1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ComputedTimingFunction.h"
#include "nsAlgorithm.h" // For clamped()
#include "nsStyleUtil.h"
namespace mozilla {
void
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
{
mType = aFunction.mType;
if (nsTimingFunction::IsSplineType(mType)) {
mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
aFunction.mFunc.mX2, aFunction.mFunc.mY2);
} else {
mSteps = aFunction.mSteps;
}
}
static inline double
StepTiming(uint32_t aSteps,
double aPortion,
ComputedTimingFunction::BeforeFlag aBeforeFlag,
nsTimingFunction::Type aType)
{
MOZ_ASSERT(0.0 <= aPortion && aPortion <= 1.0, "out of range");
MOZ_ASSERT(aType == nsTimingFunction::Type::StepStart ||
aType == nsTimingFunction::Type::StepEnd, "invalid type");
if (aPortion == 1.0) {
return 1.0;
}
// Calculate current step using step-end behavior
uint32_t step = uint32_t(aPortion * aSteps); // floor
// step-start is one step ahead
if (aType == nsTimingFunction::Type::StepStart) {
step++;
}
// If the "before flag" is set and we are at a transition point,
// drop back a step (but only if we are not already at the zero point--
// we do this clamping here since |step| is an unsigned integer)
if (step != 0 &&
aBeforeFlag == ComputedTimingFunction::BeforeFlag::Set &&
fmod(aPortion * aSteps, 1) == 0) {
step--;
}
// Convert to a progress value
return double(step) / double(aSteps);
}
double
ComputedTimingFunction::GetValue(
double aPortion,
ComputedTimingFunction::BeforeFlag aBeforeFlag) const
{
if (HasSpline()) {
// Check for a linear curve.
// (GetSplineValue(), below, also checks this but doesn't work when
// aPortion is outside the range [0.0, 1.0]).
if (mTimingFunction.X1() == mTimingFunction.Y1() &&
mTimingFunction.X2() == mTimingFunction.Y2()) {
return aPortion;
}
// Ensure that we return 0 or 1 on both edges.
if (aPortion == 0.0) {
return 0.0;
}
if (aPortion == 1.0) {
return 1.0;
}
// For negative values, try to extrapolate with tangent (p1 - p0) or,
// if p1 is coincident with p0, with (p2 - p0).
if (aPortion < 0.0) {
if (mTimingFunction.X1() > 0.0) {
return aPortion * mTimingFunction.Y1() / mTimingFunction.X1();
} else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) {
return aPortion * mTimingFunction.Y2() / mTimingFunction.X2();
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 0.0;
}
// For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
// if p2 is coincident with p3, with (p1 - p3).
if (aPortion > 1.0) {
if (mTimingFunction.X2() < 1.0) {
return 1.0 + (aPortion - 1.0) *
(mTimingFunction.Y2() - 1) / (mTimingFunction.X2() - 1);
} else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) {
return 1.0 + (aPortion - 1.0) *
(mTimingFunction.Y1() - 1) / (mTimingFunction.X1() - 1);
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 1.0;
}
return mTimingFunction.GetSplineValue(aPortion);
}
// Since we use endpoint-exclusive timing, the output of a steps(start) timing
// function when aPortion = 0.0 is the top of the first step. When aPortion is
// negative, however, we should use the bottom of the first step. We handle
// negative values of aPortion specially here since once we clamp aPortion
// to [0,1] below we will no longer be able to distinguish to the two cases.
if (aPortion < 0.0) {
return 0.0;
}
// Clamp in case of steps(end) and steps(start) for values greater than 1.
aPortion = clamped(aPortion, 0.0, 1.0);
return StepTiming(mSteps, aPortion, aBeforeFlag, mType);
}
int32_t
ComputedTimingFunction::Compare(const ComputedTimingFunction& aRhs) const
{
if (mType != aRhs.mType) {
return int32_t(mType) - int32_t(aRhs.mType);
}
if (mType == nsTimingFunction::Type::CubicBezier) {
int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
if (order != 0) {
return order;
}
} else if (mType == nsTimingFunction::Type::StepStart ||
mType == nsTimingFunction::Type::StepEnd) {
if (mSteps != aRhs.mSteps) {
return int32_t(mSteps) - int32_t(aRhs.mSteps);
}
}
return 0;
}
void
ComputedTimingFunction::AppendToString(nsAString& aResult) const
{
switch (mType) {
case nsTimingFunction::Type::CubicBezier:
nsStyleUtil::AppendCubicBezierTimingFunction(mTimingFunction.X1(),
mTimingFunction.Y1(),
mTimingFunction.X2(),
mTimingFunction.Y2(),
aResult);
break;
case nsTimingFunction::Type::StepStart:
case nsTimingFunction::Type::StepEnd:
nsStyleUtil::AppendStepsTimingFunction(mType, mSteps, aResult);
break;
default:
nsStyleUtil::AppendCubicBezierKeywordTimingFunction(mType, aResult);
break;
}
}
/* static */ int32_t
ComputedTimingFunction::Compare(const Maybe<ComputedTimingFunction>& aLhs,
const Maybe<ComputedTimingFunction>& aRhs)
{
// We can't use |operator<| for const Maybe<>& here because
// 'ease' is prior to 'linear' which is represented by Nothing().
// So we have to convert Nothing() as 'linear' and check it first.
nsTimingFunction::Type lhsType = aLhs.isNothing() ?
nsTimingFunction::Type::Linear : aLhs->GetType();
nsTimingFunction::Type rhsType = aRhs.isNothing() ?
nsTimingFunction::Type::Linear : aRhs->GetType();
if (lhsType != rhsType) {
return int32_t(lhsType) - int32_t(rhsType);
}
// Both of them are Nothing().
if (lhsType == nsTimingFunction::Type::Linear) {
return 0;
}
// Other types.
return aLhs->Compare(aRhs.value());
}
} // namespace mozilla
|