summaryrefslogtreecommitdiff
path: root/dom/media/AudioConverter.cpp
blob: 77ad46ec6ad32679683f4347498ff951d7926e7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "AudioConverter.h"
#include <string.h>
#include <speex/speex_resampler.h>
#include <cmath>

/*
 *  Parts derived from MythTV AudioConvert Class
 *  Created by Jean-Yves Avenard.
 *
 *  Copyright (C) Bubblestuff Pty Ltd 2013
 *  Copyright (C) foobum@gmail.com 2010
 */

namespace mozilla {

AudioConverter::AudioConverter(const AudioConfig& aIn, const AudioConfig& aOut)
  : mIn(aIn)
  , mOut(aOut)
  , mResampler(nullptr)
{
  MOZ_DIAGNOSTIC_ASSERT(aIn.Format() == aOut.Format() &&
                        aIn.Interleaved() == aOut.Interleaved(),
                        "No format or rate conversion is supported at this stage");
  MOZ_DIAGNOSTIC_ASSERT(aOut.Channels() <= 2 ||
                        aIn.Channels() == aOut.Channels(),
                        "Only down/upmixing to mono or stereo is supported at this stage");
  MOZ_DIAGNOSTIC_ASSERT(aOut.Interleaved(), "planar audio format not supported");
  mIn.Layout().MappingTable(mOut.Layout(), mChannelOrderMap);
  if (aIn.Rate() != aOut.Rate()) {
    RecreateResampler();
  }
}

AudioConverter::~AudioConverter()
{
  if (mResampler) {
    speex_resampler_destroy(mResampler);
    mResampler = nullptr;
  }
}

bool
AudioConverter::CanWorkInPlace() const
{
  bool needDownmix = mIn.Channels() > mOut.Channels();
  bool needUpmix = mIn.Channels() < mOut.Channels();
  bool canDownmixInPlace =
    mIn.Channels() * AudioConfig::SampleSize(mIn.Format()) >=
    mOut.Channels() * AudioConfig::SampleSize(mOut.Format());
  bool needResample = mIn.Rate() != mOut.Rate();
  bool canResampleInPlace = mIn.Rate() >= mOut.Rate();
  // We should be able to work in place if 1s of audio input takes less space
  // than 1s of audio output. However, as we downmix before resampling we can't
  // perform any upsampling in place (e.g. if incoming rate >= outgoing rate)
  return !needUpmix && (!needDownmix || canDownmixInPlace) &&
         (!needResample || canResampleInPlace);
}

size_t
AudioConverter::ProcessInternal(void* aOut, const void* aIn, size_t aFrames)
{
  if (mIn.Channels() > mOut.Channels()) {
    return DownmixAudio(aOut, aIn, aFrames);
  } else if (mIn.Channels() < mOut.Channels()) {
    return UpmixAudio(aOut, aIn, aFrames);
  } else if (mIn.Layout() != mOut.Layout() && CanReorderAudio()) {
    ReOrderInterleavedChannels(aOut, aIn, aFrames);
  } else if (aIn != aOut) {
    memmove(aOut, aIn, FramesOutToBytes(aFrames));
  }
  return aFrames;
}

// Reorder interleaved channels.
// Can work in place (e.g aOut == aIn).
template <class AudioDataType>
void
_ReOrderInterleavedChannels(AudioDataType* aOut, const AudioDataType* aIn,
                            uint32_t aFrames, uint32_t aChannels,
                            const uint8_t* aChannelOrderMap)
{
  MOZ_DIAGNOSTIC_ASSERT(aChannels <= MAX_AUDIO_CHANNELS);
  AudioDataType val[MAX_AUDIO_CHANNELS];
  for (uint32_t i = 0; i < aFrames; i++) {
    for (uint32_t j = 0; j < aChannels; j++) {
      val[j] = aIn[aChannelOrderMap[j]];
    }
    for (uint32_t j = 0; j < aChannels; j++) {
      aOut[j] = val[j];
    }
    aOut += aChannels;
    aIn += aChannels;
  }
}

void
AudioConverter::ReOrderInterleavedChannels(void* aOut, const void* aIn,
                                           size_t aFrames) const
{
  MOZ_DIAGNOSTIC_ASSERT(mIn.Channels() == mOut.Channels());

  if (mOut.Channels() == 1 || mOut.Layout() == mIn.Layout()) {
    // If channel count is 1, planar and non-planar formats are the same and
    // there's nothing to reorder.
    if (aOut != aIn) {
      memmove(aOut, aIn, FramesOutToBytes(aFrames));
    }
    return;
  }

  uint32_t bits = AudioConfig::FormatToBits(mOut.Format());
  switch (bits) {
    case 8:
      _ReOrderInterleavedChannels((uint8_t*)aOut, (const uint8_t*)aIn,
                                  aFrames, mIn.Channels(), mChannelOrderMap);
      break;
    case 16:
      _ReOrderInterleavedChannels((int16_t*)aOut,(const int16_t*)aIn,
                                  aFrames, mIn.Channels(), mChannelOrderMap);
      break;
    default:
      MOZ_DIAGNOSTIC_ASSERT(AudioConfig::SampleSize(mOut.Format()) == 4);
      _ReOrderInterleavedChannels((int32_t*)aOut,(const int32_t*)aIn,
                                  aFrames, mIn.Channels(), mChannelOrderMap);
      break;
  }
}

static inline int16_t clipTo15(int32_t aX)
{
  return aX < -32768 ? -32768 : aX <= 32767 ? aX : 32767;
}

size_t
AudioConverter::DownmixAudio(void* aOut, const void* aIn, size_t aFrames) const
{
  MOZ_ASSERT(mIn.Format() == AudioConfig::FORMAT_S16 ||
             mIn.Format() == AudioConfig::FORMAT_FLT);
  MOZ_ASSERT(mIn.Channels() >= mOut.Channels());
  MOZ_ASSERT(mIn.Layout() == AudioConfig::ChannelLayout(mIn.Channels()),
             "Can only downmix input data in SMPTE layout");
  MOZ_ASSERT(mOut.Layout() == AudioConfig::ChannelLayout(2) ||
             mOut.Layout() == AudioConfig::ChannelLayout(1));

  uint32_t channels = mIn.Channels();

  if (channels == 1 && mOut.Channels() == 1) {
    if (aOut != aIn) {
      memmove(aOut, aIn, FramesOutToBytes(aFrames));
    }
    return aFrames;
  }

  if (channels > 2) {
    if (mIn.Format() == AudioConfig::FORMAT_FLT) {
      // Downmix matrix. Per-row normalization 1 for rows 3,4 and 2 for rows 5-8.
      static const float dmatrix[6][8][2]= {
          /*3*/{{0.5858f,0},{0,0.5858f},{0.4142f,0.4142f}},
          /*4*/{{0.4226f,0},{0,0.4226f},{0.366f, 0.2114f},{0.2114f,0.366f}},
          /*5*/{{0.6510f,0},{0,0.6510f},{0.4600f,0.4600f},{0.5636f,0.3254f},{0.3254f,0.5636f}},
          /*6*/{{0.5290f,0},{0,0.5290f},{0.3741f,0.3741f},{0.3741f,0.3741f},{0.4582f,0.2645f},{0.2645f,0.4582f}},
          /*7*/{{0.4553f,0},{0,0.4553f},{0.3220f,0.3220f},{0.3220f,0.3220f},{0.2788f,0.2788f},{0.3943f,0.2277f},{0.2277f,0.3943f}},
          /*8*/{{0.3886f,0},{0,0.3886f},{0.2748f,0.2748f},{0.2748f,0.2748f},{0.3366f,0.1943f},{0.1943f,0.3366f},{0.3366f,0.1943f},{0.1943f,0.3366f}},
      };
      // Re-write the buffer with downmixed data
      const float* in = static_cast<const float*>(aIn);
      float* out = static_cast<float*>(aOut);
      for (uint32_t i = 0; i < aFrames; i++) {
        float sampL = 0.0;
        float sampR = 0.0;
        for (uint32_t j = 0; j < channels; j++) {
          sampL += in[i*mIn.Channels()+j]*dmatrix[mIn.Channels()-3][j][0];
          sampR += in[i*mIn.Channels()+j]*dmatrix[mIn.Channels()-3][j][1];
        }
        *out++ = sampL;
        *out++ = sampR;
      }
    } else if (mIn.Format() == AudioConfig::FORMAT_S16) {
      // Downmix matrix. Per-row normalization 1 for rows 3,4 and 2 for rows 5-8.
      // Coefficients in Q14.
      static const int16_t dmatrix[6][8][2]= {
          /*3*/{{9598, 0},{0,   9598},{6786,6786}},
          /*4*/{{6925, 0},{0,   6925},{5997,3462},{3462,5997}},
          /*5*/{{10663,0},{0,  10663},{7540,7540},{9234,5331},{5331,9234}},
          /*6*/{{8668, 0},{0,   8668},{6129,6129},{6129,6129},{7507,4335},{4335,7507}},
          /*7*/{{7459, 0},{0,   7459},{5275,5275},{5275,5275},{4568,4568},{6460,3731},{3731,6460}},
          /*8*/{{6368, 0},{0,   6368},{4502,4502},{4502,4502},{5514,3184},{3184,5514},{5514,3184},{3184,5514}}
      };
      // Re-write the buffer with downmixed data
      const int16_t* in = static_cast<const int16_t*>(aIn);
      int16_t* out = static_cast<int16_t*>(aOut);
      for (uint32_t i = 0; i < aFrames; i++) {
        int32_t sampL = 0;
        int32_t sampR = 0;
        for (uint32_t j = 0; j < channels; j++) {
          sampL+=in[i*channels+j]*dmatrix[channels-3][j][0];
          sampR+=in[i*channels+j]*dmatrix[channels-3][j][1];
        }
        *out++ = clipTo15((sampL + 8192)>>14);
        *out++ = clipTo15((sampR + 8192)>>14);
      }
    } else {
      MOZ_DIAGNOSTIC_ASSERT(false, "Unsupported data type");
    }

    // If we are to continue downmixing to mono, start working on the output
    // buffer.
    aIn = aOut;
    channels = 2;
  }

  if (mOut.Channels() == 1) {
    if (mIn.Format() == AudioConfig::FORMAT_FLT) {
      const float* in = static_cast<const float*>(aIn);
      float* out = static_cast<float*>(aOut);
      for (size_t fIdx = 0; fIdx < aFrames; ++fIdx) {
        float sample = 0.0;
        // The sample of the buffer would be interleaved.
        sample = (in[fIdx*channels] + in[fIdx*channels + 1]) * 0.5;
        *out++ = sample;
      }
    } else if (mIn.Format() == AudioConfig::FORMAT_S16) {
      const int16_t* in = static_cast<const int16_t*>(aIn);
      int16_t* out = static_cast<int16_t*>(aOut);
      for (size_t fIdx = 0; fIdx < aFrames; ++fIdx) {
        int32_t sample = 0.0;
        // The sample of the buffer would be interleaved.
        sample = (in[fIdx*channels] + in[fIdx*channels + 1]) * 0.5;
        *out++ = sample;
      }
    } else {
      MOZ_DIAGNOSTIC_ASSERT(false, "Unsupported data type");
    }
  }
  return aFrames;
}

size_t
AudioConverter::ResampleAudio(void* aOut, const void* aIn, size_t aFrames)
{
  if (!mResampler) {
    return 0;
  }
  uint32_t outframes = ResampleRecipientFrames(aFrames);
  uint32_t inframes = aFrames;

  int error;
  if (mOut.Format() == AudioConfig::FORMAT_FLT) {
    const float* in = reinterpret_cast<const float*>(aIn);
    float* out = reinterpret_cast<float*>(aOut);
    error =
      speex_resampler_process_interleaved_float(mResampler, in, &inframes,
                                                out, &outframes);
  } else if (mOut.Format() == AudioConfig::FORMAT_S16) {
    const int16_t* in = reinterpret_cast<const int16_t*>(aIn);
    int16_t* out = reinterpret_cast<int16_t*>(aOut);
    error =
      speex_resampler_process_interleaved_int(mResampler, in, &inframes,
                                              out, &outframes);
  } else {
    MOZ_DIAGNOSTIC_ASSERT(false, "Unsupported data type");
    error = RESAMPLER_ERR_ALLOC_FAILED;
  }
  MOZ_ASSERT(error == RESAMPLER_ERR_SUCCESS);
  if (error != RESAMPLER_ERR_SUCCESS) {
    speex_resampler_destroy(mResampler);
    mResampler = nullptr;
    return 0;
  }
  MOZ_ASSERT(inframes == aFrames, "Some frames will be dropped");
  return outframes;
}

void
AudioConverter::RecreateResampler()
{
  if (mResampler) {
    speex_resampler_destroy(mResampler);
  }
  int error;
  mResampler = speex_resampler_init(mOut.Channels(),
                                    mIn.Rate(),
                                    mOut.Rate(),
                                    SPEEX_RESAMPLER_QUALITY_DEFAULT,
                                    &error);

  if (error == RESAMPLER_ERR_SUCCESS) {
    speex_resampler_skip_zeros(mResampler);
  } else {
    NS_WARNING("Failed to initialize resampler.");
    mResampler = nullptr;
  }
}

size_t
AudioConverter::DrainResampler(void* aOut)
{
  if (!mResampler) {
    return 0;
  }
  int frames = speex_resampler_get_input_latency(mResampler);
  AlignedByteBuffer buffer(FramesOutToBytes(frames));
  if (!buffer) {
    // OOM
    return 0;
  }
  frames = ResampleAudio(aOut, buffer.Data(), frames);
  // Tore down the resampler as it's easier than handling follow-up.
  RecreateResampler();
  return frames;
}

size_t
AudioConverter::UpmixAudio(void* aOut, const void* aIn, size_t aFrames) const
{
  MOZ_ASSERT(mIn.Format() == AudioConfig::FORMAT_S16 ||
             mIn.Format() == AudioConfig::FORMAT_FLT);
  MOZ_ASSERT(mIn.Channels() < mOut.Channels());
  MOZ_ASSERT(mIn.Channels() == 1, "Can only upmix mono for now");
  MOZ_ASSERT(mOut.Channels() == 2, "Can only upmix to stereo for now");

  if (mOut.Channels() != 2) {
    return 0;
  }

  // Upmix mono to stereo.
  // This is a very dumb mono to stereo upmixing, power levels are preserved
  // following the calculation: left = right = -3dB*mono.
  if (mIn.Format() == AudioConfig::FORMAT_FLT) {
    const float m3db = std::sqrt(0.5); // -3dB = sqrt(1/2)
    const float* in = static_cast<const float*>(aIn);
    float* out = static_cast<float*>(aOut);
    for (size_t fIdx = 0; fIdx < aFrames; ++fIdx) {
      float sample = in[fIdx] * m3db;
      // The samples of the buffer would be interleaved.
      *out++ = sample;
      *out++ = sample;
    }
  } else if (mIn.Format() == AudioConfig::FORMAT_S16) {
    const int16_t* in = static_cast<const int16_t*>(aIn);
    int16_t* out = static_cast<int16_t*>(aOut);
    for (size_t fIdx = 0; fIdx < aFrames; ++fIdx) {
      int16_t sample = ((int32_t)in[fIdx] * 11585) >> 14; // close enough to i*sqrt(0.5)
      // The samples of the buffer would be interleaved.
      *out++ = sample;
      *out++ = sample;
    }
  } else {
    MOZ_DIAGNOSTIC_ASSERT(false, "Unsupported data type");
  }

  return aFrames;
}

size_t
AudioConverter::ResampleRecipientFrames(size_t aFrames) const
{
  if (!aFrames && mIn.Rate() != mOut.Rate()) {
    // The resampler will be drained, account for frames currently buffered
    // in the resampler.
    if (!mResampler) {
      return 0;
    }
    return speex_resampler_get_output_latency(mResampler);
  } else {
    return (uint64_t)aFrames * mOut.Rate() / mIn.Rate() + 1;
  }
}

size_t
AudioConverter::FramesOutToSamples(size_t aFrames) const
{
  return aFrames * mOut.Channels();
}

size_t
AudioConverter::SamplesInToFrames(size_t aSamples) const
{
  return aSamples / mIn.Channels();
}

size_t
AudioConverter::FramesOutToBytes(size_t aFrames) const
{
  return FramesOutToSamples(aFrames) * AudioConfig::SampleSize(mOut.Format());
}
} // namespace mozilla