summaryrefslogtreecommitdiff
path: root/dom/media/mediasink/DecodedAudioDataSink.cpp
blob: e7fcffe4f30c39a540ab3ac42814a701a9ae6667 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsPrintfCString.h"
#include "MediaQueue.h"
#include "DecodedAudioDataSink.h"
#include "VideoUtils.h"
#include "AudioConverter.h"

#include "mozilla/CheckedInt.h"
#include "mozilla/DebugOnly.h"
#include "MediaPrefs.h"

namespace mozilla {

extern LazyLogModule gMediaDecoderLog;
#define SINK_LOG(msg, ...) \
  MOZ_LOG(gMediaDecoderLog, LogLevel::Debug, \
    ("DecodedAudioDataSink=%p " msg, this, ##__VA_ARGS__))
#define SINK_LOG_V(msg, ...) \
  MOZ_LOG(gMediaDecoderLog, LogLevel::Verbose, \
  ("DecodedAudioDataSink=%p " msg, this, ##__VA_ARGS__))

namespace media {

// The amount of audio frames that is used to fuzz rounding errors.
static const int64_t AUDIO_FUZZ_FRAMES = 1;

// Amount of audio frames we will be processing ahead of use
static const int32_t LOW_AUDIO_USECS = 300000;

DecodedAudioDataSink::DecodedAudioDataSink(AbstractThread* aThread,
                                           MediaQueue<MediaData>& aAudioQueue,
                                           int64_t aStartTime,
                                           const AudioInfo& aInfo,
                                           dom::AudioChannel aChannel)
  : AudioSink(aAudioQueue)
  , mStartTime(aStartTime)
  , mLastGoodPosition(0)
  , mInfo(aInfo)
  , mChannel(aChannel)
  , mPlaying(true)
  , mMonitor("DecodedAudioDataSink")
  , mWritten(0)
  , mErrored(false)
  , mPlaybackComplete(false)
  , mOwnerThread(aThread)
  , mProcessedQueueLength(0)
  , mFramesParsed(0)
  , mLastEndTime(0)
  , mIsAudioDataAudible(false)
{
  bool resampling = MediaPrefs::AudioSinkResampling();

  if (resampling) {
    mOutputRate = MediaPrefs::AudioSinkResampleRate();
  } else if (mInfo.mRate == 44100 || mInfo.mRate == 48000) {
    // The original rate is of good quality and we want to minimize unecessary
    // resampling. The common scenario being that the sampling rate is one or
    // the other, this allows to minimize audio quality regression and hoping
    // content provider want change from those rates mid-stream.
    mOutputRate = mInfo.mRate;
  } else {
    // We will resample all data to match cubeb's preferred sampling rate.
    mOutputRate = AudioStream::GetPreferredRate();
  }
  MOZ_DIAGNOSTIC_ASSERT(mOutputRate, "output rate can't be 0.");

  bool monoAudioEnabled = MediaPrefs::MonoAudio();

  mOutputChannels = monoAudioEnabled
    ? 1 : (MediaPrefs::AudioSinkForceStereo() ? 2 : mInfo.mChannels);
}

DecodedAudioDataSink::~DecodedAudioDataSink()
{
}

RefPtr<GenericPromise>
DecodedAudioDataSink::Init(const PlaybackParams& aParams)
{
  MOZ_ASSERT(mOwnerThread->IsCurrentThreadIn());

  mAudioQueueListener = mAudioQueue.PushEvent().Connect(
    mOwnerThread, this, &DecodedAudioDataSink::OnAudioPushed);
  mAudioQueueFinishListener = mAudioQueue.FinishEvent().Connect(
    mOwnerThread, this, &DecodedAudioDataSink::NotifyAudioNeeded);
  mProcessedQueueListener = mProcessedQueue.PopEvent().Connect(
    mOwnerThread, this, &DecodedAudioDataSink::OnAudioPopped);

  // To ensure at least one audio packet will be popped from AudioQueue and
  // ready to be played.
  NotifyAudioNeeded();
  RefPtr<GenericPromise> p = mEndPromise.Ensure(__func__);
  nsresult rv = InitializeAudioStream(aParams);
  if (NS_FAILED(rv)) {
    mEndPromise.Reject(rv, __func__);
  }
  return p;
}

int64_t
DecodedAudioDataSink::GetPosition()
{
  int64_t pos;
  if (mAudioStream &&
      (pos = mAudioStream->GetPosition()) >= 0) {
    NS_ASSERTION(pos >= mLastGoodPosition,
                 "AudioStream position shouldn't go backward");
    // Update the last good position when we got a good one.
    if (pos >= mLastGoodPosition) {
      mLastGoodPosition = pos;
    }
  }

  return mStartTime + mLastGoodPosition;
}

bool
DecodedAudioDataSink::HasUnplayedFrames()
{
  // Experimentation suggests that GetPositionInFrames() is zero-indexed,
  // so we need to add 1 here before comparing it to mWritten.
  int64_t total;
  {
    MonitorAutoLock mon(mMonitor);
    total = mWritten + (mCursor.get() ? mCursor->Available() : 0);
  }
  return mProcessedQueue.GetSize() ||
         (mAudioStream && mAudioStream->GetPositionInFrames() + 1 < total);
}

void
DecodedAudioDataSink::Shutdown()
{
  MOZ_ASSERT(mOwnerThread->IsCurrentThreadIn());

  mAudioQueueListener.Disconnect();
  mAudioQueueFinishListener.Disconnect();
  mProcessedQueueListener.Disconnect();

  if (mAudioStream) {
    mAudioStream->Shutdown();
    mAudioStream = nullptr;
  }
  mProcessedQueue.Reset();
  mProcessedQueue.Finish();
  mEndPromise.ResolveIfExists(true, __func__);
}

void
DecodedAudioDataSink::SetVolume(double aVolume)
{
  if (mAudioStream) {
    mAudioStream->SetVolume(aVolume);
  }
}

void
DecodedAudioDataSink::SetPlaybackRate(double aPlaybackRate)
{
  MOZ_ASSERT(aPlaybackRate != 0, "Don't set the playbackRate to 0 on AudioStream");
  if (mAudioStream) {
    mAudioStream->SetPlaybackRate(aPlaybackRate);
  }
}

void
DecodedAudioDataSink::SetPreservesPitch(bool aPreservesPitch)
{
  if (mAudioStream) {
    mAudioStream->SetPreservesPitch(aPreservesPitch);
  }
}

void
DecodedAudioDataSink::SetPlaying(bool aPlaying)
{
  if (!mAudioStream || mPlaying == aPlaying || mPlaybackComplete) {
    return;
  }
  // pause/resume AudioStream as necessary.
  if (!aPlaying) {
    mAudioStream->Pause();
  } else if (aPlaying) {
    mAudioStream->Resume();
  }
  mPlaying = aPlaying;
}

nsresult
DecodedAudioDataSink::InitializeAudioStream(const PlaybackParams& aParams)
{
  mAudioStream = new AudioStream(*this);
  nsresult rv = mAudioStream->Init(mOutputChannels, mOutputRate, mChannel);
  if (NS_FAILED(rv)) {
    mAudioStream->Shutdown();
    mAudioStream = nullptr;
    return rv;
  }

  // Set playback params before calling Start() so they can take effect
  // as soon as the 1st DataCallback of the AudioStream fires.
  mAudioStream->SetVolume(aParams.mVolume);
  mAudioStream->SetPlaybackRate(aParams.mPlaybackRate);
  mAudioStream->SetPreservesPitch(aParams.mPreservesPitch);
  mAudioStream->Start();

  return NS_OK;
}

int64_t
DecodedAudioDataSink::GetEndTime() const
{
  int64_t written;
  {
    MonitorAutoLock mon(mMonitor);
    written = mWritten;
  }
  CheckedInt64 playedUsecs = FramesToUsecs(written, mOutputRate) + mStartTime;
  if (!playedUsecs.isValid()) {
    NS_WARNING("Int overflow calculating audio end time");
    return -1;
  }
  // As we may be resampling, rounding errors may occur. Ensure we never get
  // past the original end time.
  return std::min<int64_t>(mLastEndTime, playedUsecs.value());
}

UniquePtr<AudioStream::Chunk>
DecodedAudioDataSink::PopFrames(uint32_t aFrames)
{
  class Chunk : public AudioStream::Chunk {
  public:
    Chunk(AudioData* aBuffer, uint32_t aFrames, AudioDataValue* aData)
      : mBuffer(aBuffer), mFrames(aFrames), mData(aData) {}
    Chunk() : mFrames(0), mData(nullptr) {}
    const AudioDataValue* Data() const { return mData; }
    uint32_t Frames() const { return mFrames; }
    uint32_t Channels() const { return mBuffer ? mBuffer->mChannels: 0; }
    uint32_t Rate() const { return mBuffer ? mBuffer->mRate : 0; }
    AudioDataValue* GetWritable() const { return mData; }
  private:
    const RefPtr<AudioData> mBuffer;
    const uint32_t mFrames;
    AudioDataValue* const mData;
  };

  class SilentChunk : public AudioStream::Chunk {
  public:
    SilentChunk(uint32_t aFrames, uint32_t aChannels, uint32_t aRate)
      : mFrames(aFrames)
      , mChannels(aChannels)
      , mRate(aRate)
      , mData(MakeUnique<AudioDataValue[]>(aChannels * aFrames)) {
      memset(mData.get(), 0, aChannels * aFrames * sizeof(AudioDataValue));
    }
    const AudioDataValue* Data() const { return mData.get(); }
    uint32_t Frames() const { return mFrames; }
    uint32_t Channels() const { return mChannels; }
    uint32_t Rate() const { return mRate; }
    AudioDataValue* GetWritable() const { return mData.get(); }
  private:
    const uint32_t mFrames;
    const uint32_t mChannels;
    const uint32_t mRate;
    UniquePtr<AudioDataValue[]> mData;
  };

  bool needPopping = false;
  if (!mCurrentData) {
    // No data in the queue. Return an empty chunk.
    if (!mProcessedQueue.GetSize()) {
      return MakeUnique<Chunk>();
    }

    // We need to update our values prior popping the processed queue in
    // order to prevent the pop event to fire too early (prior
    // mProcessedQueueLength being updated) or prevent HasUnplayedFrames
    // to incorrectly return true during the time interval betweeen the
    // when mProcessedQueue is read and mWritten is updated.
    needPopping = true;
    mCurrentData = mProcessedQueue.PeekFront();
    {
      MonitorAutoLock mon(mMonitor);
      mCursor = MakeUnique<AudioBufferCursor>(mCurrentData->mAudioData.get(),
                                              mCurrentData->mChannels,
                                              mCurrentData->mFrames);
    }
    MOZ_ASSERT(mCurrentData->mFrames > 0);
    mProcessedQueueLength -=
      FramesToUsecs(mCurrentData->mFrames, mOutputRate).value();
  }

  auto framesToPop = std::min(aFrames, mCursor->Available());

  SINK_LOG_V("playing audio at time=%lld offset=%u length=%u",
             mCurrentData->mTime, mCurrentData->mFrames - mCursor->Available(), framesToPop);

  UniquePtr<AudioStream::Chunk> chunk =
    MakeUnique<Chunk>(mCurrentData, framesToPop, mCursor->Ptr());

  {
    MonitorAutoLock mon(mMonitor);
    mWritten += framesToPop;
    mCursor->Advance(framesToPop);
  }

  // All frames are popped. Reset mCurrentData so we can pop new elements from
  // the audio queue in next calls to PopFrames().
  if (!mCursor->Available()) {
    mCurrentData = nullptr;
  }

  if (needPopping) {
    // We can now safely pop the audio packet from the processed queue.
    // This will fire the popped event, triggering a call to NotifyAudioNeeded.
    RefPtr<AudioData> releaseMe = mProcessedQueue.PopFront();
    CheckIsAudible(releaseMe);
  }

  return chunk;
}

bool
DecodedAudioDataSink::Ended() const
{
  // Return true when error encountered so AudioStream can start draining.
  return mProcessedQueue.IsFinished() || mErrored;
}

void
DecodedAudioDataSink::Drained()
{
  SINK_LOG("Drained");
  mPlaybackComplete = true;
  mEndPromise.ResolveIfExists(true, __func__);
}

void
DecodedAudioDataSink::CheckIsAudible(const AudioData* aData)
{
  MOZ_ASSERT(aData);

  bool isAudible = aData->IsAudible();
  if (isAudible != mIsAudioDataAudible) {
    mIsAudioDataAudible = isAudible;
    mAudibleEvent.Notify(mIsAudioDataAudible);
  }
}

void
DecodedAudioDataSink::OnAudioPopped(const RefPtr<MediaData>& aSample)
{
  SINK_LOG_V("AudioStream has used an audio packet.");
  NotifyAudioNeeded();
}

void
DecodedAudioDataSink::OnAudioPushed(const RefPtr<MediaData>& aSample)
{
  SINK_LOG_V("One new audio packet available.");
  NotifyAudioNeeded();
}

void
DecodedAudioDataSink::NotifyAudioNeeded()
{
  MOZ_ASSERT(mOwnerThread->IsCurrentThreadIn(),
             "Not called from the owner's thread");

  // Always ensure we have two processed frames pending to allow for processing
  // latency.
  while (AudioQueue().GetSize() && (AudioQueue().IsFinished() ||
                                    mProcessedQueueLength < LOW_AUDIO_USECS ||
                                    mProcessedQueue.GetSize() < 2)) {
    RefPtr<AudioData> data =
      dont_AddRef(AudioQueue().PopFront().take()->As<AudioData>());

    // Ignore the element with 0 frames and try next.
    if (!data->mFrames) {
      continue;
    }

    if (!mConverter ||
        (data->mRate != mConverter->InputConfig().Rate() ||
         data->mChannels != mConverter->InputConfig().Channels())) {
      SINK_LOG_V("Audio format changed from %u@%uHz to %u@%uHz",
                 mConverter? mConverter->InputConfig().Channels() : 0,
                 mConverter ? mConverter->InputConfig().Rate() : 0,
                 data->mChannels, data->mRate);

      DrainConverter();

      // mFramesParsed indicates the current playtime in frames at the current
      // input sampling rate. Recalculate it per the new sampling rate.
      if (mFramesParsed) {
        // We minimize overflow.
        uint32_t oldRate = mConverter->InputConfig().Rate();
        uint32_t newRate = data->mRate;
        CheckedInt64 result = SaferMultDiv(mFramesParsed, newRate, oldRate);
        if (!result.isValid()) {
          NS_WARNING("Int overflow in DecodedAudioDataSink");
          mErrored = true;
          return;
        }
        mFramesParsed = result.value();
      }

      mConverter =
        MakeUnique<AudioConverter>(
          AudioConfig(data->mChannels, data->mRate),
          AudioConfig(mOutputChannels, mOutputRate));
    }

    // See if there's a gap in the audio. If there is, push silence into the
    // audio hardware, so we can play across the gap.
    // Calculate the timestamp of the next chunk of audio in numbers of
    // samples.
    CheckedInt64 sampleTime = UsecsToFrames(data->mTime - mStartTime,
                                            data->mRate);
    // Calculate the number of frames that have been pushed onto the audio hardware.
    CheckedInt64 missingFrames = sampleTime - mFramesParsed;

    if (!missingFrames.isValid()) {
      NS_WARNING("Int overflow in DecodedAudioDataSink");
      mErrored = true;
      return;
    }

    if (missingFrames.value() > AUDIO_FUZZ_FRAMES) {
      // The next audio packet begins some time after the end of the last packet
      // we pushed to the audio hardware. We must push silence into the audio
      // hardware so that the next audio packet begins playback at the correct
      // time.
      missingFrames = std::min<int64_t>(INT32_MAX, missingFrames.value());
      mFramesParsed += missingFrames.value();

      // We need to calculate how many frames are missing at the output rate.
      missingFrames =
        SaferMultDiv(missingFrames.value(), mOutputRate, data->mRate);
      if (!missingFrames.isValid()) {
        NS_WARNING("Int overflow in DecodedAudioDataSink");
        mErrored = true;
        return;
      }

      // We need to insert silence, first use drained frames if any.
      missingFrames -= DrainConverter(missingFrames.value());
      // Insert silence if still needed.
      if (missingFrames.value()) {
        AlignedAudioBuffer silenceData(missingFrames.value() * mOutputChannels);
        if (!silenceData) {
          NS_WARNING("OOM in DecodedAudioDataSink");
          mErrored = true;
          return;
        }
        RefPtr<AudioData> silence = CreateAudioFromBuffer(Move(silenceData), data);
        PushProcessedAudio(silence);
      }
    }

    mLastEndTime = data->GetEndTime();
    mFramesParsed += data->mFrames;

    if (mConverter->InputConfig() != mConverter->OutputConfig()) {
      // We must ensure that the size in the buffer contains exactly the number
      // of frames, in case one of the audio producer over allocated the buffer.
      AlignedAudioBuffer buffer(Move(data->mAudioData));
      buffer.SetLength(size_t(data->mFrames) * data->mChannels);

      AlignedAudioBuffer convertedData =
        mConverter->Process(AudioSampleBuffer(Move(buffer))).Forget();
      data = CreateAudioFromBuffer(Move(convertedData), data);
    }
    if (PushProcessedAudio(data)) {
      mLastProcessedPacket = Some(data);
    }
  }

  if (AudioQueue().IsFinished()) {
    // We have reached the end of the data, drain the resampler.
    DrainConverter();
    mProcessedQueue.Finish();
  }
}

uint32_t
DecodedAudioDataSink::PushProcessedAudio(AudioData* aData)
{
  if (!aData || !aData->mFrames) {
    return 0;
  }
  mProcessedQueue.Push(aData);
  mProcessedQueueLength += FramesToUsecs(aData->mFrames, mOutputRate).value();
  return aData->mFrames;
}

already_AddRefed<AudioData>
DecodedAudioDataSink::CreateAudioFromBuffer(AlignedAudioBuffer&& aBuffer,
                                            AudioData* aReference)
{
  uint32_t frames = aBuffer.Length() / mOutputChannels;
  if (!frames) {
    return nullptr;
  }
  CheckedInt64 duration = FramesToUsecs(frames, mOutputRate);
  if (!duration.isValid()) {
    NS_WARNING("Int overflow in DecodedAudioDataSink");
    mErrored = true;
    return nullptr;
  }
  RefPtr<AudioData> data =
    new AudioData(aReference->mOffset,
                  aReference->mTime,
                  duration.value(),
                  frames,
                  Move(aBuffer),
                  mOutputChannels,
                  mOutputRate);
  return data.forget();
}

uint32_t
DecodedAudioDataSink::DrainConverter(uint32_t aMaxFrames)
{
  MOZ_ASSERT(mOwnerThread->IsCurrentThreadIn());

  if (!mConverter || !mLastProcessedPacket || !aMaxFrames) {
    // nothing to drain.
    return 0;
  }

  RefPtr<AudioData> lastPacket = mLastProcessedPacket.ref();
  mLastProcessedPacket.reset();

  // To drain we simply provide an empty packet to the audio converter.
  AlignedAudioBuffer convertedData =
    mConverter->Process(AudioSampleBuffer(AlignedAudioBuffer())).Forget();

  uint32_t frames = convertedData.Length() / mOutputChannels;
  if (!convertedData.SetLength(std::min(frames, aMaxFrames) * mOutputChannels)) {
    // This can never happen as we were reducing the length of convertData.
    mErrored = true;
    return 0;
  }

  RefPtr<AudioData> data =
    CreateAudioFromBuffer(Move(convertedData), lastPacket);
  if (!data) {
    return 0;
  }
  mProcessedQueue.Push(data);
  return data->mFrames;
}

} // namespace media
} // namespace mozilla