summaryrefslogtreecommitdiff
path: root/dom/media/webm/WebMBufferedParser.cpp
blob: 979308cf0ce49d2f139c0842f21b1b4df4ef903a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsAlgorithm.h"
#include "WebMBufferedParser.h"
#include "nsThreadUtils.h"
#include <algorithm>

extern mozilla::LazyLogModule gMediaDemuxerLog;
#define WEBM_DEBUG(arg, ...) MOZ_LOG(gMediaDemuxerLog, mozilla::LogLevel::Debug, ("WebMBufferedParser(%p)::%s: " arg, this, __func__, ##__VA_ARGS__))

namespace mozilla {

static uint32_t
VIntLength(unsigned char aFirstByte, uint32_t* aMask)
{
  uint32_t count = 1;
  uint32_t mask = 1 << 7;
  while (count < 8) {
    if ((aFirstByte & mask) != 0) {
      break;
    }
    mask >>= 1;
    count += 1;
  }
  if (aMask) {
    *aMask = mask;
  }
  NS_ASSERTION(count >= 1 && count <= 8, "Insane VInt length.");
  return count;
}

bool WebMBufferedParser::Append(const unsigned char* aBuffer, uint32_t aLength,
                                nsTArray<WebMTimeDataOffset>& aMapping,
                                ReentrantMonitor& aReentrantMonitor)
{
  static const uint32_t EBML_ID = 0x1a45dfa3;
  static const uint32_t SEGMENT_ID = 0x18538067;
  static const uint32_t SEGINFO_ID = 0x1549a966;
  static const uint32_t TRACKS_ID = 0x1654AE6B;
  static const uint32_t CLUSTER_ID = 0x1f43b675;
  static const uint32_t TIMECODESCALE_ID = 0x2ad7b1;
  static const unsigned char TIMECODE_ID = 0xe7;
  static const unsigned char BLOCKGROUP_ID = 0xa0;
  static const unsigned char BLOCK_ID = 0xa1;
  static const unsigned char SIMPLEBLOCK_ID = 0xa3;
  static const uint32_t BLOCK_TIMECODE_LENGTH = 2;

  static const unsigned char CLUSTER_SYNC_ID[] = { 0x1f, 0x43, 0xb6, 0x75 };

  const unsigned char* p = aBuffer;

  // Parse each byte in aBuffer one-by-one, producing timecodes and updating
  // aMapping as we go.  Parser pauses at end of stream (which may be at any
  // point within the parse) and resumes parsing the next time Append is
  // called with new data.
  while (p < aBuffer + aLength) {
    switch (mState) {
    case READ_ELEMENT_ID:
      mVIntRaw = true;
      mState = READ_VINT;
      mNextState = READ_ELEMENT_SIZE;
      break;
    case READ_ELEMENT_SIZE:
      mVIntRaw = false;
      mElement.mID = mVInt;
      mState = READ_VINT;
      mNextState = PARSE_ELEMENT;
      break;
    case FIND_CLUSTER_SYNC:
      if (*p++ == CLUSTER_SYNC_ID[mClusterSyncPos]) {
        mClusterSyncPos += 1;
      } else {
        mClusterSyncPos = 0;
      }
      if (mClusterSyncPos == sizeof(CLUSTER_SYNC_ID)) {
        mVInt.mValue = CLUSTER_ID;
        mVInt.mLength = sizeof(CLUSTER_SYNC_ID);
        mState = READ_ELEMENT_SIZE;
      }
      break;
    case PARSE_ELEMENT:
      mElement.mSize = mVInt;
      switch (mElement.mID.mValue) {
      case SEGMENT_ID:
        mState = READ_ELEMENT_ID;
        break;
      case SEGINFO_ID:
        mGotTimecodeScale = true;
        mState = READ_ELEMENT_ID;
        break;
      case TIMECODE_ID:
        mVInt = VInt();
        mVIntLeft = mElement.mSize.mValue;
        mState = READ_VINT_REST;
        mNextState = READ_CLUSTER_TIMECODE;
        break;
      case TIMECODESCALE_ID:
        mVInt = VInt();
        mVIntLeft = mElement.mSize.mValue;
        mState = READ_VINT_REST;
        mNextState = READ_TIMECODESCALE;
        break;
      case CLUSTER_ID:
        mClusterOffset = mCurrentOffset + (p - aBuffer) -
                        (mElement.mID.mLength + mElement.mSize.mLength);
        // Handle "unknown" length;
        if (mElement.mSize.mValue + 1 != uint64_t(1) << (mElement.mSize.mLength * 7)) {
          mClusterEndOffset = mClusterOffset + mElement.mID.mLength + mElement.mSize.mLength + mElement.mSize.mValue;
        } else {
          mClusterEndOffset = -1;
        }
        mGotClusterTimecode = false;
        mState = READ_ELEMENT_ID;
        break;
      case BLOCKGROUP_ID:
        mState = READ_ELEMENT_ID;
        break;
      case SIMPLEBLOCK_ID:
        /* FALLTHROUGH */
      case BLOCK_ID:
        if (!mGotClusterTimecode) {
          WEBM_DEBUG("The Timecode element must appear before any Block or "
                     "SimpleBlock elements in a Cluster");
          return false;
        }
        mBlockSize = mElement.mSize.mValue;
        mBlockTimecode = 0;
        mBlockTimecodeLength = BLOCK_TIMECODE_LENGTH;
        mBlockOffset = mCurrentOffset + (p - aBuffer) -
                       (mElement.mID.mLength + mElement.mSize.mLength);
        mState = READ_VINT;
        mNextState = READ_BLOCK_TIMECODE;
        break;
      case TRACKS_ID:
        mSkipBytes = mElement.mSize.mValue;
        mState = CHECK_INIT_FOUND;
        break;
      case EBML_ID:
        mLastInitStartOffset = mCurrentOffset + (p - aBuffer) -
                            (mElement.mID.mLength + mElement.mSize.mLength);
        MOZ_FALLTHROUGH;
      default:
        mSkipBytes = mElement.mSize.mValue;
        mState = SKIP_DATA;
        mNextState = READ_ELEMENT_ID;
        break;
      }
      break;
    case READ_VINT: {
      unsigned char c = *p++;
      uint32_t mask;
      mVInt.mLength = VIntLength(c, &mask);
      mVIntLeft = mVInt.mLength - 1;
      mVInt.mValue = mVIntRaw ? c : c & ~mask;
      mState = READ_VINT_REST;
      break;
    }
    case READ_VINT_REST:
      if (mVIntLeft) {
        mVInt.mValue <<= 8;
        mVInt.mValue |= *p++;
        mVIntLeft -= 1;
      } else {
        mState = mNextState;
      }
      break;
    case READ_TIMECODESCALE:
      if (!mGotTimecodeScale) {
        WEBM_DEBUG("Should get the SegmentInfo first");
        return false;
      }
      mTimecodeScale = mVInt.mValue;
      mState = READ_ELEMENT_ID;
      break;
    case READ_CLUSTER_TIMECODE:
      mClusterTimecode = mVInt.mValue;
      mGotClusterTimecode = true;
      mState = READ_ELEMENT_ID;
      break;
    case READ_BLOCK_TIMECODE:
      if (mBlockTimecodeLength) {
        mBlockTimecode <<= 8;
        mBlockTimecode |= *p++;
        mBlockTimecodeLength -= 1;
      } else {
        // It's possible we've parsed this data before, so avoid inserting
        // duplicate WebMTimeDataOffset entries.
        {
          ReentrantMonitorAutoEnter mon(aReentrantMonitor);
          int64_t endOffset = mBlockOffset + mBlockSize +
                              mElement.mID.mLength + mElement.mSize.mLength;
          uint32_t idx = aMapping.IndexOfFirstElementGt(endOffset);
          if (idx == 0 || aMapping[idx - 1] != endOffset) {
            // Don't insert invalid negative timecodes.
            if (mBlockTimecode >= 0 || mClusterTimecode >= uint16_t(abs(mBlockTimecode))) {
              if (!mGotTimecodeScale) {
                WEBM_DEBUG("Should get the TimecodeScale first");
                return false;
              }
              uint64_t absTimecode = mClusterTimecode + mBlockTimecode;
              absTimecode *= mTimecodeScale;
              // Avoid creating an entry if the timecode is out of order
              // (invalid according to the WebM specification) so that
              // ordering invariants of aMapping are not violated.
              if (idx == 0 ||
                  aMapping[idx - 1].mTimecode <= absTimecode ||
                  (idx + 1 < aMapping.Length() &&
                   aMapping[idx + 1].mTimecode >= absTimecode)) {
                WebMTimeDataOffset entry(endOffset, absTimecode, mLastInitStartOffset,
                                         mClusterOffset, mClusterEndOffset);
                aMapping.InsertElementAt(idx, entry);
              } else {
                WEBM_DEBUG("Out of order timecode %llu in Cluster at %lld ignored",
                           absTimecode, mClusterOffset);
              }
            }
          }
        }

        // Skip rest of block header and the block's payload.
        mBlockSize -= mVInt.mLength;
        mBlockSize -= BLOCK_TIMECODE_LENGTH;
        mSkipBytes = uint32_t(mBlockSize);
        mState = SKIP_DATA;
        mNextState = READ_ELEMENT_ID;
      }
      break;
    case SKIP_DATA:
      if (mSkipBytes) {
        uint32_t left = aLength - (p - aBuffer);
        left = std::min(left, mSkipBytes);
        p += left;
        mSkipBytes -= left;
      }
      if (!mSkipBytes) {
        mBlockEndOffset = mCurrentOffset + (p - aBuffer);
        mState = mNextState;
      }
      break;
    case CHECK_INIT_FOUND:
      if (mSkipBytes) {
        uint32_t left = aLength - (p - aBuffer);
        left = std::min(left, mSkipBytes);
        p += left;
        mSkipBytes -= left;
      }
      if (!mSkipBytes) {
        if (mInitEndOffset < 0) {
          mInitEndOffset = mCurrentOffset + (p - aBuffer);
          mBlockEndOffset = mCurrentOffset + (p - aBuffer);
        }
        mState = READ_ELEMENT_ID;
      }
      break;
    }
  }

  NS_ASSERTION(p == aBuffer + aLength, "Must have parsed to end of data.");
  mCurrentOffset += aLength;

  return true;
}

int64_t
WebMBufferedParser::EndSegmentOffset(int64_t aOffset)
{
  if (mLastInitStartOffset > aOffset || mClusterOffset > aOffset) {
    return std::min(mLastInitStartOffset >= 0 ? mLastInitStartOffset : INT64_MAX,
                    mClusterOffset >= 0 ? mClusterOffset : INT64_MAX);
  }
  return mBlockEndOffset;
}

int64_t
WebMBufferedParser::GetClusterOffset() const
{
  return mClusterOffset;
}

// SyncOffsetComparator and TimeComparator are slightly confusing, in that
// the nsTArray they're used with (mTimeMapping) is sorted by mEndOffset and
// these comparators are used on the other fields of WebMTimeDataOffset.
// This is only valid because timecodes are required to be monotonically
// increasing within a file (thus establishing an ordering relationship with
// mTimecode), and mEndOffset is derived from mSyncOffset.
struct SyncOffsetComparator {
  bool Equals(const WebMTimeDataOffset& a, const int64_t& b) const {
    return a.mSyncOffset == b;
  }

  bool LessThan(const WebMTimeDataOffset& a, const int64_t& b) const {
    return a.mSyncOffset < b;
  }
};

struct TimeComparator {
  bool Equals(const WebMTimeDataOffset& a, const uint64_t& b) const {
    return a.mTimecode == b;
  }

  bool LessThan(const WebMTimeDataOffset& a, const uint64_t& b) const {
    return a.mTimecode < b;
  }
};

bool WebMBufferedState::CalculateBufferedForRange(int64_t aStartOffset, int64_t aEndOffset,
                                                  uint64_t* aStartTime, uint64_t* aEndTime)
{
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  // Find the first WebMTimeDataOffset at or after aStartOffset.
  uint32_t start = mTimeMapping.IndexOfFirstElementGt(aStartOffset - 1, SyncOffsetComparator());
  if (start == mTimeMapping.Length()) {
    return false;
  }

  // Find the first WebMTimeDataOffset at or before aEndOffset.
  uint32_t end = mTimeMapping.IndexOfFirstElementGt(aEndOffset);
  if (end > 0) {
    end -= 1;
  }

  // Range is empty.
  if (end <= start) {
    return false;
  }

  NS_ASSERTION(mTimeMapping[start].mSyncOffset >= aStartOffset &&
               mTimeMapping[end].mEndOffset <= aEndOffset,
               "Computed time range must lie within data range.");
  if (start > 0) {
    NS_ASSERTION(mTimeMapping[start - 1].mSyncOffset < aStartOffset,
                 "Must have found least WebMTimeDataOffset for start");
  }
  if (end < mTimeMapping.Length() - 1) {
    NS_ASSERTION(mTimeMapping[end + 1].mEndOffset > aEndOffset,
                 "Must have found greatest WebMTimeDataOffset for end");
  }

  MOZ_ASSERT(mTimeMapping[end].mTimecode >= mTimeMapping[end - 1].mTimecode);
  uint64_t frameDuration = mTimeMapping[end].mTimecode - mTimeMapping[end - 1].mTimecode;
  *aStartTime = mTimeMapping[start].mTimecode;
  *aEndTime = mTimeMapping[end].mTimecode + frameDuration;
  return true;
}

bool WebMBufferedState::GetOffsetForTime(uint64_t aTime, int64_t* aOffset)
{
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  if(mTimeMapping.IsEmpty()) {
    return false;
  }

  uint64_t time = aTime;
  if (time > 0) {
    time = time - 1;
  }
  uint32_t idx = mTimeMapping.IndexOfFirstElementGt(time, TimeComparator());
  if (idx == mTimeMapping.Length()) {
    // Clamp to end
    *aOffset = mTimeMapping[mTimeMapping.Length() - 1].mSyncOffset;
  } else {
    // Idx is within array or has been clamped to start
    *aOffset = mTimeMapping[idx].mSyncOffset;
  }
  return true;
}

void WebMBufferedState::NotifyDataArrived(const unsigned char* aBuffer, uint32_t aLength, int64_t aOffset)
{
  uint32_t idx = mRangeParsers.IndexOfFirstElementGt(aOffset - 1);
  if (idx == 0 || !(mRangeParsers[idx-1] == aOffset)) {
    // If the incoming data overlaps an already parsed range, adjust the
    // buffer so that we only reparse the new data.  It's also possible to
    // have an overlap where the end of the incoming data is within an
    // already parsed range, but we don't bother handling that other than by
    // avoiding storing duplicate timecodes when the parser runs.
    if (idx != mRangeParsers.Length() && mRangeParsers[idx].mStartOffset <= aOffset) {
      // Complete overlap, skip parsing.
      if (aOffset + aLength <= mRangeParsers[idx].mCurrentOffset) {
        return;
      }

      // Partial overlap, adjust the buffer to parse only the new data.
      int64_t adjust = mRangeParsers[idx].mCurrentOffset - aOffset;
      NS_ASSERTION(adjust >= 0, "Overlap detection bug.");
      aBuffer += adjust;
      aLength -= uint32_t(adjust);
    } else {
      mRangeParsers.InsertElementAt(idx, WebMBufferedParser(aOffset));
      if (idx != 0) {
        mRangeParsers[idx].SetTimecodeScale(mRangeParsers[0].GetTimecodeScale());
      }
    }
  }

  mRangeParsers[idx].Append(aBuffer,
                            aLength,
                            mTimeMapping,
                            mReentrantMonitor);

  // Merge parsers with overlapping regions and clean up the remnants.
  uint32_t i = 0;
  while (i + 1 < mRangeParsers.Length()) {
    if (mRangeParsers[i].mCurrentOffset >= mRangeParsers[i + 1].mStartOffset) {
      mRangeParsers[i + 1].mStartOffset = mRangeParsers[i].mStartOffset;
      mRangeParsers[i + 1].mInitEndOffset = mRangeParsers[i].mInitEndOffset;
      mRangeParsers.RemoveElementAt(i);
    } else {
      i += 1;
    }
  }

  if (mRangeParsers.IsEmpty()) {
    return;
  }

  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  mLastBlockOffset = mRangeParsers.LastElement().mBlockEndOffset;
}

void WebMBufferedState::Reset() {
  mRangeParsers.Clear();
  mTimeMapping.Clear();
}

void WebMBufferedState::UpdateIndex(const MediaByteRangeSet& aRanges, MediaResource* aResource)
{
  for (uint32_t index = 0; index < aRanges.Length(); index++) {
    const MediaByteRange& range = aRanges[index];
    int64_t offset = range.mStart;
    uint32_t length = range.mEnd - range.mStart;

    uint32_t idx = mRangeParsers.IndexOfFirstElementGt(offset - 1);
    if (!idx || !(mRangeParsers[idx-1] == offset)) {
      // If the incoming data overlaps an already parsed range, adjust the
      // buffer so that we only reparse the new data.  It's also possible to
      // have an overlap where the end of the incoming data is within an
      // already parsed range, but we don't bother handling that other than by
      // avoiding storing duplicate timecodes when the parser runs.
      if (idx != mRangeParsers.Length() && mRangeParsers[idx].mStartOffset <= offset) {
        // Complete overlap, skip parsing.
        if (offset + length <= mRangeParsers[idx].mCurrentOffset) {
          continue;
        }

        // Partial overlap, adjust the buffer to parse only the new data.
        int64_t adjust = mRangeParsers[idx].mCurrentOffset - offset;
        NS_ASSERTION(adjust >= 0, "Overlap detection bug.");
        offset += adjust;
        length -= uint32_t(adjust);
      } else {
        mRangeParsers.InsertElementAt(idx, WebMBufferedParser(offset));
        if (idx) {
          mRangeParsers[idx].SetTimecodeScale(mRangeParsers[0].GetTimecodeScale());
        }
      }
    }
    while (length > 0) {
      static const uint32_t BLOCK_SIZE = 1048576;
      uint32_t block = std::min(length, BLOCK_SIZE);
      RefPtr<MediaByteBuffer> bytes = aResource->MediaReadAt(offset, block);
      if (!bytes) {
        break;
      }
      NotifyDataArrived(bytes->Elements(), bytes->Length(), offset);
      length -= bytes->Length();
      offset += bytes->Length();
    }
  }
}

int64_t WebMBufferedState::GetInitEndOffset()
{
  if (mRangeParsers.IsEmpty()) {
    return -1;
  }
  return mRangeParsers[0].mInitEndOffset;
}

int64_t WebMBufferedState::GetLastBlockOffset()
{
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  return mLastBlockOffset;
}

bool WebMBufferedState::GetStartTime(uint64_t *aTime)
{
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  if (mTimeMapping.IsEmpty()) {
    return false;
  }

  uint32_t idx = mTimeMapping.IndexOfFirstElementGt(0, SyncOffsetComparator());
  if (idx == mTimeMapping.Length()) {
    return false;
  }

  *aTime = mTimeMapping[idx].mTimecode;
  return true;
}

bool
WebMBufferedState::GetNextKeyframeTime(uint64_t aTime, uint64_t* aKeyframeTime)
{
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  int64_t offset = 0;
  bool rv = GetOffsetForTime(aTime, &offset);
  if (!rv) {
    return false;
  }
  uint32_t idx = mTimeMapping.IndexOfFirstElementGt(offset, SyncOffsetComparator());
  if (idx == mTimeMapping.Length()) {
    return false;
  }
  *aKeyframeTime = mTimeMapping[idx].mTimecode;
  return true;
}
} // namespace mozilla

#undef WEBM_DEBUG