/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * JS math package. */ #include "jsmath.h" #include "mozilla/FloatingPoint.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Unused.h" #include // for std::max #include #ifdef XP_UNIX # include #endif #include "fdlibm.h" #ifdef XP_WIN # include "jswin.h" #endif #include "jsapi.h" #include "jsatom.h" #include "jscntxt.h" #include "jscompartment.h" #include "jslibmath.h" #include "jstypes.h" #include "jit/InlinableNatives.h" #include "js/Class.h" #include "vm/Time.h" #include "jsobjinlines.h" #if defined(XP_WIN) // #define needed to link in RtlGenRandom(), a.k.a. SystemFunction036. See the // "Community Additions" comment on MSDN here: // https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694.aspx # define SystemFunction036 NTAPI SystemFunction036 # include # undef SystemFunction036 #endif #if defined(ANDROID) || defined(XP_DARWIN) || defined(__DragonFly__) || \ defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) # include # define HAVE_ARC4RANDOM #endif #if defined(__linux__) # include // For GRND_NONBLOCK. # include // For SYS_getrandom. // Older glibc versions don't define SYS_getrandom, so we define it here if // it's not available. See bug 995069. # if defined(__x86_64__) # define GETRANDOM_NR 318 # elif defined(__i386__) # define GETRANDOM_NR 355 # elif defined(__arm__) # define GETRANDOM_NR 384 # endif # if defined(SYS_getrandom) // We have SYS_getrandom. Use it to check GETRANDOM_NR. Only do this if we set // GETRANDOM_NR so tier 3 platforms with recent glibc are not forced to define // it for no good reason. # if defined(GETRANDOM_NR) static_assert(GETRANDOM_NR == SYS_getrandom, "GETRANDOM_NR should match the actual SYS_getrandom value"); # endif # else # define SYS_getrandom GETRANDOM_NR # endif # if defined(GRND_NONBLOCK) static_assert(GRND_NONBLOCK == 1, "If GRND_NONBLOCK is not 1 the #define below is wrong"); # else # define GRND_NONBLOCK 1 # endif #endif // defined(__linux__) using namespace js; using mozilla::Abs; using mozilla::NumberEqualsInt32; using mozilla::NumberIsInt32; using mozilla::ExponentComponent; using mozilla::FloatingPoint; using mozilla::IsFinite; using mozilla::IsInfinite; using mozilla::IsNaN; using mozilla::IsNegative; using mozilla::IsNegativeZero; using mozilla::PositiveInfinity; using mozilla::NegativeInfinity; using JS::ToNumber; using JS::GenericNaN; static const JSConstDoubleSpec math_constants[] = { {"E" , M_E }, {"LOG2E" , M_LOG2E }, {"LOG10E" , M_LOG10E }, {"LN2" , M_LN2 }, {"LN10" , M_LN10 }, {"PI" , M_PI }, {"SQRT2" , M_SQRT2 }, {"SQRT1_2", M_SQRT1_2 }, {0,0} }; MathCache::MathCache() { memset(table, 0, sizeof(table)); /* See comments in lookup(). */ MOZ_ASSERT(IsNegativeZero(-0.0)); MOZ_ASSERT(!IsNegativeZero(+0.0)); MOZ_ASSERT(hash(-0.0, MathCache::Sin) != hash(+0.0, MathCache::Sin)); } size_t MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) { return mallocSizeOf(this); } const Class js::MathClass = { js_Math_str, JSCLASS_HAS_CACHED_PROTO(JSProto_Math) }; bool js::math_abs_handle(JSContext* cx, js::HandleValue v, js::MutableHandleValue r) { double x; if (!ToNumber(cx, v, &x)) return false; double z = Abs(x); r.setNumber(z); return true; } bool js::math_abs(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return math_abs_handle(cx, args[0], args.rval()); } double js::math_acos_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::acos, x, MathCache::Acos); } double js::math_acos_uncached(double x) { return fdlibm::acos(x); } bool js::math_acos(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = math_acos_impl(mathCache, x); args.rval().setDouble(z); return true; } double js::math_asin_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::asin, x, MathCache::Asin); } double js::math_asin_uncached(double x) { return fdlibm::asin(x); } bool js::math_asin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = math_asin_impl(mathCache, x); args.rval().setDouble(z); return true; } double js::math_atan_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::atan, x, MathCache::Atan); } double js::math_atan_uncached(double x) { return fdlibm::atan(x); } bool js::math_atan(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = math_atan_impl(mathCache, x); args.rval().setDouble(z); return true; } double js::ecmaAtan2(double y, double x) { return fdlibm::atan2(y, x); } bool js::math_atan2_handle(JSContext* cx, HandleValue y, HandleValue x, MutableHandleValue res) { double dy; if (!ToNumber(cx, y, &dy)) return false; double dx; if (!ToNumber(cx, x, &dx)) return false; double z = ecmaAtan2(dy, dx); res.setDouble(z); return true; } bool js::math_atan2(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_atan2_handle(cx, args.get(0), args.get(1), args.rval()); } double js::math_ceil_impl(double x) { return fdlibm::ceil(x); } bool js::math_ceil_handle(JSContext* cx, HandleValue v, MutableHandleValue res) { double d; if(!ToNumber(cx, v, &d)) return false; double result = math_ceil_impl(d); res.setNumber(result); return true; } bool js::math_ceil(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return math_ceil_handle(cx, args[0], args.rval()); } bool js::math_clz32(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setInt32(32); return true; } uint32_t n; if (!ToUint32(cx, args[0], &n)) return false; if (n == 0) { args.rval().setInt32(32); return true; } args.rval().setInt32(mozilla::CountLeadingZeroes32(n)); return true; } double js::math_cos_impl(MathCache* cache, double x) { return cache->lookup(cos, x, MathCache::Cos); } double js::math_cos_uncached(double x) { return cos(x); } bool js::math_cos(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = math_cos_impl(mathCache, x); args.rval().setDouble(z); return true; } double js::math_exp_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::exp, x, MathCache::Exp); } double js::math_exp_uncached(double x) { return fdlibm::exp(x); } bool js::math_exp(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = math_exp_impl(mathCache, x); args.rval().setNumber(z); return true; } double js::math_floor_impl(double x) { return fdlibm::floor(x); } bool js::math_floor_handle(JSContext* cx, HandleValue v, MutableHandleValue r) { double d; if (!ToNumber(cx, v, &d)) return false; double z = math_floor_impl(d); r.setNumber(z); return true; } bool js::math_floor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return math_floor_handle(cx, args[0], args.rval()); } bool js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs, MutableHandleValue res) { uint32_t a = 0, b = 0; if (!lhs.isUndefined() && !ToUint32(cx, lhs, &a)) return false; if (!rhs.isUndefined() && !ToUint32(cx, rhs, &b)) return false; uint32_t product = a * b; res.setInt32(product > INT32_MAX ? int32_t(INT32_MIN + (product - INT32_MAX - 1)) : int32_t(product)); return true; } bool js::math_imul(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_imul_handle(cx, args.get(0), args.get(1), args.rval()); } // Implements Math.fround (20.2.2.16) up to step 3 bool js::RoundFloat32(JSContext* cx, HandleValue v, float* out) { double d; bool success = ToNumber(cx, v, &d); *out = static_cast(d); return success; } bool js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res) { float f; if (!RoundFloat32(cx, arg, &f)) return false; res.setDouble(static_cast(f)); return true; } bool js::math_fround(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return RoundFloat32(cx, args[0], args.rval()); } double js::math_log_impl(MathCache* cache, double x) { return cache->lookup(math_log_uncached, x, MathCache::Log); } double js::math_log_uncached(double x) { return fdlibm::log(x); } bool js::math_log_handle(JSContext* cx, HandleValue val, MutableHandleValue res) { double in; if (!ToNumber(cx, val, &in)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double out = math_log_impl(mathCache, in); res.setNumber(out); return true; } bool js::math_log(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return math_log_handle(cx, args[0], args.rval()); } double js::math_max_impl(double x, double y) { // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0 if (x > y || IsNaN(x) || (x == y && IsNegative(y))) return x; return y; } bool js::math_max(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); double maxval = NegativeInfinity(); for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; maxval = math_max_impl(x, maxval); } args.rval().setNumber(maxval); return true; } double js::math_min_impl(double x, double y) { // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0 if (x < y || IsNaN(x) || (x == y && IsNegativeZero(x))) return x; return y; } bool js::math_min(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); double minval = PositiveInfinity(); for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; minval = math_min_impl(x, minval); } args.rval().setNumber(minval); return true; } bool js::minmax_impl(JSContext* cx, bool max, HandleValue a, HandleValue b, MutableHandleValue res) { double x, y; if (!ToNumber(cx, a, &x)) return false; if (!ToNumber(cx, b, &y)) return false; if (max) res.setNumber(math_max_impl(x, y)); else res.setNumber(math_min_impl(x, y)); return true; } double js::powi(double x, int y) { unsigned n = (y < 0) ? -y : y; double m = x; double p = 1; while (true) { if ((n & 1) != 0) p *= m; n >>= 1; if (n == 0) { if (y < 0) { // Unfortunately, we have to be careful when p has reached // infinity in the computation, because sometimes the higher // internal precision in the pow() implementation would have // given us a finite p. This happens very rarely. double result = 1.0 / p; return (result == 0 && IsInfinite(p)) ? pow(x, static_cast(y)) // Avoid pow(double, int). : result; } return p; } m *= m; } } double js::ecmaPow(double x, double y) { /* * Use powi if the exponent is an integer-valued double. We don't have to * check for NaN since a comparison with NaN is always false. */ int32_t yi; if (NumberEqualsInt32(y, &yi)) return powi(x, yi); /* * Because C99 and ECMA specify different behavior for pow(), * we need to wrap the libm call to make it ECMA compliant. */ if (!IsFinite(y) && (x == 1.0 || x == -1.0)) return GenericNaN(); /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ if (y == 0) return 1; /* * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) * when x = -0.0, so we have to guard for this. */ if (IsFinite(x) && x != 0.0) { if (y == 0.5) return sqrt(x); if (y == -0.5) return 1.0 / sqrt(x); } return pow(x, y); } bool js::math_pow_handle(JSContext* cx, HandleValue base, HandleValue power, MutableHandleValue result) { double x; if (!ToNumber(cx, base, &x)) return false; double y; if (!ToNumber(cx, power, &y)) return false; double z = ecmaPow(x, y); result.setNumber(z); return true; } bool js::math_pow(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_pow_handle(cx, args.get(0), args.get(1), args.rval()); } uint64_t js::GenerateRandomSeed() { uint64_t seed = 0; #if defined(XP_WIN) MOZ_ALWAYS_TRUE(RtlGenRandom(&seed, sizeof(seed))); #elif defined(HAVE_ARC4RANDOM) seed = (static_cast(arc4random()) << 32) | arc4random(); #elif defined(XP_UNIX) bool done = false; # if defined(__linux__) // Try the relatively new getrandom syscall first. It's the preferred way // on Linux as /dev/urandom may not work inside chroots and is harder to // sandbox (see bug 995069). int ret = syscall(SYS_getrandom, &seed, sizeof(seed), GRND_NONBLOCK); done = (ret == sizeof(seed)); # endif if (!done) { int fd = open("/dev/urandom", O_RDONLY); if (fd >= 0) { mozilla::Unused << read(fd, static_cast(&seed), sizeof(seed)); close(fd); } } #else # error "Platform needs to implement GenerateRandomSeed()" #endif // Also mix in PRMJ_Now() in case we couldn't read random bits from the OS. uint64_t timestamp = PRMJ_Now(); return seed ^ timestamp ^ (timestamp << 32); } void js::GenerateXorShift128PlusSeed(mozilla::Array& seed) { // XorShift128PlusRNG must be initialized with a non-zero seed. do { seed[0] = GenerateRandomSeed(); seed[1] = GenerateRandomSeed(); } while (seed[0] == 0 && seed[1] == 0); } void JSCompartment::ensureRandomNumberGenerator() { if (randomNumberGenerator.isNothing()) { mozilla::Array seed; GenerateXorShift128PlusSeed(seed); randomNumberGenerator.emplace(seed[0], seed[1]); } } double js::math_random_impl(JSContext* cx) { JSCompartment* comp = cx->compartment(); comp->ensureRandomNumberGenerator(); return comp->randomNumberGenerator.ref().nextDouble(); } bool js::math_random(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); args.rval().setNumber(math_random_impl(cx)); return true; } bool js::math_round_handle(JSContext* cx, HandleValue arg, MutableHandleValue res) { double d; if (!ToNumber(cx, arg, &d)) return false; d = math_round_impl(d); res.setNumber(d); return true; } template T js::GetBiggestNumberLessThan(T x) { MOZ_ASSERT(!IsNegative(x)); MOZ_ASSERT(IsFinite(x)); typedef typename mozilla::FloatingPoint::Bits Bits; Bits bits = mozilla::BitwiseCast(x); MOZ_ASSERT(bits > 0, "will underflow"); return mozilla::BitwiseCast(bits - 1); } template double js::GetBiggestNumberLessThan<>(double x); template float js::GetBiggestNumberLessThan<>(float x); double js::math_round_impl(double x) { int32_t ignored; if (NumberIsInt32(x, &ignored)) return x; /* Some numbers are so big that adding 0.5 would give the wrong number. */ if (ExponentComponent(x) >= int_fast16_t(FloatingPoint::kExponentShift)) return x; double add = (x >= 0) ? GetBiggestNumberLessThan(0.5) : 0.5; return js_copysign(fdlibm::floor(x + add), x); } float js::math_roundf_impl(float x) { int32_t ignored; if (NumberIsInt32(x, &ignored)) return x; /* Some numbers are so big that adding 0.5 would give the wrong number. */ if (ExponentComponent(x) >= int_fast16_t(FloatingPoint::kExponentShift)) return x; float add = (x >= 0) ? GetBiggestNumberLessThan(0.5f) : 0.5f; return js_copysign(fdlibm::floorf(x + add), x); } bool /* ES5 15.8.2.15. */ js::math_round(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return math_round_handle(cx, args[0], args.rval()); } double js::math_sin_impl(MathCache* cache, double x) { return cache->lookup(math_sin_uncached, x, MathCache::Sin); } double js::math_sin_uncached(double x) { #ifdef _WIN64 // Workaround MSVC bug where sin(-0) is +0 instead of -0 on x64 on // CPUs without FMA3 (pre-Haswell). See bug 1076670. if (IsNegativeZero(x)) return -0.0; #endif return sin(x); } bool js::math_sin_handle(JSContext* cx, HandleValue val, MutableHandleValue res) { double in; if (!ToNumber(cx, val, &in)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double out = math_sin_impl(mathCache, in); res.setDouble(out); return true; } bool js::math_sin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return math_sin_handle(cx, args[0], args.rval()); } void js::math_sincos_uncached(double x, double *sin, double *cos) { #if defined(HAVE_SINCOS) sincos(x, sin, cos); #elif defined(HAVE___SINCOS) __sincos(x, sin, cos); #else *sin = js::math_sin_uncached(x); *cos = js::math_cos_uncached(x); #endif } void js::math_sincos_impl(MathCache* mathCache, double x, double *sin, double *cos) { unsigned indexSin; unsigned indexCos; bool hasSin = mathCache->isCached(x, MathCache::Sin, sin, &indexSin); bool hasCos = mathCache->isCached(x, MathCache::Cos, cos, &indexCos); if (!(hasSin || hasCos)) { js::math_sincos_uncached(x, sin, cos); mathCache->store(MathCache::Sin, x, *sin, indexSin); mathCache->store(MathCache::Cos, x, *cos, indexCos); return; } if (!hasSin) *sin = js::math_sin_impl(mathCache, x); if (!hasCos) *cos = js::math_cos_impl(mathCache, x); } bool js::math_sqrt_handle(JSContext* cx, HandleValue number, MutableHandleValue result) { double x; if (!ToNumber(cx, number, &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = mathCache->lookup(sqrt, x, MathCache::Sqrt); result.setDouble(z); return true; } bool js::math_sqrt(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return math_sqrt_handle(cx, args[0], args.rval()); } double js::math_tan_impl(MathCache* cache, double x) { return cache->lookup(tan, x, MathCache::Tan); } double js::math_tan_uncached(double x) { return tan(x); } bool js::math_tan(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = math_tan_impl(mathCache, x); args.rval().setDouble(z); return true; } typedef double (*UnaryMathFunctionType)(MathCache* cache, double); template static bool math_function(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNumber(GenericNaN()); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache* mathCache = cx->caches.getMathCache(cx); if (!mathCache) return false; double z = F(mathCache, x); args.rval().setNumber(z); return true; } double js::math_log10_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::log10, x, MathCache::Log10); } double js::math_log10_uncached(double x) { return fdlibm::log10(x); } bool js::math_log10(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_log2_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::log2, x, MathCache::Log2); } double js::math_log2_uncached(double x) { return fdlibm::log2(x); } bool js::math_log2(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_log1p_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::log1p, x, MathCache::Log1p); } double js::math_log1p_uncached(double x) { return fdlibm::log1p(x); } bool js::math_log1p(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_expm1_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::expm1, x, MathCache::Expm1); } double js::math_expm1_uncached(double x) { return fdlibm::expm1(x); } bool js::math_expm1(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_cosh_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::cosh, x, MathCache::Cosh); } double js::math_cosh_uncached(double x) { return fdlibm::cosh(x); } bool js::math_cosh(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_sinh_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::sinh, x, MathCache::Sinh); } double js::math_sinh_uncached(double x) { return fdlibm::sinh(x); } bool js::math_sinh(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_tanh_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::tanh, x, MathCache::Tanh); } double js::math_tanh_uncached(double x) { return fdlibm::tanh(x); } bool js::math_tanh(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_acosh_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::acosh, x, MathCache::Acosh); } double js::math_acosh_uncached(double x) { return fdlibm::acosh(x); } bool js::math_acosh(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_asinh_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::asinh, x, MathCache::Asinh); } double js::math_asinh_uncached(double x) { return fdlibm::asinh(x); } bool js::math_asinh(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_atanh_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::atanh, x, MathCache::Atanh); } double js::math_atanh_uncached(double x) { return fdlibm::atanh(x); } bool js::math_atanh(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } /* Consistency wrapper for platform deviations in hypot() */ double js::ecmaHypot(double x, double y) { return fdlibm::hypot(x, y); } static inline void hypot_step(double& scale, double& sumsq, double x) { double xabs = mozilla::Abs(x); if (scale < xabs) { sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); scale = xabs; } else if (scale != 0) { sumsq += (xabs / scale) * (xabs / scale); } } double js::hypot4(double x, double y, double z, double w) { /* Check for infinity or NaNs so that we can return immediatelly. * Does not need to be WIN_XP specific as ecmaHypot */ if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y) || mozilla::IsInfinite(z) || mozilla::IsInfinite(w)) return mozilla::PositiveInfinity(); if (mozilla::IsNaN(x) || mozilla::IsNaN(y) || mozilla::IsNaN(z) || mozilla::IsNaN(w)) return GenericNaN(); double scale = 0; double sumsq = 1; hypot_step(scale, sumsq, x); hypot_step(scale, sumsq, y); hypot_step(scale, sumsq, z); hypot_step(scale, sumsq, w); return scale * sqrt(sumsq); } double js::hypot3(double x, double y, double z) { return hypot4(x, y, z, 0.0); } bool js::math_hypot(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_hypot_handle(cx, args, args.rval()); } bool js::math_hypot_handle(JSContext* cx, HandleValueArray args, MutableHandleValue res) { // IonMonkey calls the system hypot function directly if two arguments are // given. Do that here as well to get the same results. if (args.length() == 2) { double x, y; if (!ToNumber(cx, args[0], &x)) return false; if (!ToNumber(cx, args[1], &y)) return false; double result = ecmaHypot(x, y); res.setNumber(result); return true; } bool isInfinite = false; bool isNaN = false; double scale = 0; double sumsq = 1; for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; isInfinite |= mozilla::IsInfinite(x); isNaN |= mozilla::IsNaN(x); if (isInfinite || isNaN) continue; hypot_step(scale, sumsq, x); } double result = isInfinite ? PositiveInfinity() : isNaN ? GenericNaN() : scale * sqrt(sumsq); res.setNumber(result); return true; } double js::math_trunc_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::trunc, x, MathCache::Trunc); } double js::math_trunc_uncached(double x) { return fdlibm::trunc(x); } bool js::math_trunc(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } static double sign(double x) { if (mozilla::IsNaN(x)) return GenericNaN(); return x == 0 ? x : x < 0 ? -1 : 1; } double js::math_sign_impl(MathCache* cache, double x) { return cache->lookup(sign, x, MathCache::Sign); } double js::math_sign_uncached(double x) { return sign(x); } bool js::math_sign(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } double js::math_cbrt_impl(MathCache* cache, double x) { return cache->lookup(fdlibm::cbrt, x, MathCache::Cbrt); } double js::math_cbrt_uncached(double x) { return fdlibm::cbrt(x); } bool js::math_cbrt(JSContext* cx, unsigned argc, Value* vp) { return math_function(cx, argc, vp); } #if JS_HAS_TOSOURCE static bool math_toSource(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); args.rval().setString(cx->names().Math); return true; } #endif static const JSFunctionSpec math_static_methods[] = { #if JS_HAS_TOSOURCE JS_FN(js_toSource_str, math_toSource, 0, 0), #endif JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs), JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos), JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin), JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan), JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2), JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil), JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32), JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos), JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp), JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor), JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul), JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound), JS_INLINABLE_FN("log", math_log, 1, 0, MathLog), JS_INLINABLE_FN("max", math_max, 2, 0, MathMax), JS_INLINABLE_FN("min", math_min, 2, 0, MathMin), JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow), JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom), JS_INLINABLE_FN("round", math_round, 1, 0, MathRound), JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin), JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt), JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan), JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10), JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2), JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P), JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1), JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH), JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH), JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH), JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH), JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH), JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH), JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot), JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc), JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign), JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt), JS_FS_END }; JSObject* js::InitMathClass(JSContext* cx, HandleObject obj) { Handle global = obj.as(); RootedObject proto(cx, GlobalObject::getOrCreateObjectPrototype(cx, global)); if (!proto) return nullptr; RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, SingletonObject)); if (!Math) return nullptr; if (!JS_DefineProperty(cx, obj, js_Math_str, Math, JSPROP_RESOLVING, JS_STUBGETTER, JS_STUBSETTER)) { return nullptr; } if (!JS_DefineFunctions(cx, Math, math_static_methods)) return nullptr; if (!JS_DefineConstDoubles(cx, Math, math_constants)) return nullptr; if (!DefineToStringTag(cx, Math, cx->names().Math)) return nullptr; obj->as().setConstructor(JSProto_Math, ObjectValue(*Math)); return Math; }