summaryrefslogtreecommitdiff
path: root/js/src/ds/PriorityQueue.h
blob: 549e44e92665efde1de175a38cca3e230218ad47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef ds_PriorityQueue_h
#define ds_PriorityQueue_h

#include "js/Vector.h"

namespace js {

/*
 * Class which represents a heap based priority queue using a vector.
 * Inserting elements and removing the highest priority one are both O(log n).
 *
 * Template parameters are the same as for Vector, with the addition that P
 * must have a static priority(const T&) method which returns higher numbers
 * for higher priority elements.
 */
template <class T, class P,
          size_t MinInlineCapacity = 0,
          class AllocPolicy = TempAllocPolicy>
class PriorityQueue
{
    Vector<T, MinInlineCapacity, AllocPolicy> heap;

    PriorityQueue(const PriorityQueue&) = delete;
    PriorityQueue& operator=(const PriorityQueue&) = delete;

  public:

    explicit PriorityQueue(AllocPolicy ap = AllocPolicy())
      : heap(ap)
    {}

    MOZ_MUST_USE bool reserve(size_t capacity) {
        return heap.reserve(capacity);
    }

    size_t length() const {
        return heap.length();
    }

    bool empty() const {
        return heap.empty();
    }

    T removeHighest() {
        T highest = heap[0];
        T last = heap.popCopy();
        if (!heap.empty()) {
            heap[0] = last;
            siftDown(0);
        }
        return highest;
    }

    MOZ_MUST_USE bool insert(const T& v) {
        if (!heap.append(v))
            return false;
        siftUp(heap.length() - 1);
        return true;
    }

    void infallibleInsert(const T& v) {
        heap.infallibleAppend(v);
        siftUp(heap.length() - 1);
    }

  private:

    /*
     * Elements of the vector encode a binary tree:
     *
     *      0
     *    1   2
     *   3 4 5 6
     *
     * The children of element N are (2N + 1) and (2N + 2).
     * The parent of element N is (N - 1) / 2.
     *
     * Each element has higher priority than its children.
     */

    void siftDown(size_t n) {
        while (true) {
            size_t left = n * 2 + 1;
            size_t right = n * 2 + 2;

            if (left < heap.length()) {
                if (right < heap.length()) {
                    if (P::priority(heap[n]) < P::priority(heap[right]) &&
                        P::priority(heap[left]) < P::priority(heap[right]))
                    {
                        swap(n, right);
                        n = right;
                        continue;
                    }
                }

                if (P::priority(heap[n]) < P::priority(heap[left])) {
                    swap(n, left);
                    n = left;
                    continue;
                }
            }

            break;
        }
    }

    void siftUp(size_t n) {
        while (n > 0) {
            size_t parent = (n - 1) / 2;

            if (P::priority(heap[parent]) > P::priority(heap[n]))
                break;

            swap(n, parent);
            n = parent;
        }
    }

    void swap(size_t a, size_t b) {
        T tmp = heap[a];
        heap[a] = heap[b];
        heap[b] = tmp;
    }
};

}  /* namespace js */

#endif /* ds_PriorityQueue_h */