveOp::Type result)
{
Address safeFun = fun;
if (IsIntArgReg(safeFun.base)) {
// Callee register may be clobbered for an argument. Move the callee to
// r10, a volatile, non-argument register.
propagateOOM(moveResolver_.addMove(MoveOperand(fun.base), MoveOperand(r10),
MoveOp::GENERAL));
safeFun.base = r10;
}
MOZ_ASSERT(!IsIntArgReg(safeFun.base));
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(safeFun);
callWithABIPost(stackAdjust, result);
}
// ===============================================================
// Branch functions
void
MacroAssembler::branchPtrInNurseryChunk(Condition cond, Register ptr, Register temp, Label* label)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
ScratchRegisterScope scratch(*this);
MOZ_ASSERT(ptr != temp);
MOZ_ASSERT(ptr != scratch);
movePtr(ptr, scratch);
orPtr(Imm32(gc::ChunkMask), scratch);
branch32(cond, Address(scratch, gc::ChunkLocationOffsetFromLastByte),
Imm32(int32_t(gc::ChunkLocation::Nursery)), label);
}
void
MacroAssembler::branchValueIsNurseryObject(Condition cond, const Address& address, Register temp,
Label* label)
{
branchValueIsNurseryObjectImpl(cond, address, temp, label);
}
void
MacroAssembler::branchValueIsNurseryObject(Condition cond, ValueOperand value, Register temp,
Label* label)
{
branchValueIsNurseryObjectImpl(cond, value, temp, label);
}
template <typename T>
void
MacroAssembler::branchValueIsNurseryObjectImpl(Condition cond, const T& value, Register temp,
Label* label)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
MOZ_ASSERT(temp != InvalidReg);
Label done;
branchTestObject(Assembler::NotEqual, value, cond == Assembler::Equal ? &done : label);
extractObject(value, temp);
orPtr(Imm32(gc::ChunkMask), temp);
branch32(cond, Address(temp, gc::ChunkLocationOffsetFromLastByte),
Imm32(int32_t(gc::ChunkLocation::Nursery)), label);
bind(&done);
}
void
MacroAssembler::branchTestValue(Condition cond, const ValueOperand& lhs,
const Value& rhs, Label* label)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(*this);
MOZ_ASSERT(lhs.valueReg() != scratch);
moveValue(rhs, scratch);
cmpPtr(lhs.valueReg(), scratch);
j(cond, label);
}
// ========================================================================
// Memory access primitives.
template <typename T>
void
MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, MIRType valueType,
const T& dest, MIRType slotType)
{
if (valueType == MIRType::Double) {
storeDouble(value.reg().typedReg().fpu(), dest);
return;
}
// For known integers and booleans, we can just store the unboxed value if
// the slot has the same type.
if ((valueType == MIRType::Int32 || valueType == MIRType::Boolean) && slotType == valueType) {
if (value.constant()) {
Value val = value.value();
if (valueType == MIRType::Int32)
store32(Imm32(val.toInt32()), dest);
else
store32(Imm32(val.toBoolean() ? 1 : 0), dest);
} else {
store32(value.reg().typedReg().gpr(), dest);
}
return;
}
if (value.constant())
storeValue(value.value(), dest);
else
storeValue(ValueTypeFromMIRType(valueType), value.reg().typedReg().gpr(), dest);
}
template void
MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, MIRType valueType,
const Address& dest, MIRType slotType);
template void
MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, MIRType valueType,
const BaseIndex& dest, MIRType slotType);
// ========================================================================
// wasm support
void
MacroAssembler::wasmLoad(const wasm::MemoryAccessDesc& access, Operand srcAddr, AnyRegister out)
{
memoryBarrier(access.barrierBefore());
size_t loadOffset = size();
switch (access.type()) {
case Scalar::Int8:
movsbl(srcAddr, out.gpr());
break;
case Scalar::Uint8:
movzbl(srcAddr, out.gpr());
break;
case Scalar::Int16:
movswl(srcAddr, out.gpr());
break;
case Scalar::Uint16:
movzwl(srcAddr, out.gpr());
break;
case Scalar::Int32:
case Scalar::Uint32:
movl(srcAddr, out.gpr());
break;
case Scalar::Float32:
loadFloat32(srcAddr, out.fpu());
break;
case Scalar::Float64:
loadDouble(srcAddr, out.fpu());
break;
case Scalar::Float32x4:
switch (access.numSimdElems()) {
// In memory-to-register mode, movss zeroes out the high lanes.
case 1: loadFloat32(srcAddr, out.fpu()); break;
// See comment above, which also applies to movsd.
case 2: loadDouble(srcAddr, out.fpu()); break;
case 4: loadUnalignedSimd128Float(srcAddr, out.fpu()); break;
default: MOZ_CRASH("unexpected size for partial load");
}
break;
case Scalar::Int32x4:
switch (access.numSimdElems()) {
// In memory-to-register mode, movd zeroes out the high lanes.
case 1: vmovd(srcAddr, out.fpu()); break;
// See comment above, which also applies to movq.
case 2: vmovq(srcAddr, out.fpu()); break;
case 4: loadUnalignedSimd128Int(srcAddr, out.fpu()); break;
default: MOZ_CRASH("unexpected size for partial load");
}
break;
case Scalar::Int8x16:
MOZ_ASSERT(access.numSimdElems() == 16, "unexpected partial load");
loadUnalignedSimd128Int(srcAddr, out.fpu());
break;
case Scalar::Int16x8:
MOZ_ASSERT(access.numSimdElems() == 8, "unexpected partial load");
loadUnalignedSimd128Int(srcAddr, out.fpu());
break;
case Scalar::Int64:
MOZ_CRASH("int64 loads must use load64");
case Scalar::BigInt64:
case Scalar::BigUint64:
case Scalar::Uint8Clamped:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
}
append(access, loadOffset, framePushed());
memoryBarrier(access.barrierAfter());
}
void
MacroAssembler::wasmLoadI64(const wasm::MemoryAccessDesc& access, Operand srcAddr, Register64 out)
{
MOZ_ASSERT(!access.isAtomic());
MOZ_ASSERT(!access.isSimd());
size_t loadOffset = size();
switch (access.type()) {
case Scalar::Int8:
movsbq(srcAddr, out.reg);
break;
case Scalar::Uint8:
movzbq(srcAddr, out.reg);
break;
case Scalar::Int16:
movswq(srcAddr, out.reg);
break;
case Scalar::Uint16:
movzwq(srcAddr, out.reg);
break;
case Scalar::Int32:
movslq(srcAddr, out.reg);
break;
// Int32 to int64 moves zero-extend by default.
case Scalar::Uint32:
movl(srcAddr, out.reg);
break;
case Scalar::Int64:
movq(srcAddr, out.reg);
break;
case Scalar::Float32:
case Scalar::Float64:
case Scalar::Float32x4:
case Scalar::Int8x16:
case Scalar::Int16x8:
case Scalar::Int32x4:
MOZ_CRASH("non-int64 loads should use load()");
case Scalar::BigInt64:
case Scalar::BigUint64:
case Scalar::Uint8Clamped:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
}
append(access, loadOffset, framePushed());
}
void
MacroAssembler::wasmStore(const wasm::MemoryAccessDesc& access, AnyRegister value, Operand dstAddr)
{
memoryBarrier(access.barrierBefore());
size_t storeOffset = size();
switch (access.type()) {
case Scalar::Int8:
case Scalar::Uint8:
movb(value.gpr(), dstAddr);
break;
case Scalar::Int16:
case Scalar::Uint16:
movw(value.gpr(), dstAddr);
break;
case Scalar::Int32:
case Scalar::Uint32:
movl(value.gpr(), dstAddr);
break;
case Scalar::Int64:
movq(value.gpr(), dstAddr);
break;
case Scalar::Float32:
storeUncanonicalizedFloat32(value.fpu(), dstAddr);
break;
case Scalar::Float64:
storeUncanonicalizedDouble(value.fpu(), dstAddr);
break;
case Scalar::Float32x4:
switch (access.numSimdElems()) {
// In memory-to-register mode, movss zeroes out the high lanes.
case 1: storeUncanonicalizedFloat32(value.fpu(), dstAddr); break;
// See comment above, which also applies to movsd.
case 2: storeUncanonicalizedDouble(value.fpu(), dstAddr); break;
case 4: storeUnalignedSimd128Float(value.fpu(), dstAddr); break;
default: MOZ_CRASH("unexpected size for partial load");
}
break;
case Scalar::Int32x4:
switch (access.numSimdElems()) {
// In memory-to-register mode, movd zeroes out the high lanes.
case 1: vmovd(value.fpu(), dstAddr); break;
// See comment above, which also applies to movq.
case 2: vmovq(value.fpu(), dstAddr); break;
case 4: storeUnalignedSimd128Int(value.fpu(), dstAddr); break;
default: MOZ_CRASH("unexpected size for partial load");
}
break;
case Scalar::Int8x16:
MOZ_ASSERT(access.numSimdElems() == 16, "unexpected partial store");
storeUnalignedSimd128Int(value.fpu(), dstAddr);
break;
case Scalar::Int16x8:
MOZ_ASSERT(access.numSimdElems() == 8, "unexpected partial store");
storeUnalignedSimd128Int(value.fpu(), dstAddr);
break;
case Scalar::BigInt64:
case Scalar::BigUint64:
case Scalar::Uint8Clamped:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
}
append(access, storeOffset, framePushed());
memoryBarrier(access.barrierAfter());
}
void
MacroAssembler::wasmTruncateDoubleToUInt32(FloatRegister input, Register output, Label* oolEntry)
{
vcvttsd2sq(input, output);
// Check that the result is in the uint32_t range.
ScratchRegisterScope scratch(*this);
move32(Imm32(0xffffffff), scratch);
cmpq(scratch, output);
j(Assembler::Above, oolEntry);
}
void
MacroAssembler::wasmTruncateFloat32ToUInt32(FloatRegister input, Register output, Label* oolEntry)
{
vcvttss2sq(input, output);
// Check that the result is in the uint32_t range.
ScratchRegisterScope scratch(*this);
move32(Imm32(0xffffffff), scratch);
cmpq(scratch, output);
j(Assembler::Above, oolEntry);
}
//}}} check_macroassembler_style
|