summaryrefslogtreecommitdiff
path: root/gfx/2d/Blur.cpp
blob: f3f41c3affbdea0b927ef11dd4651c3b3f15387c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "Blur.h"

#include <algorithm>
#include <math.h>
#include <string.h>

#include "mozilla/CheckedInt.h"

#include "2D.h"
#include "DataSurfaceHelpers.h"
#include "Tools.h"

#ifdef BUILD_ARM_NEON
#include "mozilla/arm.h"
#endif

using namespace std;

namespace mozilla {
namespace gfx {

/**
 * Box blur involves looking at one pixel, and setting its value to the average
 * of its neighbouring pixels.
 * @param aInput The input buffer.
 * @param aOutput The output buffer.
 * @param aLeftLobe The number of pixels to blend on the left.
 * @param aRightLobe The number of pixels to blend on the right.
 * @param aWidth The number of columns in the buffers.
 * @param aRows The number of rows in the buffers.
 * @param aSkipRect An area to skip blurring in.
 * XXX shouldn't we pass stride in separately here?
 */
static void
BoxBlurHorizontal(unsigned char* aInput,
                  unsigned char* aOutput,
                  int32_t aLeftLobe,
                  int32_t aRightLobe,
                  int32_t aWidth,
                  int32_t aRows,
                  const IntRect& aSkipRect)
{
    MOZ_ASSERT(aWidth > 0);

    int32_t boxSize = aLeftLobe + aRightLobe + 1;
    bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
                                  aWidth <= aSkipRect.XMost();
    if (boxSize == 1) {
        memcpy(aOutput, aInput, aWidth*aRows);
        return;
    }
    uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);

    for (int32_t y = 0; y < aRows; y++) {
        // Check whether the skip rect intersects this row. If the skip
        // rect covers the whole surface in this row, we can avoid
        // this row entirely (and any others along the skip rect).
        bool inSkipRectY = y >= aSkipRect.y &&
                           y < aSkipRect.YMost();
        if (inSkipRectY && skipRectCoversWholeRow) {
            y = aSkipRect.YMost() - 1;
            continue;
        }

        uint32_t alphaSum = 0;
        for (int32_t i = 0; i < boxSize; i++) {
            int32_t pos = i - aLeftLobe;
            // See assertion above; if aWidth is zero, then we would have no
            // valid position to clamp to.
            pos = max(pos, 0);
            pos = min(pos, aWidth - 1);
            alphaSum += aInput[aWidth * y + pos];
        }
        for (int32_t x = 0; x < aWidth; x++) {
            // Check whether we are within the skip rect. If so, go
            // to the next point outside the skip rect.
            if (inSkipRectY && x >= aSkipRect.x &&
                x < aSkipRect.XMost()) {
                x = aSkipRect.XMost();
                if (x >= aWidth)
                    break;

                // Recalculate the neighbouring alpha values for
                // our new point on the surface.
                alphaSum = 0;
                for (int32_t i = 0; i < boxSize; i++) {
                    int32_t pos = x + i - aLeftLobe;
                    // See assertion above; if aWidth is zero, then we would have no
                    // valid position to clamp to.
                    pos = max(pos, 0);
                    pos = min(pos, aWidth - 1);
                    alphaSum += aInput[aWidth * y + pos];
                }
            }
            int32_t tmp = x - aLeftLobe;
            int32_t last = max(tmp, 0);
            int32_t next = min(tmp + boxSize, aWidth - 1);

            aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;

            alphaSum += aInput[aWidth * y + next] -
                        aInput[aWidth * y + last];
        }
    }
}

/**
 * Identical to BoxBlurHorizontal, except it blurs top and bottom instead of
 * left and right.
 * XXX shouldn't we pass stride in separately here?
 */
static void
BoxBlurVertical(unsigned char* aInput,
                unsigned char* aOutput,
                int32_t aTopLobe,
                int32_t aBottomLobe,
                int32_t aWidth,
                int32_t aRows,
                const IntRect& aSkipRect)
{
    MOZ_ASSERT(aRows > 0);

    int32_t boxSize = aTopLobe + aBottomLobe + 1;
    bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
                                     aRows <= aSkipRect.YMost();
    if (boxSize == 1) {
        memcpy(aOutput, aInput, aWidth*aRows);
        return;
    }
    uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);

    for (int32_t x = 0; x < aWidth; x++) {
        bool inSkipRectX = x >= aSkipRect.x &&
                           x < aSkipRect.XMost();
        if (inSkipRectX && skipRectCoversWholeColumn) {
            x = aSkipRect.XMost() - 1;
            continue;
        }

        uint32_t alphaSum = 0;
        for (int32_t i = 0; i < boxSize; i++) {
            int32_t pos = i - aTopLobe;
            // See assertion above; if aRows is zero, then we would have no
            // valid position to clamp to.
            pos = max(pos, 0);
            pos = min(pos, aRows - 1);
            alphaSum += aInput[aWidth * pos + x];
        }
        for (int32_t y = 0; y < aRows; y++) {
            if (inSkipRectX && y >= aSkipRect.y &&
                y < aSkipRect.YMost()) {
                y = aSkipRect.YMost();
                if (y >= aRows)
                    break;

                alphaSum = 0;
                for (int32_t i = 0; i < boxSize; i++) {
                    int32_t pos = y + i - aTopLobe;
                    // See assertion above; if aRows is zero, then we would have no
                    // valid position to clamp to.
                    pos = max(pos, 0);
                    pos = min(pos, aRows - 1);
                    alphaSum += aInput[aWidth * pos + x];
                }
            }
            int32_t tmp = y - aTopLobe;
            int32_t last = max(tmp, 0);
            int32_t next = min(tmp + boxSize, aRows - 1);

            aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;

            alphaSum += aInput[aWidth * next + x] -
                        aInput[aWidth * last + x];
        }
    }
}

static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2])
{
    int32_t major, minor, final;

    /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
     * some notes about approximating the Gaussian blur with box-blurs.
     * The comments below are in the terminology of that page.
     */
    int32_t z = aRadius / 3;
    switch (aRadius % 3) {
    case 0:
        // aRadius = z*3; choose d = 2*z + 1
        major = minor = final = z;
        break;
    case 1:
        // aRadius = z*3 + 1
        // This is a tricky case since there is no value of d which will
        // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
        // for some integer k, then the radius will be 3*k. If d is even,
        // i.e. d=2*k, then the radius will be 3*k - 1.
        // So we have to choose values that don't match the standard
        // algorithm.
        major = z + 1;
        minor = final = z;
        break;
    case 2:
        // aRadius = z*3 + 2; choose d = 2*z + 2
        major = final = z + 1;
        minor = z;
        break;
    default:
        // Mathematical impossibility!
        MOZ_ASSERT(false);
        major = minor = final = 0;
    }
    MOZ_ASSERT(major + minor + final == aRadius);

    aLobes[0][0] = major;
    aLobes[0][1] = minor;
    aLobes[1][0] = minor;
    aLobes[1][1] = major;
    aLobes[2][0] = final;
    aLobes[2][1] = final;
}

static void
SpreadHorizontal(unsigned char* aInput,
                 unsigned char* aOutput,
                 int32_t aRadius,
                 int32_t aWidth,
                 int32_t aRows,
                 int32_t aStride,
                 const IntRect& aSkipRect)
{
    if (aRadius == 0) {
        memcpy(aOutput, aInput, aStride * aRows);
        return;
    }

    bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
                                    aWidth <= aSkipRect.XMost();
    for (int32_t y = 0; y < aRows; y++) {
        // Check whether the skip rect intersects this row. If the skip
        // rect covers the whole surface in this row, we can avoid
        // this row entirely (and any others along the skip rect).
        bool inSkipRectY = y >= aSkipRect.y &&
                             y < aSkipRect.YMost();
        if (inSkipRectY && skipRectCoversWholeRow) {
            y = aSkipRect.YMost() - 1;
            continue;
        }

        for (int32_t x = 0; x < aWidth; x++) {
            // Check whether we are within the skip rect. If so, go
            // to the next point outside the skip rect.
            if (inSkipRectY && x >= aSkipRect.x &&
                x < aSkipRect.XMost()) {
                x = aSkipRect.XMost();
                if (x >= aWidth)
                    break;
            }

            int32_t sMin = max(x - aRadius, 0);
            int32_t sMax = min(x + aRadius, aWidth - 1);
            int32_t v = 0;
            for (int32_t s = sMin; s <= sMax; ++s) {
                v = max<int32_t>(v, aInput[aStride * y + s]);
            }
            aOutput[aStride * y + x] = v;
        }
    }
}

static void
SpreadVertical(unsigned char* aInput,
               unsigned char* aOutput,
               int32_t aRadius,
               int32_t aWidth,
               int32_t aRows,
               int32_t aStride,
               const IntRect& aSkipRect)
{
    if (aRadius == 0) {
        memcpy(aOutput, aInput, aStride * aRows);
        return;
    }

    bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
                                     aRows <= aSkipRect.YMost();
    for (int32_t x = 0; x < aWidth; x++) {
        bool inSkipRectX = x >= aSkipRect.x &&
                           x < aSkipRect.XMost();
        if (inSkipRectX && skipRectCoversWholeColumn) {
            x = aSkipRect.XMost() - 1;
            continue;
        }

        for (int32_t y = 0; y < aRows; y++) {
            // Check whether we are within the skip rect. If so, go
            // to the next point outside the skip rect.
            if (inSkipRectX && y >= aSkipRect.y &&
                y < aSkipRect.YMost()) {
                y = aSkipRect.YMost();
                if (y >= aRows)
                    break;
            }

            int32_t sMin = max(y - aRadius, 0);
            int32_t sMax = min(y + aRadius, aRows - 1);
            int32_t v = 0;
            for (int32_t s = sMin; s <= sMax; ++s) {
                v = max<int32_t>(v, aInput[aStride * s + x]);
            }
            aOutput[aStride * y + x] = v;
        }
    }
}

CheckedInt<int32_t>
AlphaBoxBlur::RoundUpToMultipleOf4(int32_t aVal)
{
  CheckedInt<int32_t> val(aVal);

  val += 3;
  val /= 4;
  val *= 4;

  return val;
}

AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect,
                           const IntSize& aSpreadRadius,
                           const IntSize& aBlurRadius,
                           const Rect* aDirtyRect,
                           const Rect* aSkipRect)
 : mSpreadRadius(aSpreadRadius),
   mBlurRadius(aBlurRadius),
   mSurfaceAllocationSize(0)
{
  Rect rect(aRect);
  rect.Inflate(Size(aBlurRadius + aSpreadRadius));
  rect.RoundOut();

  if (aDirtyRect) {
    // If we get passed a dirty rect from layout, we can minimize the
    // shadow size and make painting faster.
    mHasDirtyRect = true;
    mDirtyRect = *aDirtyRect;
    Rect requiredBlurArea = mDirtyRect.Intersect(rect);
    requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
    rect = requiredBlurArea.Intersect(rect);
  } else {
    mHasDirtyRect = false;
  }

  mRect = IntRect(int32_t(rect.x), int32_t(rect.y),
                  int32_t(rect.width), int32_t(rect.height));
  if (mRect.IsEmpty()) {
    return;
  }

  if (aSkipRect) {
    // If we get passed a skip rect, we can lower the amount of
    // blurring/spreading we need to do. We convert it to IntRect to avoid
    // expensive int<->float conversions if we were to use Rect instead.
    Rect skipRect = *aSkipRect;
    skipRect.RoundIn();
    skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
    mSkipRect = IntRect(int32_t(skipRect.x), int32_t(skipRect.y),
                        int32_t(skipRect.width), int32_t(skipRect.height));

    mSkipRect = mSkipRect.Intersect(mRect);
    if (mSkipRect.IsEqualInterior(mRect))
      return;

    mSkipRect -= mRect.TopLeft();
  } else {
    mSkipRect = IntRect(0, 0, 0, 0);
  }

  CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.width);
  if (stride.isValid()) {
    mStride = stride.value();

    // We need to leave room for an additional 3 bytes for a potential overrun
    // in our blurring code.
    size_t size = BufferSizeFromStrideAndHeight(mStride, mRect.height, 3);
    if (size != 0) {
      mSurfaceAllocationSize = size;
    }
  }
}

AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect,
                           int32_t aStride,
                           float aSigmaX,
                           float aSigmaY)
  : mRect(int32_t(aRect.x), int32_t(aRect.y),
          int32_t(aRect.width), int32_t(aRect.height)),
    mSpreadRadius(),
    mBlurRadius(CalculateBlurRadius(Point(aSigmaX, aSigmaY))),
    mStride(aStride),
    mSurfaceAllocationSize(0)
{
  IntRect intRect;
  if (aRect.ToIntRect(&intRect)) {
    size_t minDataSize = BufferSizeFromStrideAndHeight(intRect.width, intRect.height);
    if (minDataSize != 0) {
      mSurfaceAllocationSize = minDataSize;
    }
  }
}


AlphaBoxBlur::~AlphaBoxBlur()
{
}

IntSize
AlphaBoxBlur::GetSize()
{
  IntSize size(mRect.width, mRect.height);
  return size;
}

int32_t
AlphaBoxBlur::GetStride()
{
  return mStride;
}

IntRect
AlphaBoxBlur::GetRect()
{
  return mRect;
}

Rect*
AlphaBoxBlur::GetDirtyRect()
{
  if (mHasDirtyRect) {
    return &mDirtyRect;
  }

  return nullptr;
}

size_t
AlphaBoxBlur::GetSurfaceAllocationSize() const
{
  return mSurfaceAllocationSize;
}

void
AlphaBoxBlur::Blur(uint8_t* aData)
{
  if (!aData) {
    return;
  }

  // no need to do all this if not blurring or spreading
  if (mBlurRadius != IntSize(0,0) || mSpreadRadius != IntSize(0,0)) {
    int32_t stride = GetStride();

    IntSize size = GetSize();

    if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
      // No need to use CheckedInt here - we have validated it in the constructor.
      size_t szB = stride * size.height;
      unsigned char* tmpData = new (std::nothrow) uint8_t[szB];

      if (!tmpData) {
        return;
      }

      memset(tmpData, 0, szB);

      SpreadHorizontal(aData, tmpData, mSpreadRadius.width, GetSize().width, GetSize().height, stride, mSkipRect);
      SpreadVertical(tmpData, aData, mSpreadRadius.height, GetSize().width, GetSize().height, stride, mSkipRect);

      delete [] tmpData;
    }

    int32_t horizontalLobes[3][2];
    ComputeLobes(mBlurRadius.width, horizontalLobes);
    int32_t verticalLobes[3][2];
    ComputeLobes(mBlurRadius.height, verticalLobes);

    // We want to allow for some extra space on the left for alignment reasons.
    int32_t maxLeftLobe = RoundUpToMultipleOf4(horizontalLobes[0][0] + 1).value();

    IntSize integralImageSize(size.width + maxLeftLobe + horizontalLobes[1][1],
                              size.height + verticalLobes[0][0] + verticalLobes[1][1] + 1);

    if ((integralImageSize.width * integralImageSize.height) > (1 << 24)) {
      // Fallback to old blurring code when the surface is so large it may
      // overflow our integral image!

      // No need to use CheckedInt here - we have validated it in the constructor.
      size_t szB = stride * size.height;
      uint8_t* tmpData = new (std::nothrow) uint8_t[szB];
      if (!tmpData) {
        return;
      }

      memset(tmpData, 0, szB);

      uint8_t* a = aData;
      uint8_t* b = tmpData;
      if (mBlurRadius.width > 0) {
        BoxBlurHorizontal(a, b, horizontalLobes[0][0], horizontalLobes[0][1], stride, GetSize().height, mSkipRect);
        BoxBlurHorizontal(b, a, horizontalLobes[1][0], horizontalLobes[1][1], stride, GetSize().height, mSkipRect);
        BoxBlurHorizontal(a, b, horizontalLobes[2][0], horizontalLobes[2][1], stride, GetSize().height, mSkipRect);
      } else {
        a = tmpData;
        b = aData;
      }
      // The result is in 'b' here.
      if (mBlurRadius.height > 0) {
        BoxBlurVertical(b, a, verticalLobes[0][0], verticalLobes[0][1], stride, GetSize().height, mSkipRect);
        BoxBlurVertical(a, b, verticalLobes[1][0], verticalLobes[1][1], stride, GetSize().height, mSkipRect);
        BoxBlurVertical(b, a, verticalLobes[2][0], verticalLobes[2][1], stride, GetSize().height, mSkipRect);
      } else {
        a = b;
      }
      // The result is in 'a' here.
      if (a == tmpData) {
        memcpy(aData, tmpData, szB);
      }
      delete [] tmpData;
    } else {
      size_t integralImageStride = GetAlignedStride<16>(integralImageSize.width, 4);
      if (integralImageStride == 0) {
        return;
      }

      // We need to leave room for an additional 12 bytes for a maximum overrun
      // of 3 pixels in the blurring code.
      size_t bufLen = BufferSizeFromStrideAndHeight(integralImageStride, integralImageSize.height, 12);
      if (bufLen == 0) {
        return;
      }
      // bufLen is a byte count, but here we want a multiple of 32-bit ints, so
      // we divide by 4.
      AlignedArray<uint32_t> integralImage((bufLen / 4) + ((bufLen % 4) ? 1 : 0));

      if (!integralImage) {
        return;
      }

#ifdef USE_SSE2
      if (Factory::HasSSE2()) {
        BoxBlur_SSE2(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
                     verticalLobes[0][1], integralImage, integralImageStride);
        BoxBlur_SSE2(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
                     verticalLobes[1][1], integralImage, integralImageStride);
        BoxBlur_SSE2(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
                     verticalLobes[2][1], integralImage, integralImageStride);
      } else
#endif
#ifdef BUILD_ARM_NEON
      if (mozilla::supports_neon()) {
        BoxBlur_NEON(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
                     verticalLobes[0][1], integralImage, integralImageStride);
        BoxBlur_NEON(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
                     verticalLobes[1][1], integralImage, integralImageStride);
        BoxBlur_NEON(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
                     verticalLobes[2][1], integralImage, integralImageStride);
      } else
#endif
      {
#ifdef _MIPS_ARCH_LOONGSON3A
        BoxBlur_LS3(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
                     verticalLobes[0][1], integralImage, integralImageStride);
        BoxBlur_LS3(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
                     verticalLobes[1][1], integralImage, integralImageStride);
        BoxBlur_LS3(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
                     verticalLobes[2][1], integralImage, integralImageStride);
#else
        BoxBlur_C(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
                  verticalLobes[0][1], integralImage, integralImageStride);
        BoxBlur_C(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
                  verticalLobes[1][1], integralImage, integralImageStride);
        BoxBlur_C(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
                  verticalLobes[2][1], integralImage, integralImageStride);
#endif
      }
    }
  }
}

MOZ_ALWAYS_INLINE void
GenerateIntegralRow(uint32_t  *aDest, const uint8_t *aSource, uint32_t *aPreviousRow,
                    const uint32_t &aSourceWidth, const uint32_t &aLeftInflation, const uint32_t &aRightInflation)
{
  uint32_t currentRowSum = 0;
  uint32_t pixel = aSource[0];
  for (uint32_t x = 0; x < aLeftInflation; x++) {
    currentRowSum += pixel;
    *aDest++ = currentRowSum + *aPreviousRow++;
  }
  for (uint32_t x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x += 4) {
      uint32_t alphaValues = *(uint32_t*)(aSource + (x - aLeftInflation));
#if defined WORDS_BIGENDIAN || defined IS_BIG_ENDIAN || defined __BIG_ENDIAN__
      currentRowSum += (alphaValues >> 24) & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
      currentRowSum += (alphaValues >> 16) & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
      currentRowSum += (alphaValues >> 8) & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
      currentRowSum += alphaValues & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
#else
      currentRowSum += alphaValues & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
      alphaValues >>= 8;
      currentRowSum += alphaValues & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
      alphaValues >>= 8;
      currentRowSum += alphaValues & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
      alphaValues >>= 8;
      currentRowSum += alphaValues & 0xff;
      *aDest++ = *aPreviousRow++ + currentRowSum;
#endif
  }
  pixel = aSource[aSourceWidth - 1];
  for (uint32_t x = (aSourceWidth + aLeftInflation); x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
    currentRowSum += pixel;
    *aDest++ = currentRowSum + *aPreviousRow++;
  }
}

MOZ_ALWAYS_INLINE void
GenerateIntegralImage_C(int32_t aLeftInflation, int32_t aRightInflation,
                        int32_t aTopInflation, int32_t aBottomInflation,
                        uint32_t *aIntegralImage, size_t aIntegralImageStride,
                        uint8_t *aSource, int32_t aSourceStride, const IntSize &aSize)
{
  uint32_t stride32bit = aIntegralImageStride / 4;

  IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
                            aSize.height + aTopInflation + aBottomInflation);

  memset(aIntegralImage, 0, aIntegralImageStride);

  GenerateIntegralRow(aIntegralImage, aSource, aIntegralImage,
                      aSize.width, aLeftInflation, aRightInflation);
  for (int y = 1; y < aTopInflation + 1; y++) {
    GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource, aIntegralImage + (y - 1) * stride32bit,
                        aSize.width, aLeftInflation, aRightInflation);
  }

  for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
    GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + aSourceStride * (y - aTopInflation),
                        aIntegralImage + (y - 1) * stride32bit, aSize.width, aLeftInflation, aRightInflation);
  }

  if (aBottomInflation) {
    for (int y = (aSize.height + aTopInflation); y < integralImageSize.height; y++) {
      GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + ((aSize.height - 1) * aSourceStride),
                          aIntegralImage + (y - 1) * stride32bit,
                          aSize.width, aLeftInflation, aRightInflation);
    }
  }
}

/**
 * Attempt to do an in-place box blur using an integral image.
 */
void
AlphaBoxBlur::BoxBlur_C(uint8_t* aData,
                        int32_t aLeftLobe,
                        int32_t aRightLobe,
                        int32_t aTopLobe,
                        int32_t aBottomLobe,
                        uint32_t *aIntegralImage,
                        size_t aIntegralImageStride)
{
  IntSize size = GetSize();

  MOZ_ASSERT(size.width > 0);

  // Our 'left' or 'top' lobe will include the current pixel. i.e. when
  // looking at an integral image the value of a pixel at 'x,y' is calculated
  // using the value of the integral image values above/below that.
  aLeftLobe++;
  aTopLobe++;
  int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);

  MOZ_ASSERT(boxSize > 0);

  if (boxSize == 1) {
      return;
  }

  int32_t stride32bit = aIntegralImageStride / 4;

  int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();

  GenerateIntegralImage_C(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
                          aIntegralImage, aIntegralImageStride, aData,
                          mStride, size);

  uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);

  uint32_t *innerIntegral = aIntegralImage + (aTopLobe * stride32bit) + leftInflation;

  // Storing these locally makes this about 30% faster! Presumably the compiler
  // can't be sure we're not altering the member variables in this loop.
  IntRect skipRect = mSkipRect;
  uint8_t *data = aData;
  int32_t stride = mStride;
  for (int32_t y = 0; y < size.height; y++) {
    bool inSkipRectY = y > skipRect.y && y < skipRect.YMost();

    uint32_t *topLeftBase = innerIntegral + ((y - aTopLobe) * stride32bit - aLeftLobe);
    uint32_t *topRightBase = innerIntegral + ((y - aTopLobe) * stride32bit + aRightLobe);
    uint32_t *bottomRightBase = innerIntegral + ((y + aBottomLobe) * stride32bit + aRightLobe);
    uint32_t *bottomLeftBase = innerIntegral + ((y + aBottomLobe) * stride32bit - aLeftLobe);

    for (int32_t x = 0; x < size.width; x++) {
      if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) {
        x = skipRect.XMost() - 1;
        // Trigger early jump on coming loop iterations, this will be reset
        // next line anyway.
        inSkipRectY = false;
        continue;
      }
      int32_t topLeft = topLeftBase[x];
      int32_t topRight = topRightBase[x];
      int32_t bottomRight = bottomRightBase[x];
      int32_t bottomLeft = bottomLeftBase[x];

      uint32_t value = bottomRight - topRight - bottomLeft;
      value += topLeft;

      data[stride * y + x] = (uint64_t(reciprocal) * value + (uint64_t(1) << 31)) >> 32;
    }
  }
}

/**
 * Compute the box blur size (which we're calling the blur radius) from
 * the standard deviation.
 *
 * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
 * approximating a Gaussian using box blurs.  This yields quite a good
 * approximation for a Gaussian.  Then we multiply this by 1.5 since our
 * code wants the radius of the entire triple-box-blur kernel instead of
 * the diameter of an individual box blur.  For more details, see:
 *   http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
 *   https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
 */
static const Float GAUSSIAN_SCALE_FACTOR = Float((3 * sqrt(2 * M_PI) / 4) * 1.5);

IntSize
AlphaBoxBlur::CalculateBlurRadius(const Point& aStd)
{
    IntSize size(static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5f)),
                 static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5f)));

    return size;
}

} // namespace gfx
} // namespace mozilla