1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_mips64_LIR_mips64_h
#define jit_mips64_LIR_mips64_h
namespace js {
namespace jit {
class LUnbox : public LInstructionHelper<1, 1, 0>
{
public:
LIR_HEADER(Unbox);
explicit LUnbox(const LAllocation& input) {
setOperand(0, input);
}
static const size_t Input = 0;
MUnbox* mir() const {
return mir_->toUnbox();
}
const char* extraName() const {
return StringFromMIRType(mir()->type());
}
};
class LUnboxFloatingPoint : public LUnbox
{
MIRType type_;
public:
LIR_HEADER(UnboxFloatingPoint);
LUnboxFloatingPoint(const LAllocation& input, MIRType type)
: LUnbox(input),
type_(type)
{ }
MIRType type() const {
return type_;
}
};
class LDivOrModI64 : public LBinaryMath<1>
{
public:
LIR_HEADER(DivOrModI64)
LDivOrModI64(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const LDefinition* remainder() {
return getTemp(0);
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeDivideByZero() const {
if (mir_->isMod())
return mir_->toMod()->canBeDivideByZero();
return mir_->toDiv()->canBeDivideByZero();
}
bool canBeNegativeOverflow() const {
if (mir_->isMod())
return mir_->toMod()->canBeNegativeDividend();
return mir_->toDiv()->canBeNegativeOverflow();
}
wasm::TrapOffset trapOffset() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
if (mir_->isMod())
return mir_->toMod()->trapOffset();
return mir_->toDiv()->trapOffset();
}
};
class LUDivOrModI64 : public LBinaryMath<1>
{
public:
LIR_HEADER(UDivOrModI64);
LUDivOrModI64(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const LDefinition* remainder() {
return getTemp(0);
}
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeDivideByZero() const {
if (mir_->isMod())
return mir_->toMod()->canBeDivideByZero();
return mir_->toDiv()->canBeDivideByZero();
}
wasm::TrapOffset trapOffset() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
if (mir_->isMod())
return mir_->toMod()->trapOffset();
return mir_->toDiv()->trapOffset();
}
};
class LWasmTruncateToInt64 : public LInstructionHelper<1, 1, 0>
{
public:
LIR_HEADER(WasmTruncateToInt64);
explicit LWasmTruncateToInt64(const LAllocation& in) {
setOperand(0, in);
}
MWasmTruncateToInt64* mir() const {
return mir_->toWasmTruncateToInt64();
}
};
} // namespace jit
} // namespace js
#endif /* jit_mips64_LIR_mips64_h */
|