summaryrefslogtreecommitdiff
path: root/js/src/jit/mips64/Assembler-mips64.cpp
blob: a7254b8257e7698b0a9ebb804afc4f02bec8139b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/mips64/Assembler-mips64.h"

#include "mozilla/DebugOnly.h"

using mozilla::DebugOnly;

using namespace js;
using namespace js::jit;

ABIArgGenerator::ABIArgGenerator()
  : usedArgSlots_(0),
    firstArgFloat(false),
    current_()
{}

ABIArg
ABIArgGenerator::next(MIRType type)
{
    switch (type) {
      case MIRType::Int32:
      case MIRType::Int64:
      case MIRType::Pointer: {
        Register destReg;
        if (GetIntArgReg(usedArgSlots_, &destReg))
            current_ = ABIArg(destReg);
        else
            current_ = ABIArg(GetArgStackDisp(usedArgSlots_));
        usedArgSlots_++;
        break;
      }
      case MIRType::Float32:
      case MIRType::Double: {
        FloatRegister destFReg;
        FloatRegister::ContentType contentType;
        if (!usedArgSlots_)
            firstArgFloat = true;
        contentType = (type == MIRType::Double) ?
            FloatRegisters::Double : FloatRegisters::Single;
        if (GetFloatArgReg(usedArgSlots_, &destFReg))
            current_ = ABIArg(FloatRegister(destFReg.id(), contentType));
        else
            current_ = ABIArg(GetArgStackDisp(usedArgSlots_));
        usedArgSlots_++;
        break;
      }
      default:
        MOZ_CRASH("Unexpected argument type");
    }
    return current_;
}

uint32_t
js::jit::RT(FloatRegister r)
{
    MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
    return r.id() << RTShift;
}

uint32_t
js::jit::RD(FloatRegister r)
{
    MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
    return r.id() << RDShift;
}

uint32_t
js::jit::RZ(FloatRegister r)
{
    MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
    return r.id() << RZShift;
}

uint32_t
js::jit::SA(FloatRegister r)
{
    MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
    return r.id() << SAShift;
}

// Used to patch jumps created by MacroAssemblerMIPS64Compat::jumpWithPatch.
void
jit::PatchJump(CodeLocationJump& jump_, CodeLocationLabel label, ReprotectCode reprotect)
{
    Instruction* inst;

    inst = AssemblerMIPSShared::GetInstructionImmediateFromJump((Instruction*)jump_.raw());

    // Six instructions used in load 64-bit imm.
    MaybeAutoWritableJitCode awjc(inst, 6 * sizeof(uint32_t), reprotect);
    Assembler::UpdateLoad64Value(inst, (uint64_t)label.raw());

    AutoFlushICache::flush(uintptr_t(inst), 6 * sizeof(uint32_t));
}

// For more infromation about backedges look at comment in
// MacroAssemblerMIPS64Compat::backedgeJump()
void
jit::PatchBackedge(CodeLocationJump& jump, CodeLocationLabel label,
                   JitRuntime::BackedgeTarget target)
{
    uintptr_t sourceAddr = (uintptr_t)jump.raw();
    uintptr_t targetAddr = (uintptr_t)label.raw();
    InstImm* branch = (InstImm*)jump.raw();

    MOZ_ASSERT(branch->extractOpcode() == (uint32_t(op_beq) >> OpcodeShift));

    if (BOffImm16::IsInRange(targetAddr - sourceAddr)) {
        branch->setBOffImm16(BOffImm16(targetAddr - sourceAddr));
    } else {
        if (target == JitRuntime::BackedgeLoopHeader) {
            Instruction* inst = &branch[1];
            Assembler::UpdateLoad64Value(inst, targetAddr);
            // Jump to first ori. The lui will be executed in delay slot.
            branch->setBOffImm16(BOffImm16(2 * sizeof(uint32_t)));
        } else {
            Instruction* inst = &branch[6];
            Assembler::UpdateLoad64Value(inst, targetAddr);
            // Jump to first ori of interrupt loop.
            branch->setBOffImm16(BOffImm16(6 * sizeof(uint32_t)));
        }
    }
}

uintptr_t
Assembler::GetPointer(uint8_t* instPtr)
{
    Instruction* inst = (Instruction*)instPtr;
    return Assembler::ExtractLoad64Value(inst);
}

static JitCode *
CodeFromJump(Instruction* jump)
{
    uint8_t* target = (uint8_t*)Assembler::ExtractLoad64Value(jump);
    return JitCode::FromExecutable(target);
}

void
Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader)
{
    while (reader.more()) {
        JitCode* child = CodeFromJump((Instruction*)(code->raw() + reader.readUnsigned()));
        TraceManuallyBarrieredEdge(trc, &child, "rel32");
    }
}

static void
TraceOneDataRelocation(JSTracer* trc, Instruction* inst)
{
    void* ptr = (void*)Assembler::ExtractLoad64Value(inst);
    void* prior = ptr;

    // All pointers on MIPS64 will have the top bits cleared. If those bits
    // are not cleared, this must be a Value.
    uintptr_t word = reinterpret_cast<uintptr_t>(ptr);
    if (word >> JSVAL_TAG_SHIFT) {
        Value v = Value::fromRawBits(word);
        TraceManuallyBarrieredEdge(trc, &v, "ion-masm-value");
        ptr = (void*)v.bitsAsPunboxPointer();
    } else {
        // No barrier needed since these are constants.
        TraceManuallyBarrieredGenericPointerEdge(trc, reinterpret_cast<gc::Cell**>(&ptr),
                                                     "ion-masm-ptr");
    }

    if (ptr != prior) {
        Assembler::UpdateLoad64Value(inst, uint64_t(ptr));
        AutoFlushICache::flush(uintptr_t(inst), 6 * sizeof(uint32_t));
    }
}

static void
TraceDataRelocations(JSTracer* trc, uint8_t* buffer, CompactBufferReader& reader)
{
    while (reader.more()) {
        size_t offset = reader.readUnsigned();
        Instruction* inst = (Instruction*)(buffer + offset);
        TraceOneDataRelocation(trc, inst);
    }
}

static void
TraceDataRelocations(JSTracer* trc, MIPSBuffer* buffer, CompactBufferReader& reader)
{
    while (reader.more()) {
        BufferOffset bo (reader.readUnsigned());
        MIPSBuffer::AssemblerBufferInstIterator iter(bo, buffer);
        TraceOneDataRelocation(trc, iter.cur());
    }
}

void
Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader)
{
    ::TraceDataRelocations(trc, code->raw(), reader);
}

void
Assembler::trace(JSTracer* trc)
{
    for (size_t i = 0; i < jumps_.length(); i++) {
        RelativePatch& rp = jumps_[i];
        if (rp.kind == Relocation::JITCODE) {
            JitCode* code = JitCode::FromExecutable((uint8_t*)rp.target);
            TraceManuallyBarrieredEdge(trc, &code, "masmrel32");
            MOZ_ASSERT(code == JitCode::FromExecutable((uint8_t*)rp.target));
        }
    }
    if (dataRelocations_.length()) {
        CompactBufferReader reader(dataRelocations_);
        ::TraceDataRelocations(trc, &m_buffer, reader);
    }
}

void
Assembler::Bind(uint8_t* rawCode, CodeOffset* label, const void* address)
{
    if (label->bound()) {
        intptr_t offset = label->offset();
        Instruction* inst = (Instruction*) (rawCode + offset);
        Assembler::UpdateLoad64Value(inst, (uint64_t)address);
    }
}

uint32_t
Assembler::PatchWrite_NearCallSize()
{
    // Load an address needs 4 instructions, and a jump with a delay slot.
    return (4 + 2) * sizeof(uint32_t);
}

void
Assembler::PatchWrite_NearCall(CodeLocationLabel start, CodeLocationLabel toCall)
{
    Instruction* inst = (Instruction*) start.raw();
    uint8_t* dest = toCall.raw();

    // Overwrite whatever instruction used to be here with a call.
    // Always use long jump for two reasons:
    // - Jump has to be the same size because of PatchWrite_NearCallSize.
    // - Return address has to be at the end of replaced block.
    // Short jump wouldn't be more efficient.
    Assembler::WriteLoad64Instructions(inst, ScratchRegister, (uint64_t)dest);
    inst[4] = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr);
    inst[5] = InstNOP();

    // Ensure everyone sees the code that was just written into memory.
    AutoFlushICache::flush(uintptr_t(inst), PatchWrite_NearCallSize());
}

uint64_t
Assembler::ExtractLoad64Value(Instruction* inst0)
{
    InstImm* i0 = (InstImm*) inst0;
    InstImm* i1 = (InstImm*) i0->next();
    InstReg* i2 = (InstReg*) i1->next();
    InstImm* i3 = (InstImm*) i2->next();
    InstImm* i5 = (InstImm*) i3->next()->next();

    MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
    MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
    MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));

    if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) &&
        (i2->extractFunctionField() == ff_dsrl32))
    {
        uint64_t value = (uint64_t(i0->extractImm16Value()) << 32) |
                         (uint64_t(i1->extractImm16Value()) << 16) |
                         uint64_t(i3->extractImm16Value());
        return uint64_t((int64_t(value) <<16) >> 16);
    }

    MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
    uint64_t value = (uint64_t(i0->extractImm16Value()) << 48) |
                     (uint64_t(i1->extractImm16Value()) << 32) |
                     (uint64_t(i3->extractImm16Value()) << 16) |
                     uint64_t(i5->extractImm16Value());
    return value;
}

void
Assembler::UpdateLoad64Value(Instruction* inst0, uint64_t value)
{
    InstImm* i0 = (InstImm*) inst0;
    InstImm* i1 = (InstImm*) i0->next();
    InstReg* i2 = (InstReg*) i1->next();
    InstImm* i3 = (InstImm*) i2->next();
    InstImm* i5 = (InstImm*) i3->next()->next();

    MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
    MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
    MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));

    if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) &&
        (i2->extractFunctionField() == ff_dsrl32))
    {
        i0->setImm16(Imm16::Lower(Imm32(value >> 32)));
        i1->setImm16(Imm16::Upper(Imm32(value)));
        i3->setImm16(Imm16::Lower(Imm32(value)));
        return;
    }

    MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));

    i0->setImm16(Imm16::Upper(Imm32(value >> 32)));
    i1->setImm16(Imm16::Lower(Imm32(value >> 32)));
    i3->setImm16(Imm16::Upper(Imm32(value)));
    i5->setImm16(Imm16::Lower(Imm32(value)));
}

void
Assembler::WriteLoad64Instructions(Instruction* inst0, Register reg, uint64_t value)
{
    Instruction* inst1 = inst0->next();
    Instruction* inst2 = inst1->next();
    Instruction* inst3 = inst2->next();

    *inst0 = InstImm(op_lui, zero, reg, Imm16::Lower(Imm32(value >> 32)));
    *inst1 = InstImm(op_ori, reg, reg, Imm16::Upper(Imm32(value)));
    *inst2 = InstReg(op_special, rs_one, reg, reg, 48 - 32, ff_dsrl32);
    *inst3 = InstImm(op_ori, reg, reg, Imm16::Lower(Imm32(value)));
}

void
Assembler::PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
                                   ImmPtr expectedValue)
{
    PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value),
                            PatchedImmPtr(expectedValue.value));
}

void
Assembler::PatchDataWithValueCheck(CodeLocationLabel label, PatchedImmPtr newValue,
                                   PatchedImmPtr expectedValue)
{
    Instruction* inst = (Instruction*) label.raw();

    // Extract old Value
    DebugOnly<uint64_t> value = Assembler::ExtractLoad64Value(inst);
    MOZ_ASSERT(value == uint64_t(expectedValue.value));

    // Replace with new value
    Assembler::UpdateLoad64Value(inst, uint64_t(newValue.value));

    AutoFlushICache::flush(uintptr_t(inst), 6 * sizeof(uint32_t));
}

void
Assembler::PatchInstructionImmediate(uint8_t* code, PatchedImmPtr imm)
{
    Assembler::UpdateLoad64Value((Instruction*)code, (uint64_t)imm.value);
}

uint64_t
Assembler::ExtractInstructionImmediate(uint8_t* code)
{
    InstImm* inst = (InstImm*)code;
    return Assembler::ExtractLoad64Value(inst);
}

void
Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled)
{
    Instruction* inst = (Instruction*)inst_.raw();
    InstImm* i0 = (InstImm*) inst;
    InstImm* i1 = (InstImm*) i0->next();
    InstImm* i3 = (InstImm*) i1->next()->next();
    Instruction* i4 = (Instruction*) i3->next();

    MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
    MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
    MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));

    if (enabled) {
        MOZ_ASSERT(i4->extractOpcode() != ((uint32_t)op_lui >> OpcodeShift));
        InstReg jalr = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr);
        *i4 = jalr;
    } else {
        InstNOP nop;
        *i4 = nop;
    }

    AutoFlushICache::flush(uintptr_t(i4), sizeof(uint32_t));
}