/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Base64.h" #include "mozilla/UniquePtrExtensions.h" #include "nsIInputStream.h" #include "nsString.h" #include "nsTArray.h" #include "plbase64.h" namespace { // BEGIN base64 encode code copied and modified from NSPR const unsigned char* base = (unsigned char*)"ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; template static void Encode3to4(const unsigned char* aSrc, T* aDest) { uint32_t b32 = (uint32_t)0; int i, j = 18; for (i = 0; i < 3; ++i) { b32 <<= 8; b32 |= (uint32_t)aSrc[i]; } for (i = 0; i < 4; ++i) { aDest[i] = base[(uint32_t)((b32 >> j) & 0x3F)]; j -= 6; } } template static void Encode2to4(const unsigned char* aSrc, T* aDest) { aDest[0] = base[(uint32_t)((aSrc[0] >> 2) & 0x3F)]; aDest[1] = base[(uint32_t)(((aSrc[0] & 0x03) << 4) | ((aSrc[1] >> 4) & 0x0F))]; aDest[2] = base[(uint32_t)((aSrc[1] & 0x0F) << 2)]; aDest[3] = (unsigned char)'='; } template static void Encode1to4(const unsigned char* aSrc, T* aDest) { aDest[0] = base[(uint32_t)((aSrc[0] >> 2) & 0x3F)]; aDest[1] = base[(uint32_t)((aSrc[0] & 0x03) << 4)]; aDest[2] = (unsigned char)'='; aDest[3] = (unsigned char)'='; } template static void Encode(const unsigned char* aSrc, uint32_t aSrcLen, T* aDest) { while (aSrcLen >= 3) { Encode3to4(aSrc, aDest); aSrc += 3; aDest += 4; aSrcLen -= 3; } switch (aSrcLen) { case 2: Encode2to4(aSrc, aDest); break; case 1: Encode1to4(aSrc, aDest); break; case 0: break; default: NS_NOTREACHED("coding error"); } } // END base64 encode code copied and modified from NSPR. template struct EncodeInputStream_State { unsigned char c[3]; uint8_t charsOnStack; typename T::char_type* buffer; }; template nsresult EncodeInputStream_Encoder(nsIInputStream* aStream, void* aClosure, const char* aFromSegment, uint32_t aToOffset, uint32_t aCount, uint32_t* aWriteCount) { NS_ASSERTION(aCount > 0, "Er, what?"); EncodeInputStream_State* state = static_cast*>(aClosure); // We always consume all data. *aWriteCount = aCount; // If we have any data left from last time, encode it now. uint32_t countRemaining = aCount; const unsigned char* src = (const unsigned char*)aFromSegment; if (state->charsOnStack) { MOZ_ASSERT(state->charsOnStack == 1 || state->charsOnStack == 2); // Not enough data to compose a triple. if (state->charsOnStack == 1 && countRemaining == 1) { state->charsOnStack = 2; state->c[1] = src[0]; return NS_OK; } uint32_t consumed = 0; unsigned char firstSet[4]; if (state->charsOnStack == 1) { firstSet[0] = state->c[0]; firstSet[1] = src[0]; firstSet[2] = src[1]; firstSet[3] = '\0'; consumed = 2; } else /* state->charsOnStack == 2 */ { firstSet[0] = state->c[0]; firstSet[1] = state->c[1]; firstSet[2] = src[0]; firstSet[3] = '\0'; consumed = 1; } Encode(firstSet, 3, state->buffer); state->buffer += 4; countRemaining -= consumed; src += consumed; state->charsOnStack = 0; // Bail if there is nothing left. if (!countRemaining) { return NS_OK; } } // Encode as many full triplets as possible. uint32_t encodeLength = countRemaining - countRemaining % 3; MOZ_ASSERT(encodeLength % 3 == 0, "Should have an exact number of triplets!"); Encode(src, encodeLength, state->buffer); state->buffer += (encodeLength / 3) * 4; src += encodeLength; countRemaining -= encodeLength; if (countRemaining) { // We should never have a full triplet left at this point. MOZ_ASSERT(countRemaining < 3, "We should have encoded more!"); state->c[0] = src[0]; state->c[1] = (countRemaining == 2) ? src[1] : '\0'; state->charsOnStack = countRemaining; } return NS_OK; } template nsresult EncodeInputStream(nsIInputStream* aInputStream, T& aDest, uint32_t aCount, uint32_t aOffset) { nsresult rv; uint64_t count64 = aCount; if (!aCount) { rv = aInputStream->Available(&count64); if (NS_WARN_IF(NS_FAILED(rv))) { return rv; } // if count64 is over 4GB, it will be failed at the below condition, // then will return NS_ERROR_OUT_OF_MEMORY aCount = (uint32_t)count64; } uint64_t countlong = (count64 + 2) / 3 * 4; // +2 due to integer math. if (countlong + aOffset > UINT32_MAX) { return NS_ERROR_OUT_OF_MEMORY; } uint32_t count = uint32_t(countlong); if (!aDest.SetLength(count + aOffset, mozilla::fallible)) { return NS_ERROR_OUT_OF_MEMORY; } EncodeInputStream_State state; state.charsOnStack = 0; state.c[2] = '\0'; state.buffer = aOffset + aDest.BeginWriting(); while (1) { uint32_t read = 0; rv = aInputStream->ReadSegments(&EncodeInputStream_Encoder, (void*)&state, aCount, &read); if (NS_FAILED(rv)) { if (rv == NS_BASE_STREAM_WOULD_BLOCK) { NS_RUNTIMEABORT("Not implemented for async streams!"); } if (rv == NS_ERROR_NOT_IMPLEMENTED) { NS_RUNTIMEABORT("Requires a stream that implements ReadSegments!"); } return rv; } if (!read) { break; } } // Finish encoding if anything is left if (state.charsOnStack) { Encode(state.c, state.charsOnStack, state.buffer); } if (aDest.Length()) { // May belong to an nsCString with an unallocated buffer, so only null // terminate if there is a need to. *aDest.EndWriting() = '\0'; } return NS_OK; } static const char kBase64URLAlphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; static_assert(mozilla::ArrayLength(kBase64URLAlphabet) == 0x41, "size of kBase64URLAlphabet must be 0x41"); // Maps an encoded character to a value in the Base64 URL alphabet, per // RFC 4648, Table 2. Invalid input characters map to UINT8_MAX. static const uint8_t kBase64URLDecodeTable[] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62 /* - */, 255, 255, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, /* 0 - 9 */ 255, 255, 255, 255, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, /* A - Z */ 255, 255, 255, 255, 63 /* _ */, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, /* a - z */ 255, 255, 255, 255, 255 }; static_assert(mozilla::ArrayLength(kBase64URLDecodeTable) == 0x80, "size of kBase64URLDecodeTable must be 0x80"); bool Base64URLCharToValue(char aChar, uint8_t* aValue) { uint8_t index = static_cast(aChar); if (index >= mozilla::ArrayLength(kBase64URLDecodeTable)) { *aValue = 255; return false; } *aValue = kBase64URLDecodeTable[index]; return *aValue != 255; } } // namespace namespace mozilla { nsresult Base64EncodeInputStream(nsIInputStream* aInputStream, nsACString& aDest, uint32_t aCount, uint32_t aOffset) { return EncodeInputStream(aInputStream, aDest, aCount, aOffset); } nsresult Base64EncodeInputStream(nsIInputStream* aInputStream, nsAString& aDest, uint32_t aCount, uint32_t aOffset) { return EncodeInputStream(aInputStream, aDest, aCount, aOffset); } nsresult Base64Encode(const char* aBinary, uint32_t aBinaryLen, char** aBase64) { // Check for overflow. if (aBinaryLen > (UINT32_MAX / 4) * 3) { return NS_ERROR_FAILURE; } // Don't ask PR_Base64Encode to encode empty strings. if (aBinaryLen == 0) { *aBase64 = (char*)moz_xmalloc(1); (*aBase64)[0] = '\0'; return NS_OK; } *aBase64 = nullptr; uint32_t base64Len = ((aBinaryLen + 2) / 3) * 4; // Add one byte for null termination. UniqueFreePtr base64((char*)malloc(base64Len + 1)); if (!base64) { return NS_ERROR_OUT_OF_MEMORY; } if (!PL_Base64Encode(aBinary, aBinaryLen, base64.get())) { return NS_ERROR_INVALID_ARG; } // PL_Base64Encode doesn't null terminate the buffer for us when we pass // the buffer in. Do that manually. base64[base64Len] = '\0'; *aBase64 = base64.release(); return NS_OK; } nsresult Base64Encode(const nsACString& aBinary, nsACString& aBase64) { // Check for overflow. if (aBinary.Length() > (UINT32_MAX / 4) * 3) { return NS_ERROR_FAILURE; } // Don't ask PR_Base64Encode to encode empty strings. if (aBinary.IsEmpty()) { aBase64.Truncate(); return NS_OK; } uint32_t base64Len = ((aBinary.Length() + 2) / 3) * 4; // Add one byte for null termination. if (!aBase64.SetCapacity(base64Len + 1, fallible)) { return NS_ERROR_OUT_OF_MEMORY; } char* base64 = aBase64.BeginWriting(); if (!PL_Base64Encode(aBinary.BeginReading(), aBinary.Length(), base64)) { aBase64.Truncate(); return NS_ERROR_INVALID_ARG; } // PL_Base64Encode doesn't null terminate the buffer for us when we pass // the buffer in. Do that manually. base64[base64Len] = '\0'; aBase64.SetLength(base64Len); return NS_OK; } nsresult Base64Encode(const nsAString& aBinary, nsAString& aBase64) { NS_LossyConvertUTF16toASCII binary(aBinary); nsAutoCString base64; nsresult rv = Base64Encode(binary, base64); if (NS_SUCCEEDED(rv)) { CopyASCIItoUTF16(base64, aBase64); } else { aBase64.Truncate(); } return rv; } static nsresult Base64DecodeHelper(const char* aBase64, uint32_t aBase64Len, char* aBinary, uint32_t* aBinaryLen) { MOZ_ASSERT(aBinary); if (!PL_Base64Decode(aBase64, aBase64Len, aBinary)) { return NS_ERROR_INVALID_ARG; } // PL_Base64Decode doesn't null terminate the buffer for us when we pass // the buffer in. Do that manually, taking into account the number of '=' // characters we were passed. if (aBase64Len != 0 && aBase64[aBase64Len - 1] == '=') { if (aBase64Len > 1 && aBase64[aBase64Len - 2] == '=') { *aBinaryLen -= 2; } else { *aBinaryLen -= 1; } } aBinary[*aBinaryLen] = '\0'; return NS_OK; } nsresult Base64Decode(const char* aBase64, uint32_t aBase64Len, char** aBinary, uint32_t* aBinaryLen) { // Check for overflow. if (aBase64Len > UINT32_MAX / 3) { return NS_ERROR_FAILURE; } // Don't ask PR_Base64Decode to decode the empty string. if (aBase64Len == 0) { *aBinary = (char*)moz_xmalloc(1); (*aBinary)[0] = '\0'; *aBinaryLen = 0; return NS_OK; } *aBinary = nullptr; *aBinaryLen = (aBase64Len * 3) / 4; // Add one byte for null termination. UniqueFreePtr binary((char*)malloc(*aBinaryLen + 1)); if (!binary) { return NS_ERROR_OUT_OF_MEMORY; } nsresult rv = Base64DecodeHelper(aBase64, aBase64Len, binary.get(), aBinaryLen); if (NS_FAILED(rv)) { return rv; } *aBinary = binary.release(); return NS_OK; } nsresult Base64Decode(const nsACString& aBase64, nsACString& aBinary) { // Check for overflow. if (aBase64.Length() > UINT32_MAX / 3) { return NS_ERROR_FAILURE; } // Don't ask PR_Base64Decode to decode the empty string if (aBase64.IsEmpty()) { aBinary.Truncate(); return NS_OK; } uint32_t binaryLen = ((aBase64.Length() * 3) / 4); // Add one byte for null termination. if (!aBinary.SetCapacity(binaryLen + 1, fallible)) { return NS_ERROR_OUT_OF_MEMORY; } char* binary = aBinary.BeginWriting(); nsresult rv = Base64DecodeHelper(aBase64.BeginReading(), aBase64.Length(), binary, &binaryLen); if (NS_FAILED(rv)) { aBinary.Truncate(); return rv; } aBinary.SetLength(binaryLen); return NS_OK; } nsresult Base64Decode(const nsAString& aBase64, nsAString& aBinary) { NS_LossyConvertUTF16toASCII base64(aBase64); nsAutoCString binary; nsresult rv = Base64Decode(base64, binary); if (NS_SUCCEEDED(rv)) { CopyASCIItoUTF16(binary, aBinary); } else { aBinary.Truncate(); } return rv; } nsresult Base64URLDecode(const nsACString& aBase64, Base64URLDecodePaddingPolicy aPaddingPolicy, FallibleTArray& aBinary) { // Don't decode empty strings. if (aBase64.IsEmpty()) { aBinary.Clear(); return NS_OK; } // Check for overflow. uint32_t base64Len = aBase64.Length(); if (base64Len > UINT32_MAX / 3) { return NS_ERROR_FAILURE; } const char* base64 = aBase64.BeginReading(); // The decoded length may be 1-2 bytes over, depending on the final quantum. uint32_t binaryLen = (base64Len * 3) / 4; // Determine whether to check for and ignore trailing padding. bool maybePadded = false; switch (aPaddingPolicy) { case Base64URLDecodePaddingPolicy::Require: if (base64Len % 4) { // Padded input length must be a multiple of 4. return NS_ERROR_INVALID_ARG; } maybePadded = true; break; case Base64URLDecodePaddingPolicy::Ignore: // Check for padding only if the length is a multiple of 4. maybePadded = !(base64Len % 4); break; // If we're expecting unpadded input, no need for additional checks. // `=` isn't in the decode table, so padded strings will fail to decode. default: MOZ_FALLTHROUGH_ASSERT("Invalid decode padding policy"); case Base64URLDecodePaddingPolicy::Reject: break; } if (maybePadded && base64[base64Len - 1] == '=') { if (base64[base64Len - 2] == '=') { base64Len -= 2; } else { base64Len -= 1; } } if (NS_WARN_IF(!aBinary.SetCapacity(binaryLen, mozilla::fallible))) { return NS_ERROR_OUT_OF_MEMORY; } aBinary.SetLengthAndRetainStorage(binaryLen); uint8_t* binary = aBinary.Elements(); for (; base64Len >= 4; base64Len -= 4) { uint8_t w, x, y, z; if (!Base64URLCharToValue(*base64++, &w) || !Base64URLCharToValue(*base64++, &x) || !Base64URLCharToValue(*base64++, &y) || !Base64URLCharToValue(*base64++, &z)) { return NS_ERROR_INVALID_ARG; } *binary++ = w << 2 | x >> 4; *binary++ = x << 4 | y >> 2; *binary++ = y << 6 | z; } if (base64Len == 3) { uint8_t w, x, y; if (!Base64URLCharToValue(*base64++, &w) || !Base64URLCharToValue(*base64++, &x) || !Base64URLCharToValue(*base64++, &y)) { return NS_ERROR_INVALID_ARG; } *binary++ = w << 2 | x >> 4; *binary++ = x << 4 | y >> 2; } else if (base64Len == 2) { uint8_t w, x; if (!Base64URLCharToValue(*base64++, &w) || !Base64URLCharToValue(*base64++, &x)) { return NS_ERROR_INVALID_ARG; } *binary++ = w << 2 | x >> 4; } else if (base64Len) { return NS_ERROR_INVALID_ARG; } // Set the length to the actual number of decoded bytes. aBinary.TruncateLength(binary - aBinary.Elements()); return NS_OK; } nsresult Base64URLEncode(uint32_t aBinaryLen, const uint8_t* aBinary, Base64URLEncodePaddingPolicy aPaddingPolicy, nsACString& aBase64) { // Don't encode empty strings. if (aBinaryLen == 0) { aBase64.Truncate(); return NS_OK; } // Check for overflow. if (aBinaryLen > (UINT32_MAX / 4) * 3) { return NS_ERROR_FAILURE; } // Allocate a buffer large enough to hold the encoded string with padding. // Add one byte for null termination. uint32_t base64Len = ((aBinaryLen + 2) / 3) * 4; if (NS_WARN_IF(!aBase64.SetCapacity(base64Len + 1, fallible))) { aBase64.Truncate(); return NS_ERROR_FAILURE; } char* base64 = aBase64.BeginWriting(); uint32_t index = 0; for (; index + 3 <= aBinaryLen; index += 3) { *base64++ = kBase64URLAlphabet[aBinary[index] >> 2]; *base64++ = kBase64URLAlphabet[((aBinary[index] & 0x3) << 4) | (aBinary[index + 1] >> 4)]; *base64++ = kBase64URLAlphabet[((aBinary[index + 1] & 0xf) << 2) | (aBinary[index + 2] >> 6)]; *base64++ = kBase64URLAlphabet[aBinary[index + 2] & 0x3f]; } uint32_t remaining = aBinaryLen - index; if (remaining == 1) { *base64++ = kBase64URLAlphabet[aBinary[index] >> 2]; *base64++ = kBase64URLAlphabet[((aBinary[index] & 0x3) << 4)]; } else if (remaining == 2) { *base64++ = kBase64URLAlphabet[aBinary[index] >> 2]; *base64++ = kBase64URLAlphabet[((aBinary[index] & 0x3) << 4) | (aBinary[index + 1] >> 4)]; *base64++ = kBase64URLAlphabet[((aBinary[index + 1] & 0xf) << 2)]; } uint32_t length = base64 - aBase64.BeginWriting(); if (aPaddingPolicy == Base64URLEncodePaddingPolicy::Include) { if (length % 4 == 2) { *base64++ = '='; *base64++ = '='; length += 2; } else if (length % 4 == 3) { *base64++ = '='; length += 1; } } else { MOZ_ASSERT(aPaddingPolicy == Base64URLEncodePaddingPolicy::Omit, "Invalid encode padding policy"); } // Null terminate and truncate to the actual number of characters. *base64 = '\0'; aBase64.SetLength(length); return NS_OK; } } // namespace mozilla