// Copyright 2016 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // MSA version of encoder dsp functions. // // Author: Prashant Patil (prashant.patil@imgtec.com) #include "../dsp/dsp.h" #if defined(WEBP_USE_MSA) #include #include "../dsp/msa_macro.h" #include "../enc/vp8i_enc.h" //------------------------------------------------------------------------------ // Transforms #define IDCT_1D_W(in0, in1, in2, in3, out0, out1, out2, out3) do { \ v4i32 a1_m, b1_m, c1_m, d1_m; \ const v4i32 cospi8sqrt2minus1 = __msa_fill_w(20091); \ const v4i32 sinpi8sqrt2 = __msa_fill_w(35468); \ v4i32 c_tmp1_m = in1 * sinpi8sqrt2; \ v4i32 c_tmp2_m = in3 * cospi8sqrt2minus1; \ v4i32 d_tmp1_m = in1 * cospi8sqrt2minus1; \ v4i32 d_tmp2_m = in3 * sinpi8sqrt2; \ \ ADDSUB2(in0, in2, a1_m, b1_m); \ SRAI_W2_SW(c_tmp1_m, c_tmp2_m, 16); \ c_tmp2_m = c_tmp2_m + in3; \ c1_m = c_tmp1_m - c_tmp2_m; \ SRAI_W2_SW(d_tmp1_m, d_tmp2_m, 16); \ d_tmp1_m = d_tmp1_m + in1; \ d1_m = d_tmp1_m + d_tmp2_m; \ BUTTERFLY_4(a1_m, b1_m, c1_m, d1_m, out0, out1, out2, out3); \ } while (0) static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in, uint8_t* dst) { v8i16 input0, input1; v4i32 in0, in1, in2, in3, hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3; v4i32 res0, res1, res2, res3; v16i8 dest0, dest1, dest2, dest3; const v16i8 zero = { 0 }; LD_SH2(in, 8, input0, input1); UNPCK_SH_SW(input0, in0, in1); UNPCK_SH_SW(input1, in2, in3); IDCT_1D_W(in0, in1, in2, in3, hz0, hz1, hz2, hz3); TRANSPOSE4x4_SW_SW(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3); IDCT_1D_W(hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3); SRARI_W4_SW(vt0, vt1, vt2, vt3, 3); TRANSPOSE4x4_SW_SW(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3); LD_SB4(ref, BPS, dest0, dest1, dest2, dest3); ILVR_B4_SW(zero, dest0, zero, dest1, zero, dest2, zero, dest3, res0, res1, res2, res3); ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3, res0, res1, res2, res3); ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3); CLIP_SW4_0_255(res0, res1, res2, res3); PCKEV_B2_SW(res0, res1, res2, res3, vt0, vt1); res0 = (v4i32)__msa_pckev_b((v16i8)vt0, (v16i8)vt1); ST4x4_UB(res0, res0, 3, 2, 1, 0, dst, BPS); } static void ITransform_MSA(const uint8_t* ref, const int16_t* in, uint8_t* dst, int do_two) { ITransformOne(ref, in, dst); if (do_two) { ITransformOne(ref + 4, in + 16, dst + 4); } } static void FTransform_MSA(const uint8_t* src, const uint8_t* ref, int16_t* out) { uint64_t out0, out1, out2, out3; uint32_t in0, in1, in2, in3; v4i32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; v8i16 t0, t1, t2, t3; v16u8 srcl0, srcl1, src0 = { 0 }, src1 = { 0 }; const v8i16 mask0 = { 0, 4, 8, 12, 1, 5, 9, 13 }; const v8i16 mask1 = { 3, 7, 11, 15, 2, 6, 10, 14 }; const v8i16 mask2 = { 4, 0, 5, 1, 6, 2, 7, 3 }; const v8i16 mask3 = { 0, 4, 1, 5, 2, 6, 3, 7 }; const v8i16 cnst0 = { 2217, -5352, 2217, -5352, 2217, -5352, 2217, -5352 }; const v8i16 cnst1 = { 5352, 2217, 5352, 2217, 5352, 2217, 5352, 2217 }; LW4(src, BPS, in0, in1, in2, in3); INSERT_W4_UB(in0, in1, in2, in3, src0); LW4(ref, BPS, in0, in1, in2, in3); INSERT_W4_UB(in0, in1, in2, in3, src1); ILVRL_B2_UB(src0, src1, srcl0, srcl1); HSUB_UB2_SH(srcl0, srcl1, t0, t1); VSHF_H2_SH(t0, t1, t0, t1, mask0, mask1, t2, t3); ADDSUB2(t2, t3, t0, t1); t0 = SRLI_H(t0, 3); VSHF_H2_SH(t0, t0, t1, t1, mask2, mask3, t3, t2); tmp0 = __msa_hadd_s_w(t3, t3); tmp2 = __msa_hsub_s_w(t3, t3); FILL_W2_SW(1812, 937, tmp1, tmp3); DPADD_SH2_SW(t2, t2, cnst0, cnst1, tmp3, tmp1); SRAI_W2_SW(tmp1, tmp3, 9); PCKEV_H2_SH(tmp1, tmp0, tmp3, tmp2, t0, t1); VSHF_H2_SH(t0, t1, t0, t1, mask0, mask1, t2, t3); ADDSUB2(t2, t3, t0, t1); VSHF_H2_SH(t0, t0, t1, t1, mask2, mask3, t3, t2); tmp0 = __msa_hadd_s_w(t3, t3); tmp2 = __msa_hsub_s_w(t3, t3); ADDVI_W2_SW(tmp0, 7, tmp2, 7, tmp0, tmp2); SRAI_W2_SW(tmp0, tmp2, 4); FILL_W2_SW(12000, 51000, tmp1, tmp3); DPADD_SH2_SW(t2, t2, cnst0, cnst1, tmp3, tmp1); SRAI_W2_SW(tmp1, tmp3, 16); UNPCK_R_SH_SW(t1, tmp4); tmp5 = __msa_ceqi_w(tmp4, 0); tmp4 = (v4i32)__msa_nor_v((v16u8)tmp5, (v16u8)tmp5); tmp5 = __msa_fill_w(1); tmp5 = (v4i32)__msa_and_v((v16u8)tmp5, (v16u8)tmp4); tmp1 += tmp5; PCKEV_H2_SH(tmp1, tmp0, tmp3, tmp2, t0, t1); out0 = __msa_copy_s_d((v2i64)t0, 0); out1 = __msa_copy_s_d((v2i64)t0, 1); out2 = __msa_copy_s_d((v2i64)t1, 0); out3 = __msa_copy_s_d((v2i64)t1, 1); SD4(out0, out1, out2, out3, out, 8); } static void FTransformWHT_MSA(const int16_t* in, int16_t* out) { v8i16 in0 = { 0 }; v8i16 in1 = { 0 }; v8i16 tmp0, tmp1, tmp2, tmp3; v8i16 out0, out1; const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 }; const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 }; const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 }; const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 }; in0 = __msa_insert_h(in0, 0, in[ 0]); in0 = __msa_insert_h(in0, 1, in[ 64]); in0 = __msa_insert_h(in0, 2, in[128]); in0 = __msa_insert_h(in0, 3, in[192]); in0 = __msa_insert_h(in0, 4, in[ 16]); in0 = __msa_insert_h(in0, 5, in[ 80]); in0 = __msa_insert_h(in0, 6, in[144]); in0 = __msa_insert_h(in0, 7, in[208]); in1 = __msa_insert_h(in1, 0, in[ 48]); in1 = __msa_insert_h(in1, 1, in[112]); in1 = __msa_insert_h(in1, 2, in[176]); in1 = __msa_insert_h(in1, 3, in[240]); in1 = __msa_insert_h(in1, 4, in[ 32]); in1 = __msa_insert_h(in1, 5, in[ 96]); in1 = __msa_insert_h(in1, 6, in[160]); in1 = __msa_insert_h(in1, 7, in[224]); ADDSUB2(in0, in1, tmp0, tmp1); VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); ADDSUB2(tmp2, tmp3, tmp0, tmp1); VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1); ADDSUB2(in0, in1, tmp0, tmp1); VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); ADDSUB2(tmp2, tmp3, out0, out1); SRAI_H2_SH(out0, out1, 1); ST_SH2(out0, out1, out, 8); } static int TTransform_MSA(const uint8_t* in, const uint16_t* w) { int sum; uint32_t in0_m, in1_m, in2_m, in3_m; v16i8 src0 = { 0 }; v8i16 in0, in1, tmp0, tmp1, tmp2, tmp3; v4i32 dst0, dst1; const v16i8 zero = { 0 }; const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 }; const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 }; const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 }; const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 }; LW4(in, BPS, in0_m, in1_m, in2_m, in3_m); INSERT_W4_SB(in0_m, in1_m, in2_m, in3_m, src0); ILVRL_B2_SH(zero, src0, tmp0, tmp1); VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1); ADDSUB2(in0, in1, tmp0, tmp1); VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); ADDSUB2(tmp2, tmp3, tmp0, tmp1); VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1); ADDSUB2(in0, in1, tmp0, tmp1); VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); ADDSUB2(tmp2, tmp3, tmp0, tmp1); tmp0 = __msa_add_a_h(tmp0, (v8i16)zero); tmp1 = __msa_add_a_h(tmp1, (v8i16)zero); LD_SH2(w, 8, tmp2, tmp3); DOTP_SH2_SW(tmp0, tmp1, tmp2, tmp3, dst0, dst1); dst0 = dst0 + dst1; sum = HADD_SW_S32(dst0); return sum; } static int Disto4x4_MSA(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { const int sum1 = TTransform_MSA(a, w); const int sum2 = TTransform_MSA(b, w); return abs(sum2 - sum1) >> 5; } static int Disto16x16_MSA(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { int D = 0; int x, y; for (y = 0; y < 16 * BPS; y += 4 * BPS) { for (x = 0; x < 16; x += 4) { D += Disto4x4_MSA(a + x + y, b + x + y, w); } } return D; } //------------------------------------------------------------------------------ // Histogram static void CollectHistogram_MSA(const uint8_t* ref, const uint8_t* pred, int start_block, int end_block, VP8Histogram* const histo) { int j; int distribution[MAX_COEFF_THRESH + 1] = { 0 }; for (j = start_block; j < end_block; ++j) { int16_t out[16]; VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); { int k; v8i16 coeff0, coeff1; const v8i16 zero = { 0 }; const v8i16 max_coeff_thr = __msa_ldi_h(MAX_COEFF_THRESH); LD_SH2(&out[0], 8, coeff0, coeff1); coeff0 = __msa_add_a_h(coeff0, zero); coeff1 = __msa_add_a_h(coeff1, zero); SRAI_H2_SH(coeff0, coeff1, 3); coeff0 = __msa_min_s_h(coeff0, max_coeff_thr); coeff1 = __msa_min_s_h(coeff1, max_coeff_thr); ST_SH2(coeff0, coeff1, &out[0], 8); for (k = 0; k < 16; ++k) { ++distribution[out[k]]; } } } VP8SetHistogramData(distribution, histo); } //------------------------------------------------------------------------------ // Intra predictions // luma 4x4 prediction #define DST(x, y) dst[(x) + (y) * BPS] #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) #define AVG2(a, b) (((a) + (b) + 1) >> 1) static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) { // vertical const v16u8 A1 = { 0 }; const uint64_t val_m = LD(top - 1); const v16u8 A = (v16u8)__msa_insert_d((v2i64)A1, 0, val_m); const v16u8 B = SLDI_UB(A, A, 1); const v16u8 C = SLDI_UB(A, A, 2); const v16u8 AC = __msa_ave_u_b(A, C); const v16u8 B2 = __msa_ave_u_b(B, B); const v16u8 R = __msa_aver_u_b(AC, B2); const uint32_t out = __msa_copy_s_w((v4i32)R, 0); SW4(out, out, out, out, dst, BPS); } static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) { // horizontal const int X = top[-1]; const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int L = top[-5]; WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); } static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) { uint32_t dc = 4; int i; for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; dc >>= 3; dc = dc | (dc << 8) | (dc << 16) | (dc << 24); SW4(dc, dc, dc, dc, dst, BPS); } static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) { const v16u8 A2 = { 0 }; const uint64_t val_m = LD(top - 5); const v16u8 A1 = (v16u8)__msa_insert_d((v2i64)A2, 0, val_m); const v16u8 A = (v16u8)__msa_insert_b((v16i8)A1, 8, top[3]); const v16u8 B = SLDI_UB(A, A, 1); const v16u8 C = SLDI_UB(A, A, 2); const v16u8 AC = __msa_ave_u_b(A, C); const v16u8 B2 = __msa_ave_u_b(B, B); const v16u8 R0 = __msa_aver_u_b(AC, B2); const v16u8 R1 = SLDI_UB(R0, R0, 1); const v16u8 R2 = SLDI_UB(R1, R1, 1); const v16u8 R3 = SLDI_UB(R2, R2, 1); const uint32_t val0 = __msa_copy_s_w((v4i32)R0, 0); const uint32_t val1 = __msa_copy_s_w((v4i32)R1, 0); const uint32_t val2 = __msa_copy_s_w((v4i32)R2, 0); const uint32_t val3 = __msa_copy_s_w((v4i32)R3, 0); SW4(val3, val2, val1, val0, dst, BPS); } static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) { const v16u8 A1 = { 0 }; const uint64_t val_m = LD(top); const v16u8 A = (v16u8)__msa_insert_d((v2i64)A1, 0, val_m); const v16u8 B = SLDI_UB(A, A, 1); const v16u8 C1 = SLDI_UB(A, A, 2); const v16u8 C = (v16u8)__msa_insert_b((v16i8)C1, 6, top[7]); const v16u8 AC = __msa_ave_u_b(A, C); const v16u8 B2 = __msa_ave_u_b(B, B); const v16u8 R0 = __msa_aver_u_b(AC, B2); const v16u8 R1 = SLDI_UB(R0, R0, 1); const v16u8 R2 = SLDI_UB(R1, R1, 1); const v16u8 R3 = SLDI_UB(R2, R2, 1); const uint32_t val0 = __msa_copy_s_w((v4i32)R0, 0); const uint32_t val1 = __msa_copy_s_w((v4i32)R1, 0); const uint32_t val2 = __msa_copy_s_w((v4i32)R2, 0); const uint32_t val3 = __msa_copy_s_w((v4i32)R3, 0); SW4(val0, val1, val2, val3, dst, BPS); } static WEBP_INLINE void VR4(uint8_t* dst, const uint8_t* top) { const int X = top[-1]; const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int A = top[0]; const int B = top[1]; const int C = top[2]; const int D = top[3]; DST(0, 0) = DST(1, 2) = AVG2(X, A); DST(1, 0) = DST(2, 2) = AVG2(A, B); DST(2, 0) = DST(3, 2) = AVG2(B, C); DST(3, 0) = AVG2(C, D); DST(0, 3) = AVG3(K, J, I); DST(0, 2) = AVG3(J, I, X); DST(0, 1) = DST(1, 3) = AVG3(I, X, A); DST(1, 1) = DST(2, 3) = AVG3(X, A, B); DST(2, 1) = DST(3, 3) = AVG3(A, B, C); DST(3, 1) = AVG3(B, C, D); } static WEBP_INLINE void VL4(uint8_t* dst, const uint8_t* top) { const int A = top[0]; const int B = top[1]; const int C = top[2]; const int D = top[3]; const int E = top[4]; const int F = top[5]; const int G = top[6]; const int H = top[7]; DST(0, 0) = AVG2(A, B); DST(1, 0) = DST(0, 2) = AVG2(B, C); DST(2, 0) = DST(1, 2) = AVG2(C, D); DST(3, 0) = DST(2, 2) = AVG2(D, E); DST(0, 1) = AVG3(A, B, C); DST(1, 1) = DST(0, 3) = AVG3(B, C, D); DST(2, 1) = DST(1, 3) = AVG3(C, D, E); DST(3, 1) = DST(2, 3) = AVG3(D, E, F); DST(3, 2) = AVG3(E, F, G); DST(3, 3) = AVG3(F, G, H); } static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) { const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int L = top[-5]; DST(0, 0) = AVG2(I, J); DST(2, 0) = DST(0, 1) = AVG2(J, K); DST(2, 1) = DST(0, 2) = AVG2(K, L); DST(1, 0) = AVG3(I, J, K); DST(3, 0) = DST(1, 1) = AVG3(J, K, L); DST(3, 1) = DST(1, 2) = AVG3(K, L, L); DST(3, 2) = DST(2, 2) = DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; } static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) { const int X = top[-1]; const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int L = top[-5]; const int A = top[0]; const int B = top[1]; const int C = top[2]; DST(0, 0) = DST(2, 1) = AVG2(I, X); DST(0, 1) = DST(2, 2) = AVG2(J, I); DST(0, 2) = DST(2, 3) = AVG2(K, J); DST(0, 3) = AVG2(L, K); DST(3, 0) = AVG3(A, B, C); DST(2, 0) = AVG3(X, A, B); DST(1, 0) = DST(3, 1) = AVG3(I, X, A); DST(1, 1) = DST(3, 2) = AVG3(J, I, X); DST(1, 2) = DST(3, 3) = AVG3(K, J, I); DST(1, 3) = AVG3(L, K, J); } static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) { const v16i8 zero = { 0 }; const v8i16 TL = (v8i16)__msa_fill_h(top[-1]); const v8i16 L0 = (v8i16)__msa_fill_h(top[-2]); const v8i16 L1 = (v8i16)__msa_fill_h(top[-3]); const v8i16 L2 = (v8i16)__msa_fill_h(top[-4]); const v8i16 L3 = (v8i16)__msa_fill_h(top[-5]); const v16u8 T1 = LD_UB(top); const v8i16 T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1); const v8i16 d = T - TL; v8i16 r0, r1, r2, r3; ADD4(d, L0, d, L1, d, L2, d, L3, r0, r1, r2, r3); CLIP_SH4_0_255(r0, r1, r2, r3); PCKEV_ST4x4_UB(r0, r1, r2, r3, dst, BPS); } #undef DST #undef AVG3 #undef AVG2 static void Intra4Preds_MSA(uint8_t* dst, const uint8_t* top) { DC4(I4DC4 + dst, top); TM4(I4TM4 + dst, top); VE4(I4VE4 + dst, top); HE4(I4HE4 + dst, top); RD4(I4RD4 + dst, top); VR4(I4VR4 + dst, top); LD4(I4LD4 + dst, top); VL4(I4VL4 + dst, top); HD4(I4HD4 + dst, top); HU4(I4HU4 + dst, top); } // luma 16x16 prediction #define STORE16x16(out, dst) do { \ ST_UB8(out, out, out, out, out, out, out, out, dst + 0 * BPS, BPS); \ ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS); \ } while (0) static WEBP_INLINE void VerticalPred16x16(uint8_t* dst, const uint8_t* top) { if (top != NULL) { const v16u8 out = LD_UB(top); STORE16x16(out, dst); } else { const v16u8 out = (v16u8)__msa_fill_b(0x7f); STORE16x16(out, dst); } } static WEBP_INLINE void HorizontalPred16x16(uint8_t* dst, const uint8_t* left) { if (left != NULL) { int j; for (j = 0; j < 16; j += 4) { const v16u8 L0 = (v16u8)__msa_fill_b(left[0]); const v16u8 L1 = (v16u8)__msa_fill_b(left[1]); const v16u8 L2 = (v16u8)__msa_fill_b(left[2]); const v16u8 L3 = (v16u8)__msa_fill_b(left[3]); ST_UB4(L0, L1, L2, L3, dst, BPS); dst += 4 * BPS; left += 4; } } else { const v16u8 out = (v16u8)__msa_fill_b(0x81); STORE16x16(out, dst); } } static WEBP_INLINE void TrueMotion16x16(uint8_t* dst, const uint8_t* left, const uint8_t* top) { if (left != NULL) { if (top != NULL) { int j; v8i16 d1, d2; const v16i8 zero = { 0 }; const v8i16 TL = (v8i16)__msa_fill_h(left[-1]); const v16u8 T = LD_UB(top); ILVRL_B2_SH(zero, T, d1, d2); SUB2(d1, TL, d2, TL, d1, d2); for (j = 0; j < 16; j += 4) { v16i8 t0, t1, t2, t3; v8i16 r0, r1, r2, r3, r4, r5, r6, r7; const v8i16 L0 = (v8i16)__msa_fill_h(left[j + 0]); const v8i16 L1 = (v8i16)__msa_fill_h(left[j + 1]); const v8i16 L2 = (v8i16)__msa_fill_h(left[j + 2]); const v8i16 L3 = (v8i16)__msa_fill_h(left[j + 3]); ADD4(d1, L0, d1, L1, d1, L2, d1, L3, r0, r1, r2, r3); ADD4(d2, L0, d2, L1, d2, L2, d2, L3, r4, r5, r6, r7); CLIP_SH4_0_255(r0, r1, r2, r3); CLIP_SH4_0_255(r4, r5, r6, r7); PCKEV_B4_SB(r4, r0, r5, r1, r6, r2, r7, r3, t0, t1, t2, t3); ST_SB4(t0, t1, t2, t3, dst, BPS); dst += 4 * BPS; } } else { HorizontalPred16x16(dst, left); } } else { if (top != NULL) { VerticalPred16x16(dst, top); } else { const v16u8 out = (v16u8)__msa_fill_b(0x81); STORE16x16(out, dst); } } } static WEBP_INLINE void DCMode16x16(uint8_t* dst, const uint8_t* left, const uint8_t* top) { int DC; v16u8 out; if (top != NULL && left != NULL) { const v16u8 rtop = LD_UB(top); const v8u16 dctop = __msa_hadd_u_h(rtop, rtop); const v16u8 rleft = LD_UB(left); const v8u16 dcleft = __msa_hadd_u_h(rleft, rleft); const v8u16 dctemp = dctop + dcleft; DC = HADD_UH_U32(dctemp); DC = (DC + 16) >> 5; } else if (left != NULL) { // left but no top const v16u8 rleft = LD_UB(left); const v8u16 dcleft = __msa_hadd_u_h(rleft, rleft); DC = HADD_UH_U32(dcleft); DC = (DC + DC + 16) >> 5; } else if (top != NULL) { // top but no left const v16u8 rtop = LD_UB(top); const v8u16 dctop = __msa_hadd_u_h(rtop, rtop); DC = HADD_UH_U32(dctop); DC = (DC + DC + 16) >> 5; } else { // no top, no left, nothing. DC = 0x80; } out = (v16u8)__msa_fill_b(DC); STORE16x16(out, dst); } static void Intra16Preds_MSA(uint8_t* dst, const uint8_t* left, const uint8_t* top) { DCMode16x16(I16DC16 + dst, left, top); VerticalPred16x16(I16VE16 + dst, top); HorizontalPred16x16(I16HE16 + dst, left); TrueMotion16x16(I16TM16 + dst, left, top); } // Chroma 8x8 prediction #define CALC_DC8(in, out) do { \ const v8u16 temp0 = __msa_hadd_u_h(in, in); \ const v4u32 temp1 = __msa_hadd_u_w(temp0, temp0); \ const v2i64 temp2 = (v2i64)__msa_hadd_u_d(temp1, temp1); \ const v2i64 temp3 = __msa_splati_d(temp2, 1); \ const v2i64 temp4 = temp3 + temp2; \ const v16i8 temp5 = (v16i8)__msa_srari_d(temp4, 4); \ const v2i64 temp6 = (v2i64)__msa_splati_b(temp5, 0); \ out = __msa_copy_s_d(temp6, 0); \ } while (0) #define STORE8x8(out, dst) do { \ SD4(out, out, out, out, dst + 0 * BPS, BPS); \ SD4(out, out, out, out, dst + 4 * BPS, BPS); \ } while (0) static WEBP_INLINE void VerticalPred8x8(uint8_t* dst, const uint8_t* top) { if (top != NULL) { const uint64_t out = LD(top); STORE8x8(out, dst); } else { const uint64_t out = 0x7f7f7f7f7f7f7f7fULL; STORE8x8(out, dst); } } static WEBP_INLINE void HorizontalPred8x8(uint8_t* dst, const uint8_t* left) { if (left != NULL) { int j; for (j = 0; j < 8; j += 4) { const v16u8 L0 = (v16u8)__msa_fill_b(left[0]); const v16u8 L1 = (v16u8)__msa_fill_b(left[1]); const v16u8 L2 = (v16u8)__msa_fill_b(left[2]); const v16u8 L3 = (v16u8)__msa_fill_b(left[3]); const uint64_t out0 = __msa_copy_s_d((v2i64)L0, 0); const uint64_t out1 = __msa_copy_s_d((v2i64)L1, 0); const uint64_t out2 = __msa_copy_s_d((v2i64)L2, 0); const uint64_t out3 = __msa_copy_s_d((v2i64)L3, 0); SD4(out0, out1, out2, out3, dst, BPS); dst += 4 * BPS; left += 4; } } else { const uint64_t out = 0x8181818181818181ULL; STORE8x8(out, dst); } } static WEBP_INLINE void TrueMotion8x8(uint8_t* dst, const uint8_t* left, const uint8_t* top) { if (left != NULL) { if (top != NULL) { int j; const v8i16 TL = (v8i16)__msa_fill_h(left[-1]); const v16u8 T1 = LD_UB(top); const v16i8 zero = { 0 }; const v8i16 T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1); const v8i16 d = T - TL; for (j = 0; j < 8; j += 4) { uint64_t out0, out1, out2, out3; v16i8 t0, t1; v8i16 r0 = (v8i16)__msa_fill_h(left[j + 0]); v8i16 r1 = (v8i16)__msa_fill_h(left[j + 1]); v8i16 r2 = (v8i16)__msa_fill_h(left[j + 2]); v8i16 r3 = (v8i16)__msa_fill_h(left[j + 3]); ADD4(d, r0, d, r1, d, r2, d, r3, r0, r1, r2, r3); CLIP_SH4_0_255(r0, r1, r2, r3); PCKEV_B2_SB(r1, r0, r3, r2, t0, t1); out0 = __msa_copy_s_d((v2i64)t0, 0); out1 = __msa_copy_s_d((v2i64)t0, 1); out2 = __msa_copy_s_d((v2i64)t1, 0); out3 = __msa_copy_s_d((v2i64)t1, 1); SD4(out0, out1, out2, out3, dst, BPS); dst += 4 * BPS; } } else { HorizontalPred8x8(dst, left); } } else { if (top != NULL) { VerticalPred8x8(dst, top); } else { const uint64_t out = 0x8181818181818181ULL; STORE8x8(out, dst); } } } static WEBP_INLINE void DCMode8x8(uint8_t* dst, const uint8_t* left, const uint8_t* top) { uint64_t out; v16u8 src = { 0 }; if (top != NULL && left != NULL) { const uint64_t left_m = LD(left); const uint64_t top_m = LD(top); INSERT_D2_UB(left_m, top_m, src); CALC_DC8(src, out); } else if (left != NULL) { // left but no top const uint64_t left_m = LD(left); INSERT_D2_UB(left_m, left_m, src); CALC_DC8(src, out); } else if (top != NULL) { // top but no left const uint64_t top_m = LD(top); INSERT_D2_UB(top_m, top_m, src); CALC_DC8(src, out); } else { // no top, no left, nothing. src = (v16u8)__msa_fill_b(0x80); out = __msa_copy_s_d((v2i64)src, 0); } STORE8x8(out, dst); } static void IntraChromaPreds_MSA(uint8_t* dst, const uint8_t* left, const uint8_t* top) { // U block DCMode8x8(C8DC8 + dst, left, top); VerticalPred8x8(C8VE8 + dst, top); HorizontalPred8x8(C8HE8 + dst, left); TrueMotion8x8(C8TM8 + dst, left, top); // V block dst += 8; if (top != NULL) top += 8; if (left != NULL) left += 16; DCMode8x8(C8DC8 + dst, left, top); VerticalPred8x8(C8VE8 + dst, top); HorizontalPred8x8(C8HE8 + dst, left); TrueMotion8x8(C8TM8 + dst, left, top); } //------------------------------------------------------------------------------ // Metric #define PACK_DOTP_UB4_SW(in0, in1, in2, in3, out0, out1, out2, out3) do { \ v16u8 tmp0, tmp1; \ v8i16 tmp2, tmp3; \ ILVRL_B2_UB(in0, in1, tmp0, tmp1); \ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ DOTP_SH2_SW(tmp2, tmp3, tmp2, tmp3, out0, out1); \ ILVRL_B2_UB(in2, in3, tmp0, tmp1); \ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ DOTP_SH2_SW(tmp2, tmp3, tmp2, tmp3, out2, out3); \ } while (0) #define PACK_DPADD_UB4_SW(in0, in1, in2, in3, out0, out1, out2, out3) do { \ v16u8 tmp0, tmp1; \ v8i16 tmp2, tmp3; \ ILVRL_B2_UB(in0, in1, tmp0, tmp1); \ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ DPADD_SH2_SW(tmp2, tmp3, tmp2, tmp3, out0, out1); \ ILVRL_B2_UB(in2, in3, tmp0, tmp1); \ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ DPADD_SH2_SW(tmp2, tmp3, tmp2, tmp3, out2, out3); \ } while (0) static int SSE16x16_MSA(const uint8_t* a, const uint8_t* b) { uint32_t sum; v16u8 src0, src1, src2, src3, src4, src5, src6, src7; v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; v4i32 out0, out1, out2, out3; LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); PACK_DOTP_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3); a += 8 * BPS; b += 8 * BPS; LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); PACK_DPADD_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3); out0 += out1; out2 += out3; out0 += out2; sum = HADD_SW_S32(out0); return sum; } static int SSE16x8_MSA(const uint8_t* a, const uint8_t* b) { uint32_t sum; v16u8 src0, src1, src2, src3, src4, src5, src6, src7; v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; v4i32 out0, out1, out2, out3; LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); PACK_DOTP_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3); PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3); out0 += out1; out2 += out3; out0 += out2; sum = HADD_SW_S32(out0); return sum; } static int SSE8x8_MSA(const uint8_t* a, const uint8_t* b) { uint32_t sum; v16u8 src0, src1, src2, src3, src4, src5, src6, src7; v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; v16u8 t0, t1, t2, t3; v4i32 out0, out1, out2, out3; LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); ILVR_B4_UB(src0, src1, src2, src3, ref0, ref1, ref2, ref3, t0, t1, t2, t3); PACK_DOTP_UB4_SW(t0, t2, t1, t3, out0, out1, out2, out3); ILVR_B4_UB(src4, src5, src6, src7, ref4, ref5, ref6, ref7, t0, t1, t2, t3); PACK_DPADD_UB4_SW(t0, t2, t1, t3, out0, out1, out2, out3); out0 += out1; out2 += out3; out0 += out2; sum = HADD_SW_S32(out0); return sum; } static int SSE4x4_MSA(const uint8_t* a, const uint8_t* b) { uint32_t sum = 0; uint32_t src0, src1, src2, src3, ref0, ref1, ref2, ref3; v16u8 src = { 0 }, ref = { 0 }, tmp0, tmp1; v8i16 diff0, diff1; v4i32 out0, out1; LW4(a, BPS, src0, src1, src2, src3); LW4(b, BPS, ref0, ref1, ref2, ref3); INSERT_W4_UB(src0, src1, src2, src3, src); INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); ILVRL_B2_UB(src, ref, tmp0, tmp1); HSUB_UB2_SH(tmp0, tmp1, diff0, diff1); DOTP_SH2_SW(diff0, diff1, diff0, diff1, out0, out1); out0 += out1; sum = HADD_SW_S32(out0); return sum; } //------------------------------------------------------------------------------ // Quantization static int QuantizeBlock_MSA(int16_t in[16], int16_t out[16], const VP8Matrix* const mtx) { int sum; v8i16 in0, in1, sh0, sh1, out0, out1; v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, sign0, sign1; v4i32 s0, s1, s2, s3, b0, b1, b2, b3, t0, t1, t2, t3; const v8i16 zero = { 0 }; const v8i16 zigzag0 = { 0, 1, 4, 8, 5, 2, 3, 6 }; const v8i16 zigzag1 = { 9, 12, 13, 10, 7, 11, 14, 15 }; const v8i16 maxlevel = __msa_fill_h(MAX_LEVEL); LD_SH2(&in[0], 8, in0, in1); LD_SH2(&mtx->sharpen_[0], 8, sh0, sh1); tmp4 = __msa_add_a_h(in0, zero); tmp5 = __msa_add_a_h(in1, zero); ILVRL_H2_SH(sh0, tmp4, tmp0, tmp1); ILVRL_H2_SH(sh1, tmp5, tmp2, tmp3); HADD_SH4_SW(tmp0, tmp1, tmp2, tmp3, s0, s1, s2, s3); sign0 = (in0 < zero); sign1 = (in1 < zero); // sign LD_SH2(&mtx->iq_[0], 8, tmp0, tmp1); // iq ILVRL_H2_SW(zero, tmp0, t0, t1); ILVRL_H2_SW(zero, tmp1, t2, t3); LD_SW4(&mtx->bias_[0], 4, b0, b1, b2, b3); // bias MUL4(t0, s0, t1, s1, t2, s2, t3, s3, t0, t1, t2, t3); ADD4(b0, t0, b1, t1, b2, t2, b3, t3, b0, b1, b2, b3); SRAI_W4_SW(b0, b1, b2, b3, 17); PCKEV_H2_SH(b1, b0, b3, b2, tmp2, tmp3); tmp0 = (tmp2 > maxlevel); tmp1 = (tmp3 > maxlevel); tmp2 = (v8i16)__msa_bmnz_v((v16u8)tmp2, (v16u8)maxlevel, (v16u8)tmp0); tmp3 = (v8i16)__msa_bmnz_v((v16u8)tmp3, (v16u8)maxlevel, (v16u8)tmp1); SUB2(zero, tmp2, zero, tmp3, tmp0, tmp1); tmp2 = (v8i16)__msa_bmnz_v((v16u8)tmp2, (v16u8)tmp0, (v16u8)sign0); tmp3 = (v8i16)__msa_bmnz_v((v16u8)tmp3, (v16u8)tmp1, (v16u8)sign1); LD_SW4(&mtx->zthresh_[0], 4, t0, t1, t2, t3); // zthresh t0 = (s0 > t0); t1 = (s1 > t1); t2 = (s2 > t2); t3 = (s3 > t3); PCKEV_H2_SH(t1, t0, t3, t2, tmp0, tmp1); tmp4 = (v8i16)__msa_bmnz_v((v16u8)zero, (v16u8)tmp2, (v16u8)tmp0); tmp5 = (v8i16)__msa_bmnz_v((v16u8)zero, (v16u8)tmp3, (v16u8)tmp1); LD_SH2(&mtx->q_[0], 8, tmp0, tmp1); MUL2(tmp4, tmp0, tmp5, tmp1, in0, in1); VSHF_H2_SH(tmp4, tmp5, tmp4, tmp5, zigzag0, zigzag1, out0, out1); ST_SH2(in0, in1, &in[0], 8); ST_SH2(out0, out1, &out[0], 8); out0 = __msa_add_a_h(out0, out1); sum = HADD_SH_S32(out0); return (sum > 0); } static int Quantize2Blocks_MSA(int16_t in[32], int16_t out[32], const VP8Matrix* const mtx) { int nz; nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0; nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1; return nz; } //------------------------------------------------------------------------------ // Entry point extern void VP8EncDspInitMSA(void); WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitMSA(void) { VP8ITransform = ITransform_MSA; VP8FTransform = FTransform_MSA; VP8FTransformWHT = FTransformWHT_MSA; VP8TDisto4x4 = Disto4x4_MSA; VP8TDisto16x16 = Disto16x16_MSA; VP8CollectHistogram = CollectHistogram_MSA; VP8EncPredLuma4 = Intra4Preds_MSA; VP8EncPredLuma16 = Intra16Preds_MSA; VP8EncPredChroma8 = IntraChromaPreds_MSA; VP8SSE16x16 = SSE16x16_MSA; VP8SSE16x8 = SSE16x8_MSA; VP8SSE8x8 = SSE8x8_MSA; VP8SSE4x4 = SSE4x4_MSA; VP8EncQuantizeBlock = QuantizeBlock_MSA; VP8EncQuantize2Blocks = Quantize2Blocks_MSA; VP8EncQuantizeBlockWHT = QuantizeBlock_MSA; } #else // !WEBP_USE_MSA WEBP_DSP_INIT_STUB(VP8EncDspInitMSA) #endif // WEBP_USE_MSA