summaryrefslogtreecommitdiff
path: root/js/src/frontend/SyntaxParseHandler.h
blob: fd7753c581bab3a569dd116dffba5d2892144fce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef frontend_SyntaxParseHandler_h
#define frontend_SyntaxParseHandler_h

#include "mozilla/Attributes.h"

#include <string.h>

#include "frontend/ParseNode.h"
#include "frontend/TokenStream.h"

namespace js {
namespace frontend {

template <typename ParseHandler>
class Parser;

// Parse handler used when processing the syntax in a block of code, to generate
// the minimal information which is required to detect syntax errors and allow
// bytecode to be emitted for outer functions.
//
// When parsing, we start at the top level with a full parse, and when possible
// only check the syntax for inner functions, so that they can be lazily parsed
// into bytecode when/if they first run. Checking the syntax of a function is
// several times faster than doing a full parse/emit, and lazy parsing improves
// both performance and memory usage significantly when pages contain large
// amounts of code that never executes (which happens often).
class SyntaxParseHandler
{
    // Remember the last encountered name or string literal during syntax parses.
    JSAtom* lastAtom;
    TokenPos lastStringPos;
    TokenStream& tokenStream;

  public:
    enum Node {
        NodeFailure = 0,
        NodeGeneric,
        NodeGetProp,
        NodeStringExprStatement,
        NodeReturn,
        NodeBreak,
        NodeThrow,
        NodeEmptyStatement,

        NodeVarDeclaration,
        NodeLexicalDeclaration,

        NodeFunctionDefinition,

        // This is needed for proper assignment-target handling.  ES6 formally
        // requires function calls *not* pass IsValidSimpleAssignmentTarget,
        // but at last check there were still sites with |f() = 5| and similar
        // in code not actually executed (or at least not executed enough to be
        // noticed).
        NodeFunctionCall,
        NodeOptionalFunctionCall,

        // Nodes representing *parenthesized* IsValidSimpleAssignmentTarget
        // nodes.  We can't simply treat all such parenthesized nodes
        // identically, because in assignment and increment/decrement contexts
        // ES6 says that parentheses constitute a syntax error.
        //
        //   var obj = {};
        //   var val;
        //   (val) = 3; (obj.prop) = 4;       // okay per ES5's little mind
        //   [(a)] = [3]; [(obj.prop)] = [4]; // invalid ES6 syntax
        //   // ...and so on for the other IsValidSimpleAssignmentTarget nodes
        //
        // We don't know in advance in the current parser when we're parsing
        // in a place where name parenthesization changes meaning, so we must
        // have multiple node values for these cases.
        NodeParenthesizedArgumentsName,
        NodeParenthesizedEvalName,
        NodeParenthesizedName,

        NodeDottedProperty,
        NodeOptionalDottedProperty,
        NodeElement,
        NodeOptionalElement,

        // Destructuring target patterns can't be parenthesized: |([a]) = [3];|
        // must be a syntax error.  (We can't use NodeGeneric instead of these
        // because that would trigger invalid-left-hand-side ReferenceError
        // semantics when SyntaxError semantics are desired.)
        NodeParenthesizedArray,
        NodeParenthesizedObject,

        // In rare cases a parenthesized |node| doesn't have the same semantics
        // as |node|.  Each such node has a special Node value, and we use a
        // different Node value to represent the parenthesized form.  See also
        // is{Unp,P}arenthesized*(Node), parenthesize(Node), and the various
        // functions that deal in NodeUnparenthesized* below.

        // Nodes representing unparenthesized names.
        NodeUnparenthesizedArgumentsName,
        NodeUnparenthesizedEvalName,
        NodeUnparenthesizedName,

        // Node representing the "async" name, which may actually be a
        // contextual keyword.
        NodePotentialAsyncKeyword,

        // Valuable for recognizing potential destructuring patterns.
        NodeUnparenthesizedArray,
        NodeUnparenthesizedObject,

        // The directive prologue at the start of a FunctionBody or ScriptBody
        // is the longest sequence (possibly empty) of string literal
        // expression statements at the start of a function.  Thus we need this
        // to treat |"use strict";| as a possible Use Strict Directive and
        // |("use strict");| as a useless statement.
        NodeUnparenthesizedString,

        // Legacy generator expressions of the form |(expr for (...))| and
        // array comprehensions of the form |[expr for (...)]|) don't permit
        // |expr| to be a comma expression.  Thus we need this to treat
        // |(a(), b for (x in []))| as a syntax error and
        // |((a(), b) for (x in []))| as a generator that calls |a| and then
        // yields |b| each time it's resumed.
        NodeUnparenthesizedCommaExpr,

        // Assignment expressions in condition contexts could be typos for
        // equality checks.  (Think |if (x = y)| versus |if (x == y)|.)  Thus
        // we need this to treat |if (x = y)| as a possible typo and
        // |if ((x = y))| as a deliberate assignment within a condition.
        //
        // (Technically this isn't needed, as these are *only* extraWarnings
        // warnings, and parsing with that option disables syntax parsing.  But
        // it seems best to be consistent, and perhaps the syntax parser will
        // eventually enforce extraWarnings and will require this then.)
        NodeUnparenthesizedAssignment,

        // This node is necessary to determine if the base operand in an
        // exponentiation operation is an unparenthesized unary expression.
        // We want to reject |-2 ** 3|, but still need to allow |(-2) ** 3|.
        NodeUnparenthesizedUnary,

        // This node is necessary to determine if the LHS of a property access is
        // super related.
        NodeSuperBase
    };

#define DECLARE_TYPE(typeName, longTypeName, asMethodName) \
    using longTypeName = Node;
FOR_EACH_PARSENODE_SUBCLASS(DECLARE_TYPE)
#undef DECLARE_TYPE

    using NullNode = Node;

    bool isPropertyAccess(Node node) {
        return node == NodeDottedProperty || node == NodeElement;
    }

    bool isOptionalPropertyAccess(Node node) {
        return node == NodeOptionalDottedProperty || node == NodeOptionalElement;
    }

    bool isFunctionCall(Node node) {
        // Note: super() is a special form, *not* a function call.
        return node == NodeFunctionCall;
    }

    static bool isUnparenthesizedDestructuringPattern(Node node) {
        return node == NodeUnparenthesizedArray || node == NodeUnparenthesizedObject;
    }

    static bool isParenthesizedDestructuringPattern(Node node) {
        // Technically this isn't a destructuring target at all -- the grammar
        // doesn't treat it as such.  But we need to know when this happens to
        // consider it a SyntaxError rather than an invalid-left-hand-side
        // ReferenceError.
        return node == NodeParenthesizedArray || node == NodeParenthesizedObject;
    }

    static bool isDestructuringPatternAnyParentheses(Node node) {
        return isUnparenthesizedDestructuringPattern(node) ||
                isParenthesizedDestructuringPattern(node);
    }

  public:
    SyntaxParseHandler(ExclusiveContext* cx, LifoAlloc& alloc,
                       TokenStream& tokenStream, Parser<SyntaxParseHandler>* syntaxParser,
                       LazyScript* lazyOuterFunction)
      : lastAtom(nullptr),
        tokenStream(tokenStream)
    {}

    static NullNode null() { return NodeFailure; }

#define DECLARE_AS(typeName, longTypeName, asMethodName) \
    static longTypeName asMethodName(Node node) { \
        return node; \
    }
FOR_EACH_PARSENODE_SUBCLASS(DECLARE_AS)
#undef DECLARE_AS

    void prepareNodeForMutation(Node node) {}
    void freeTree(Node node) {}

    void trace(JSTracer* trc) {}

    NameNodeType newName(PropertyName* name, const TokenPos& pos, ExclusiveContext* cx) {
        lastAtom = name;
        if (name == cx->names().arguments)
            return NodeUnparenthesizedArgumentsName;
        if (pos.begin + strlen("async") == pos.end && name == cx->names().async)
            return NodePotentialAsyncKeyword;
        if (name == cx->names().eval)
            return NodeUnparenthesizedEvalName;
        return NodeUnparenthesizedName;
    }

    UnaryNodeType newComputedName(Node expr, uint32_t start, uint32_t end) {
        return NodeGeneric;
    }

    NameNodeType newObjectLiteralPropertyName(JSAtom* atom, const TokenPos& pos) {
        return NodeUnparenthesizedName;
    }

    NumericLiteralType newNumber(double value, DecimalPoint decimalPoint, const TokenPos& pos) { return NodeGeneric; }
    Node newBooleanLiteral(bool cond, const TokenPos& pos) { return NodeGeneric; }

    NameNodeType newStringLiteral(JSAtom* atom, const TokenPos& pos) {
        lastAtom = atom;
        lastStringPos = pos;
        return NodeUnparenthesizedString;
    }

    NameNodeType newTemplateStringLiteral(JSAtom* atom, const TokenPos& pos) {
        return NodeGeneric;
    }

    CallSiteNodeType newCallSiteObject(uint32_t begin) {
        return NodeGeneric;
    }

    void addToCallSiteObject(CallSiteNodeType callSiteObj, Node rawNode, Node cookedNode) {}

    UnaryNodeType newThisLiteral(const TokenPos& pos, Node thisName) { return NodeGeneric; }
    Node newNullLiteral(const TokenPos& pos) { return NodeGeneric; }
    Node newRawUndefinedLiteral(const TokenPos& pos) { return NodeGeneric; }

    template <class Boxer>
    RegExpLiteralType newRegExp(RegExpObject* reobj, const TokenPos& pos, Boxer& boxer) { return NodeGeneric; }

    ConditionalExpressionType newConditional(Node cond, Node thenExpr, Node elseExpr) {
        return NodeGeneric;
    }

    Node newElision() { return NodeGeneric; }

    UnaryNodeType newDelete(uint32_t begin, Node expr) {
        return NodeUnparenthesizedUnary;
    }

    UnaryNodeType newTypeof(uint32_t begin, Node kid) {
        return NodeUnparenthesizedUnary;
    }

    Node newNullary(ParseNodeKind kind, JSOp op, const TokenPos& pos) {
        return NodeGeneric;
    }

    UnaryNodeType newUnary(ParseNodeKind kind, JSOp op, uint32_t begin, Node kid) {
        return NodeUnparenthesizedUnary;
    }

    UnaryNodeType newUpdate(ParseNodeKind kind, uint32_t begin, Node kid) {
        return NodeGeneric;
    }

    UnaryNodeType newSpread(uint32_t begin, Node kid) {
        return NodeGeneric;
    }

    Node newArrayPush(uint32_t begin, Node kid) {
        return NodeGeneric;
    }

    Node newBinary(ParseNodeKind kind, JSOp op = JSOP_NOP) { return NodeGeneric; }
    Node newBinary(ParseNodeKind kind, Node left, JSOp op = JSOP_NOP) { return NodeGeneric; }
    Node newBinary(ParseNodeKind kind, Node left, Node right, JSOp op = JSOP_NOP) {
        return NodeGeneric;
    }
    Node appendOrCreateList(ParseNodeKind kind, Node left, Node right,
                            ParseContext* pc, JSOp op = JSOP_NOP) {
        return NodeGeneric;
    }

    Node newTernary(ParseNodeKind kind, Node first, Node second, Node third, JSOp op = JSOP_NOP) {
        return NodeGeneric;
    }

    // Expressions

    ListNodeType newArrayLiteral(uint32_t begin) { return NodeUnparenthesizedArray; }
    MOZ_MUST_USE bool addElision(ListNodeType literal, const TokenPos& pos) { return true; }
    MOZ_MUST_USE bool addSpreadElement(ListNodeType literal, uint32_t begin, Node inner) { return true; }
    void addArrayElement(ListNodeType literal, Node element) { }

    BinaryNodeType newCall(Node callee, Node args) { return NodeFunctionCall; }
    BinaryNodeType newOptionalCall(Node callee, Node args) { return NodeOptionalFunctionCall; }
    ListNodeType newArguments(const TokenPos& pos) { return NodeGeneric; }
    BinaryNodeType newSuperCall(Node callee, Node args) { return NodeGeneric; }
    BinaryNodeType newTaggedTemplate(Node callee, Node args) { return NodeGeneric; }
    Node newGenExp(Node callee, Node args) { return NodeGeneric; }

    ListNodeType newObjectLiteral(uint32_t begin) { return NodeUnparenthesizedObject; }
    ListNodeType newClassMethodList(uint32_t begin) { return NodeGeneric; }
    ClassNamesType newClassNames(Node outer, Node inner, const TokenPos& pos) { return NodeGeneric; }
    ClassNodeType newClass(Node name, Node heritage, Node methodBlock, const TokenPos& pos) { return NodeGeneric; }

    BinaryNodeType newNewTarget(Node newHolder, Node targetHolder) { return NodeGeneric; }
    Node newPosHolder(const TokenPos& pos) { return NodeGeneric; }
    UnaryNodeType newSuperBase(Node thisName, const TokenPos& pos) { return NodeSuperBase; }

    MOZ_MUST_USE bool addPrototypeMutation(ListNodeType literal, uint32_t begin, Node expr) { return true; }
    MOZ_MUST_USE bool addPropertyDefinition(ListNodeType literal, Node name, Node expr) { return true; }
    MOZ_MUST_USE bool addShorthand(ListNodeType literal, NameNodeType name, NameNodeType expr) { return true; }
    MOZ_MUST_USE bool addSpreadProperty(ListNodeType literal, uint32_t begin, Node inner) { return true; }
    MOZ_MUST_USE bool addObjectMethodDefinition(ListNodeType literal, Node name, CodeNodeType funNode, JSOp op) { return true; }
    MOZ_MUST_USE bool addClassMethodDefinition(ListNodeType literal, Node name, CodeNodeType funNode, JSOp op, bool isStatic) { return true; }
    UnaryNodeType newYieldExpression(uint32_t begin, Node value) { return NodeGeneric; }
    UnaryNodeType newYieldStarExpression(uint32_t begin, Node value) { return NodeGeneric; }
    UnaryNodeType newAwaitExpression(uint32_t begin, Node value) { return NodeGeneric; }
    Node newOptionalChain(uint32_t begin, Node value) { return NodeGeneric; }

    // Statements

    ListNodeType newStatementList(const TokenPos& pos) { return NodeGeneric; }
    void addStatementToList(ListNodeType list, Node stmt) {}
    void addCaseStatementToList(ListNodeType list, CaseClauseType caseClause) {}
    MOZ_MUST_USE bool prependInitialYield(ListNodeType stmtList, Node genName) { return true; }
    Node newEmptyStatement(const TokenPos& pos) { return NodeEmptyStatement; }

    UnaryNodeType newExportDeclaration(Node kid, const TokenPos& pos) {
        return NodeGeneric;
    }
    BinaryNodeType newExportFromDeclaration(uint32_t begin, Node exportSpecSet, Node moduleSpec) {
        return NodeGeneric;
    }
    BinaryNodeType newExportDefaultDeclaration(Node kid, Node maybeBinding, const TokenPos& pos) {
        return NodeGeneric;
    }

    BinaryNodeType newSetThis(Node thisName, Node value) { return value; }

    UnaryNodeType newExprStatement(Node expr, uint32_t end) {
        return expr == NodeUnparenthesizedString ? NodeStringExprStatement : NodeGeneric;
    }

    TernaryNodeType newIfStatement(uint32_t begin, Node cond, Node thenBranch, Node elseBranch) {
        return NodeGeneric;
    }
    BinaryNodeType newDoWhileStatement(Node body, Node cond, const TokenPos& pos) { return NodeGeneric; }
    BinaryNodeType newWhileStatement(uint32_t begin, Node cond, Node body) { return NodeGeneric; }
    SwitchStatementType newSwitchStatement(uint32_t begin, Node discriminant, Node lexicalForCaseList, bool hasDefault)
    {
        return NodeGeneric;
    }
    CaseClauseType newCaseOrDefault(uint32_t begin, Node expr, Node body) { return NodeGeneric; }
    Node newContinueStatement(PropertyName* label, const TokenPos& pos) { return NodeGeneric; }
    Node newBreakStatement(PropertyName* label, const TokenPos& pos) { return NodeBreak; }
    UnaryNodeType newReturnStatement(Node expr, const TokenPos& pos) { return NodeReturn; }
    BinaryNodeType newWithStatement(uint32_t begin, Node expr, Node body) { return NodeGeneric; }

    LabeledStatementType newLabeledStatement(PropertyName* label, Node stmt, uint32_t begin) {
        return NodeGeneric;
    }

    UnaryNodeType newThrowStatement(Node expr, const TokenPos& pos) { return NodeThrow; }
    Node newTryStatement(uint32_t begin, Node body, ListNodeType catchList, Node finallyBlock) {
        return NodeGeneric;
    }
    Node newDebuggerStatement(const TokenPos& pos) { return NodeGeneric; }

    NameNodeType newPropertyName(PropertyName* name, const TokenPos& pos) {
        lastAtom = name;
        return NodeGeneric;
    }

    PropertyAccessType newPropertyAccess(Node expr, NameNodeType key) {
        return NodeDottedProperty;
    }

    Node newOptionalPropertyAccess(Node expr, NameNodeType key) {
        return NodeOptionalDottedProperty;
    }

    PropertyByValueType newPropertyByValue(Node lhs, Node index, uint32_t end) { return NodeElement; }

    Node newOptionalPropertyByValue(Node pn, Node kid, uint32_t end) { return NodeOptionalElement; }

    MOZ_MUST_USE bool addCatchBlock(ListNodeType catchList, Node letBlock, Node catchBinding,
                                    Node catchGuard, Node catchBody) { return true; }

    MOZ_MUST_USE bool setLastFunctionFormalParameterDefault(CodeNodeType funNode, Node pn) { return true; }

    void checkAndSetIsDirectRHSAnonFunction(Node pn) {}

    CodeNodeType newFunctionStatement() { return NodeFunctionDefinition; }
    CodeNodeType newFunctionExpression() { return NodeFunctionDefinition; }
    CodeNodeType newArrowFunction() { return NodeFunctionDefinition; }

    bool setComprehensionLambdaBody(CodeNodeType funNode, ListNodeType body) { return true; }
    void setFunctionFormalParametersAndBody(CodeNodeType funNode, ListNodeType paramsBody) {}
    void setFunctionBody(CodeNodeType funNode, Node body) {}
    void setFunctionBox(CodeNodeType funNode, FunctionBox* funbox) {}
    void addFunctionFormalParameter(CodeNodeType funNode, Node argpn) {}

    ForNodeType newForStatement(uint32_t begin, TernaryNodeType forHead, Node body, unsigned iflags) {
        return NodeGeneric;
    }

    Node newComprehensionFor(uint32_t begin, Node forHead, Node body) {
        return NodeGeneric;
    }

    Node newComprehensionBinding(Node kid) {
        // Careful: we're asking this well after the name was parsed, so the
        // value returned may not correspond to |kid|'s actual name.  But it
        // *will* be truthy iff |kid| was a name, so we're safe.
        MOZ_ASSERT(isUnparenthesizedName(kid));
        return NodeGeneric;
    }

    TernaryNodeType newForHead(Node init, Node test, Node update, const TokenPos& pos) {
        return NodeGeneric;
    }

    TernaryNodeType newForInOrOfHead(ParseNodeKind kind, Node target, Node iteratedExpr, const TokenPos& pos) {
        return NodeGeneric;
    }

    MOZ_MUST_USE bool finishInitializerAssignment(NameNodeType nameNode, Node init) { return true; }

    void setBeginPosition(Node pn, Node oth) {}
    void setBeginPosition(Node pn, uint32_t begin) {}

    void setEndPosition(Node pn, Node oth) {}
    void setEndPosition(Node pn, uint32_t end) {}

    void setPosition(Node pn, const TokenPos& pos) {}
    TokenPos getPosition(Node pn) {
        return tokenStream.currentToken().pos;
    }

    ListNodeType newList(ParseNodeKind kind, JSOp op = JSOP_NOP) {
        MOZ_ASSERT(kind != PNK_VAR);
        MOZ_ASSERT(kind != PNK_LET);
        MOZ_ASSERT(kind != PNK_CONST);
        return NodeGeneric;
    }
    ListNodeType newList(ParseNodeKind kind, uint32_t begin, JSOp op = JSOP_NOP) {
        return newList(kind, op);
    }
    ListNodeType newList(ParseNodeKind kind, Node kid, JSOp op = JSOP_NOP) {
        return newList(kind, op);
    }

    ListNodeType newDeclarationList(ParseNodeKind kind, JSOp op = JSOP_NOP) {
        if (kind == PNK_VAR)
            return NodeVarDeclaration;
        MOZ_ASSERT(kind == PNK_LET || kind == PNK_CONST);
        return NodeLexicalDeclaration;
    }
    ListNodeType newDeclarationList(ParseNodeKind kind, Node kid, JSOp op = JSOP_NOP) {
        return newDeclarationList(kind, op);
    }

    bool isDeclarationList(Node node) {
        return node == NodeVarDeclaration || node == NodeLexicalDeclaration;
    }

    Node singleBindingFromDeclaration(ListNodeType decl) {
        MOZ_ASSERT(isDeclarationList(decl));

        // This is, unfortunately, very dodgy.  Obviously NodeVarDeclaration
        // and NodeLexicalDeclaration can store no info on the arbitrary
        // number of bindings it could contain.
        //
        // But this method is called only for cloning for-in/of declarations
        // as initialization targets.  That context simplifies matters.  If the
        // binding is a single name, it'll always syntax-parse (or it would
        // already have been rejected as assigning/binding a forbidden name).
        // Otherwise the binding is a destructuring pattern.  But syntax
        // parsing would *already* have aborted when it saw a destructuring
        // pattern.  So we can just say any old thing here, because the only
        // time we'll be wrong is a case that syntax parsing has already
        // rejected.  Use NodeUnparenthesizedName so the SyntaxParseHandler
        // Parser::cloneLeftHandSide can assert it sees only this.
        return NodeUnparenthesizedName;
    }

    Node newCatchList() {
        return newList(PNK_CATCHLIST, JSOP_NOP);
    }

    ListNodeType newCommaExpressionList(Node kid) {
        return NodeUnparenthesizedCommaExpr;
    }

    void addList(ListNodeType list, Node kid) {
        MOZ_ASSERT(list == NodeGeneric ||
                   list == NodeUnparenthesizedArray ||
                   list == NodeUnparenthesizedObject ||
                   list == NodeUnparenthesizedCommaExpr ||
                   list == NodeVarDeclaration ||
                   list == NodeLexicalDeclaration ||
                   list == NodeFunctionCall ||
                   list == NodeOptionalFunctionCall);
    }


    BinaryNodeType newNewExpression(uint32_t begin, Node ctor, Node args) {
        return NodeGeneric;
    }

    AssignmentNodeType newAssignment(ParseNodeKind kind, Node lhs, Node rhs, JSOp op) {
        if (kind == PNK_ASSIGN)
            return NodeUnparenthesizedAssignment;
        return newBinary(kind, lhs, rhs, op);
    }

    bool isUnparenthesizedCommaExpression(Node node) {
        return node == NodeUnparenthesizedCommaExpr;
    }

    bool isUnparenthesizedAssignment(Node node) {
        return node == NodeUnparenthesizedAssignment;
    }

    bool isUnparenthesizedUnaryExpression(Node node) {
        return node == NodeUnparenthesizedUnary;
    }

    bool isReturnStatement(Node node) {
        return node == NodeReturn;
    }

    bool isStatementPermittedAfterReturnStatement(Node pn) {
        return pn == NodeFunctionDefinition || pn == NodeVarDeclaration ||
               pn == NodeBreak ||
               pn == NodeThrow ||
               pn == NodeEmptyStatement;
    }

    bool isSuperBase(Node pn) {
        return pn == NodeSuperBase;
    }

    void setOp(Node pn, JSOp op) {}
    void setListHasNonConstInitializer(ListNodeType literal) {}
    MOZ_MUST_USE Node parenthesize(Node node) {
        // A number of nodes have different behavior upon parenthesization, but
        // only in some circumstances.  Convert these nodes to special
        // parenthesized forms.
        if (node == NodeUnparenthesizedArgumentsName)
            return NodeParenthesizedArgumentsName;
        if (node == NodeUnparenthesizedEvalName)
            return NodeParenthesizedEvalName;
        if (node == NodeUnparenthesizedName || node == NodePotentialAsyncKeyword)
            return NodeParenthesizedName;

        if (node == NodeUnparenthesizedArray)
            return NodeParenthesizedArray;
        if (node == NodeUnparenthesizedObject)
            return NodeParenthesizedObject;

        // Other nodes need not be recognizable after parenthesization; convert
        // them to a generic node.
        if (node == NodeUnparenthesizedString ||
            node == NodeUnparenthesizedCommaExpr ||
            node == NodeUnparenthesizedAssignment ||
            node == NodeUnparenthesizedUnary)
        {
            return NodeGeneric;
        }

        // In all other cases, the parenthesized form of |node| is equivalent
        // to the unparenthesized form: return |node| unchanged.
        return node;
    }
    template <typename NodeType>
    MOZ_MUST_USE NodeType setLikelyIIFE(NodeType node) {
        return node; // Remain in syntax-parse mode.
    }
    void setInDirectivePrologue(UnaryNodeType exprStmt) {}

    bool isConstant(Node pn) { return false; }

    bool isUnparenthesizedName(Node node) {
        return node == NodeUnparenthesizedArgumentsName ||
               node == NodeUnparenthesizedEvalName ||
               node == NodeUnparenthesizedName ||
               node == NodePotentialAsyncKeyword;
    }

    bool isNameAnyParentheses(Node node) {
        if (isUnparenthesizedName(node))
            return true;
        return node == NodeParenthesizedArgumentsName ||
               node == NodeParenthesizedEvalName ||
               node == NodeParenthesizedName;
    }

    bool isArgumentsAnyParentheses(Node node, ExclusiveContext* cx) {
        return node == NodeUnparenthesizedArgumentsName || node == NodeParenthesizedArgumentsName;
    }

    bool isEvalAnyParentheses(Node node, ExclusiveContext* cx) {
        return node == NodeUnparenthesizedEvalName || node == NodeParenthesizedEvalName;
    }

    const char* nameIsArgumentsEvalAnyParentheses(Node node, ExclusiveContext* cx) {
        MOZ_ASSERT(isNameAnyParentheses(node),
                   "must only call this method on known names");

        if (isEvalAnyParentheses(node, cx))
            return js_eval_str;
        if (isArgumentsAnyParentheses(node, cx))
            return js_arguments_str;
        return nullptr;
    }

    bool isAsyncKeyword(Node node, ExclusiveContext* cx) {
        return node == NodePotentialAsyncKeyword;
    }

    PropertyName* maybeDottedProperty(Node node) {
        // Note: |super.apply(...)| is a special form that calls an "apply"
        // method retrieved from one value, but using a *different* value as
        // |this|.  It's not really eligible for the funapply/funcall
        // optimizations as they're currently implemented (assuming a single
        // value is used for both retrieval and |this|).
        if (node != NodeDottedProperty && node != NodeOptionalDottedProperty)
            return nullptr;
        return lastAtom->asPropertyName();
    }

    JSAtom* isStringExprStatement(Node pn, TokenPos* pos) {
        if (pn == NodeStringExprStatement) {
            *pos = lastStringPos;
            return lastAtom;
        }
        return nullptr;
    }

    bool canSkipLazyInnerFunctions() {
        return false;
    }
    bool canSkipLazyClosedOverBindings() {
        return false;
    }
    JSAtom* nextLazyClosedOverBinding() {
        MOZ_CRASH("SyntaxParseHandler::canSkipLazyClosedOverBindings must return false");
    }

    void adjustGetToSet(Node node) {}

    void disableSyntaxParser() {
    }
};

} // namespace frontend
} // namespace js

#endif /* frontend_SyntaxParseHandler_h */