1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef FFTBlock_h_
#define FFTBlock_h_
#ifdef BUILD_ARM_NEON
#include <cmath>
#include "mozilla/arm.h"
#include "dl/sp/api/omxSP.h"
#endif
#include "AlignedTArray.h"
#include "AudioNodeEngine.h"
#if defined(MOZ_LIBAV_FFT)
#ifdef __cplusplus
extern "C" {
#endif
#include "libavcodec/avfft.h"
#ifdef __cplusplus
}
#endif
#else
#include "kiss_fft/kiss_fftr.h"
#endif
namespace mozilla {
// This class defines an FFT block, loosely modeled after Blink's FFTFrame
// class to make sharing code with Blink easy.
// Currently it's implemented on top of KissFFT on all platforms.
class FFTBlock final
{
union ComplexU {
#if !defined(MOZ_LIBAV_FFT)
kiss_fft_cpx c;
#endif
float f[2];
struct {
float r;
float i;
};
};
public:
explicit FFTBlock(uint32_t aFFTSize)
#if defined(MOZ_LIBAV_FFT)
: mAvRDFT(nullptr)
, mAvIRDFT(nullptr)
#else
: mKissFFT(nullptr)
, mKissIFFT(nullptr)
#ifdef BUILD_ARM_NEON
, mOmxFFT(nullptr)
, mOmxIFFT(nullptr)
#endif
#endif
{
MOZ_COUNT_CTOR(FFTBlock);
SetFFTSize(aFFTSize);
}
~FFTBlock()
{
MOZ_COUNT_DTOR(FFTBlock);
Clear();
}
// Return a new FFTBlock with frequency components interpolated between
// |block0| and |block1| with |interp| between 0.0 and 1.0.
static FFTBlock*
CreateInterpolatedBlock(const FFTBlock& block0,
const FFTBlock& block1, double interp);
// Transform FFTSize() points of aData and store the result internally.
void PerformFFT(const float* aData)
{
EnsureFFT();
#if defined(MOZ_LIBAV_FFT)
PodCopy(mOutputBuffer.Elements()->f, aData, mFFTSize);
av_rdft_calc(mAvRDFT, mOutputBuffer.Elements()->f);
// Recover packed Nyquist.
mOutputBuffer[mFFTSize / 2].r = mOutputBuffer[0].i;
mOutputBuffer[0].i = 0.0f;
#else
#ifdef BUILD_ARM_NEON
if (mozilla::supports_neon()) {
omxSP_FFTFwd_RToCCS_F32_Sfs(aData, mOutputBuffer.Elements()->f, mOmxFFT);
} else
#endif
{
kiss_fftr(mKissFFT, aData, &(mOutputBuffer.Elements()->c));
}
#endif
}
// Inverse-transform internal data and store the resulting FFTSize()
// points in aDataOut.
void GetInverse(float* aDataOut)
{
GetInverseWithoutScaling(aDataOut);
AudioBufferInPlaceScale(aDataOut, 1.0f / mFFTSize, mFFTSize);
}
// Inverse-transform internal frequency data and store the resulting
// FFTSize() points in |aDataOut|. If frequency data has not already been
// scaled, then the output will need scaling by 1/FFTSize().
void GetInverseWithoutScaling(float* aDataOut)
{
EnsureIFFT();
#if defined(MOZ_LIBAV_FFT)
{
// Even though this function doesn't scale, the libav forward transform
// gives a value that needs scaling by 2 in order for things to turn out
// similar to how we expect from kissfft/openmax.
AudioBufferCopyWithScale(mOutputBuffer.Elements()->f, 2.0f,
aDataOut, mFFTSize);
aDataOut[1] = 2.0f * mOutputBuffer[mFFTSize/2].r; // Packed Nyquist
av_rdft_calc(mAvIRDFT, aDataOut);
}
#else
#ifdef BUILD_ARM_NEON
if (mozilla::supports_neon()) {
omxSP_FFTInv_CCSToR_F32_Sfs_unscaled(mOutputBuffer.Elements()->f, aDataOut, mOmxIFFT);
} else
#endif
{
kiss_fftri(mKissIFFT, &(mOutputBuffer.Elements()->c), aDataOut);
}
#endif
}
void Multiply(const FFTBlock& aFrame)
{
uint32_t halfSize = mFFTSize / 2;
// DFTs are not packed.
MOZ_ASSERT(mOutputBuffer[0].i == 0);
MOZ_ASSERT(aFrame.mOutputBuffer[0].i == 0);
BufferComplexMultiply(mOutputBuffer.Elements()->f,
aFrame.mOutputBuffer.Elements()->f,
mOutputBuffer.Elements()->f,
halfSize);
mOutputBuffer[halfSize].r *= aFrame.mOutputBuffer[halfSize].r;
// This would have been set to NaN if either real component was NaN.
mOutputBuffer[0].i = 0.0f;
}
// Perform a forward FFT on |aData|, assuming zeros after dataSize samples,
// and pre-scale the generated internal frequency domain coefficients so
// that GetInverseWithoutScaling() can be used to transform to the time
// domain. This is useful for convolution kernels.
void PadAndMakeScaledDFT(const float* aData, size_t dataSize)
{
MOZ_ASSERT(dataSize <= FFTSize());
AlignedTArray<float> paddedData;
paddedData.SetLength(FFTSize());
AudioBufferCopyWithScale(aData, 1.0f / FFTSize(),
paddedData.Elements(), dataSize);
PodZero(paddedData.Elements() + dataSize, mFFTSize - dataSize);
PerformFFT(paddedData.Elements());
}
void SetFFTSize(uint32_t aSize)
{
mFFTSize = aSize;
mOutputBuffer.SetLength(aSize / 2 + 1);
PodZero(mOutputBuffer.Elements(), aSize / 2 + 1);
Clear();
}
// Return the average group delay and removes this from the frequency data.
double ExtractAverageGroupDelay();
uint32_t FFTSize() const
{
return mFFTSize;
}
float RealData(uint32_t aIndex) const
{
return mOutputBuffer[aIndex].r;
}
float& RealData(uint32_t aIndex)
{
return mOutputBuffer[aIndex].r;
}
float ImagData(uint32_t aIndex) const
{
return mOutputBuffer[aIndex].i;
}
float& ImagData(uint32_t aIndex)
{
return mOutputBuffer[aIndex].i;
}
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = 0;
#if defined(MOZ_LIBAV_FFT)
amount += aMallocSizeOf(mAvRDFT);
amount += aMallocSizeOf(mAvIRDFT);
#else
amount += aMallocSizeOf(mKissFFT);
amount += aMallocSizeOf(mKissIFFT);
#endif
amount += mOutputBuffer.ShallowSizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
private:
FFTBlock(const FFTBlock& other) = delete;
void operator=(const FFTBlock& other) = delete;
void EnsureFFT()
{
#if defined(MOZ_LIBAV_FFT)
if (!mAvRDFT) {
mAvRDFT = av_rdft_init(log((double)mFFTSize)/M_LN2, DFT_R2C);
}
#else
#ifdef BUILD_ARM_NEON
if (mozilla::supports_neon()) {
if (!mOmxFFT) {
mOmxFFT = createOmxFFT(mFFTSize);
}
} else
#endif
{
if (!mKissFFT) {
mKissFFT = kiss_fftr_alloc(mFFTSize, 0, nullptr, nullptr);
}
}
#endif
}
void EnsureIFFT()
{
#if defined(MOZ_LIBAV_FFT)
if (!mAvIRDFT) {
mAvIRDFT = av_rdft_init(log((double)mFFTSize)/M_LN2, IDFT_C2R);
}
#else
#ifdef BUILD_ARM_NEON
if (mozilla::supports_neon()) {
if (!mOmxIFFT) {
mOmxIFFT = createOmxFFT(mFFTSize);
}
} else
#endif
{
if (!mKissIFFT) {
mKissIFFT = kiss_fftr_alloc(mFFTSize, 1, nullptr, nullptr);
}
}
#endif
}
#ifdef BUILD_ARM_NEON
static OMXFFTSpec_R_F32* createOmxFFT(uint32_t aFFTSize)
{
MOZ_ASSERT((aFFTSize & (aFFTSize-1)) == 0);
OMX_INT bufSize;
OMX_INT order = log((double)aFFTSize)/M_LN2;
MOZ_ASSERT(aFFTSize>>order == 1);
OMXResult status = omxSP_FFTGetBufSize_R_F32(order, &bufSize);
if (status == OMX_Sts_NoErr) {
OMXFFTSpec_R_F32* context = static_cast<OMXFFTSpec_R_F32*>(malloc(bufSize));
if (omxSP_FFTInit_R_F32(context, order) != OMX_Sts_NoErr) {
return nullptr;
}
return context;
}
return nullptr;
}
#endif
void Clear()
{
#if defined(MOZ_LIBAV_FFT)
av_rdft_end(mAvRDFT);
av_rdft_end(mAvIRDFT);
mAvRDFT = mAvIRDFT = nullptr;
#else
#ifdef BUILD_ARM_NEON
free(mOmxFFT);
free(mOmxIFFT);
mOmxFFT = mOmxIFFT = nullptr;
#endif
free(mKissFFT);
free(mKissIFFT);
mKissFFT = mKissIFFT = nullptr;
#endif
}
void AddConstantGroupDelay(double sampleFrameDelay);
void InterpolateFrequencyComponents(const FFTBlock& block0,
const FFTBlock& block1, double interp);
#if defined(MOZ_LIBAV_FFT)
RDFTContext *mAvRDFT;
RDFTContext *mAvIRDFT;
#else
kiss_fftr_cfg mKissFFT;
kiss_fftr_cfg mKissIFFT;
#ifdef BUILD_ARM_NEON
OMXFFTSpec_R_F32* mOmxFFT;
OMXFFTSpec_R_F32* mOmxIFFT;
#endif
#endif
AlignedTArray<ComplexU> mOutputBuffer;
uint32_t mFFTSize;
};
} // namespace mozilla
#endif
|