summaryrefslogtreecommitdiff
path: root/js/src/jit/arm64/SharedIC-arm64.cpp
blob: 0c7aa136459c60bd4f216f9ada5982a56e4c2e42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/SharedIC.h"
#include "jit/SharedICHelpers.h"

#ifdef JS_SIMULATOR_ARM64
#include "jit/arm64/Assembler-arm64.h"
#include "jit/arm64/BaselineCompiler-arm64.h"
#include "jit/arm64/vixl/Debugger-vixl.h"
#endif


using namespace js;
using namespace js::jit;

namespace js {
namespace jit {

// ICBinaryArith_Int32

bool
ICBinaryArith_Int32::Compiler::generateStubCode(MacroAssembler& masm)
{
    // Guard that R0 is an integer and R1 is an integer.
    Label failure;
    masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
    masm.branchTestInt32(Assembler::NotEqual, R1, &failure);

    // Add R0 and R1. Don't need to explicitly unbox, just use R2.
    Register Rscratch = R2_;
    ARMRegister Wscratch = ARMRegister(Rscratch, 32);
#ifdef MERGE
    // DIV and MOD need an extra non-volatile ValueOperand to hold R0.
    AllocatableGeneralRegisterSet savedRegs(availableGeneralRegs(2));
    savedRegs.set() = GeneralRegisterSet::Intersect(GeneralRegisterSet::NonVolatile(), savedRegs);
#endif
    // get some more ARM-y names for the registers
    ARMRegister W0(R0_, 32);
    ARMRegister X0(R0_, 64);
    ARMRegister W1(R1_, 32);
    ARMRegister X1(R1_, 64);
    ARMRegister WTemp(ExtractTemp0, 32);
    ARMRegister XTemp(ExtractTemp0, 64);
    Label maybeNegZero, revertRegister;
    switch(op_) {
      case JSOP_ADD:
        masm.Adds(WTemp, W0, Operand(W1));

        // Just jump to failure on overflow. R0 and R1 are preserved, so we can
        // just jump to the next stub.
        masm.j(Assembler::Overflow, &failure);

        // Box the result and return. We know R0 already contains the
        // integer tag, so we just need to move the payload into place.
        masm.movePayload(ExtractTemp0, R0_);
        break;

      case JSOP_SUB:
        masm.Subs(WTemp, W0, Operand(W1));
        masm.j(Assembler::Overflow, &failure);
        masm.movePayload(ExtractTemp0, R0_);
        break;

      case JSOP_MUL:
        masm.mul32(R0.valueReg(), R1.valueReg(), Rscratch, &failure, &maybeNegZero);
        masm.movePayload(Rscratch, R0_);
        break;

      case JSOP_DIV:
      case JSOP_MOD: {

        // Check for INT_MIN / -1, it results in a double.
        Label check2;
        masm.Cmp(W0, Operand(INT_MIN));
        masm.B(&check2, Assembler::NotEqual);
        masm.Cmp(W1, Operand(-1));
        masm.j(Assembler::Equal, &failure);
        masm.bind(&check2);
        Label no_fail;
        // Check for both division by zero and 0 / X with X < 0 (results in -0).
        masm.Cmp(W1, Operand(0));
        // If x > 0, then it can't be bad.
        masm.B(&no_fail, Assembler::GreaterThan);
        // if x == 0, then ignore any comparison, and force
        // it to fail, if x < 0 (the only other case)
        // then do the comparison, and fail if y == 0
        masm.Ccmp(W0, Operand(0), vixl::ZFlag, Assembler::NotEqual);
        masm.B(&failure, Assembler::Equal);
        masm.bind(&no_fail);
        masm.Sdiv(Wscratch, W0, W1);
        // Start calculating the remainder, x - (x / y) * y.
        masm.mul(WTemp, W1, Wscratch);
        if (op_ == JSOP_DIV) {
            // Result is a double if the remainder != 0, which happens
            // when (x/y)*y != x.
            masm.branch32(Assembler::NotEqual, R0.valueReg(), ExtractTemp0, &revertRegister);
            masm.movePayload(Rscratch, R0_);
        } else {
            // Calculate the actual mod. Set the condition code, so we can see if it is non-zero.
            masm.Subs(WTemp, W0, WTemp);

            // If X % Y == 0 and X < 0, the result is -0.
            masm.Ccmp(W0, Operand(0), vixl::NoFlag, Assembler::Equal);
            masm.branch(Assembler::LessThan, &revertRegister);
            masm.movePayload(ExtractTemp0, R0_);
        }
        break;
      }
        // ORR, EOR, AND can trivially be coerced int
        // working without affecting the tag of the dest..
      case JSOP_BITOR:
        masm.Orr(X0, X0, Operand(X1));
        break;
      case JSOP_BITXOR:
        masm.Eor(X0, X0, Operand(W1, vixl::UXTW));
        break;
      case JSOP_BITAND:
        masm.And(X0, X0, Operand(X1));
        break;
        // LSH, RSH and URSH can not.
      case JSOP_LSH:
        // ARM will happily try to shift by more than 0x1f.
        masm.Lsl(Wscratch, W0, W1);
        masm.movePayload(Rscratch, R0.valueReg());
        break;
      case JSOP_RSH:
        masm.Asr(Wscratch, W0, W1);
        masm.movePayload(Rscratch, R0.valueReg());
        break;
      case JSOP_URSH:
        masm.Lsr(Wscratch, W0, W1);
        if (allowDouble_) {
            Label toUint;
            // Testing for negative is equivalent to testing bit 31
            masm.Tbnz(Wscratch, 31, &toUint);
            // Move result and box for return.
            masm.movePayload(Rscratch, R0_);
            EmitReturnFromIC(masm);

            masm.bind(&toUint);
            masm.convertUInt32ToDouble(Rscratch, ScratchDoubleReg);
            masm.boxDouble(ScratchDoubleReg, R0);
        } else {
            // Testing for negative is equivalent to testing bit 31
            masm.Tbnz(Wscratch, 31, &failure);
            // Move result for return.
            masm.movePayload(Rscratch, R0_);
        }
        break;
      default:
        MOZ_CRASH("Unhandled op for BinaryArith_Int32.");
    }

    EmitReturnFromIC(masm);

    switch (op_) {
      case JSOP_MUL:
        masm.bind(&maybeNegZero);

        // Result is -0 if exactly one of lhs or rhs is negative.
        masm.Cmn(W0, W1);
        masm.j(Assembler::Signed, &failure);

        // Result is +0, so use the zero register.
        masm.movePayload(rzr, R0_);
        EmitReturnFromIC(masm);
        break;
      case JSOP_DIV:
      case JSOP_MOD:
        masm.bind(&revertRegister);
        break;
      default:
        break;
    }

    // Failure case - jump to next stub.
    masm.bind(&failure);
    EmitStubGuardFailure(masm);

    return true;
}

bool
ICUnaryArith_Int32::Compiler::generateStubCode(MacroAssembler& masm)
{
    Label failure;
    masm.branchTestInt32(Assembler::NotEqual, R0, &failure);

    switch (op) {
      case JSOP_BITNOT:
        masm.Mvn(ARMRegister(R1.valueReg(), 32), ARMRegister(R0.valueReg(), 32));
        masm.movePayload(R1.valueReg(), R0.valueReg());
        break;
      case JSOP_NEG:
        // Guard against 0 and MIN_INT, both result in a double.
        masm.branchTest32(Assembler::Zero, R0.valueReg(), Imm32(0x7fffffff), &failure);

        // Compile -x as 0 - x.
        masm.Sub(ARMRegister(R1.valueReg(), 32), wzr, ARMRegister(R0.valueReg(), 32));
        masm.movePayload(R1.valueReg(), R0.valueReg());
        break;
      default:
        MOZ_CRASH("Unexpected op");
    }

    EmitReturnFromIC(masm);

    masm.bind(&failure);
    EmitStubGuardFailure(masm);
    return true;

}

} // namespace jit
} // namespace js