diff options
Diffstat (limited to 'third_party/aom/test/visual_metrics.py')
-rwxr-xr-x | third_party/aom/test/visual_metrics.py | 466 |
1 files changed, 466 insertions, 0 deletions
diff --git a/third_party/aom/test/visual_metrics.py b/third_party/aom/test/visual_metrics.py new file mode 100755 index 0000000000..9055feb334 --- /dev/null +++ b/third_party/aom/test/visual_metrics.py @@ -0,0 +1,466 @@ +#!/usr/bin/python +# +# Copyright (c) 2016, Alliance for Open Media. All rights reserved +# +# This source code is subject to the terms of the BSD 2 Clause License and +# the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License +# was not distributed with this source code in the LICENSE file, you can +# obtain it at www.aomedia.org/license/software. If the Alliance for Open +# Media Patent License 1.0 was not distributed with this source code in the +# PATENTS file, you can obtain it at www.aomedia.org/license/patent. +# + +"""Converts video encoding result data from text files to visualization +data source.""" + +__author__ = "jzern@google.com (James Zern)," +__author__ += "jimbankoski@google.com (Jim Bankoski)" + +import fnmatch +import numpy as np +import scipy as sp +import scipy.interpolate +import os +import re +import string +import sys +import math +import warnings + +import gviz_api + +from os.path import basename +from os.path import splitext + +warnings.simplefilter('ignore', np.RankWarning) +warnings.simplefilter('ignore', RuntimeWarning) + +def bdsnr2(metric_set1, metric_set2): + """ + BJONTEGAARD Bjontegaard metric calculation adapted + Bjontegaard's snr metric allows to compute the average % saving in decibels + between two rate-distortion curves [1]. This is an adaptation of that + method that fixes inconsistencies when the curve fit operation goes awry + by replacing the curve fit function with a Piecewise Cubic Hermite + Interpolating Polynomial and then integrating that by evaluating that + function at small intervals using the trapezoid method to calculate + the integral. + + metric_set1 - list of tuples ( bitrate, metric ) for first graph + metric_set2 - list of tuples ( bitrate, metric ) for second graph + """ + + if not metric_set1 or not metric_set2: + return 0.0 + + try: + + # pchip_interlopate requires keys sorted by x axis. x-axis will + # be our metric not the bitrate so sort by metric. + metric_set1.sort() + metric_set2.sort() + + # Pull the log of the rate and clamped psnr from metric_sets. + log_rate1 = [math.log(x[0]) for x in metric_set1] + metric1 = [100.0 if x[1] == float('inf') else x[1] for x in metric_set1] + log_rate2 = [math.log(x[0]) for x in metric_set2] + metric2 = [100.0 if x[1] == float('inf') else x[1] for x in metric_set2] + + # Integration interval. This metric only works on the area that's + # overlapping. Extrapolation of these things is sketchy so we avoid. + min_int = max([min(log_rate1), min(log_rate2)]) + max_int = min([max(log_rate1), max(log_rate2)]) + + # No overlap means no sensible metric possible. + if max_int <= min_int: + return 0.0 + + # Use Piecewise Cubic Hermite Interpolating Polynomial interpolation to + # create 100 new samples points separated by interval. + lin = np.linspace(min_int, max_int, num=100, retstep=True) + interval = lin[1] + samples = lin[0] + v1 = scipy.interpolate.pchip_interpolate(log_rate1, metric1, samples) + v2 = scipy.interpolate.pchip_interpolate(log_rate2, metric2, samples) + + # Calculate the integral using the trapezoid method on the samples. + int_v1 = np.trapz(v1, dx=interval) + int_v2 = np.trapz(v2, dx=interval) + + # Calculate the average improvement. + avg_exp_diff = (int_v2 - int_v1) / (max_int - min_int) + + except (TypeError, ZeroDivisionError, ValueError, np.RankWarning) as e: + return 0 + + return avg_exp_diff + +def bdrate2(metric_set1, metric_set2): + """ + BJONTEGAARD Bjontegaard metric calculation adapted + Bjontegaard's metric allows to compute the average % saving in bitrate + between two rate-distortion curves [1]. This is an adaptation of that + method that fixes inconsistencies when the curve fit operation goes awry + by replacing the curve fit function with a Piecewise Cubic Hermite + Interpolating Polynomial and then integrating that by evaluating that + function at small intervals using the trapezoid method to calculate + the integral. + + metric_set1 - list of tuples ( bitrate, metric ) for first graph + metric_set2 - list of tuples ( bitrate, metric ) for second graph + """ + + if not metric_set1 or not metric_set2: + return 0.0 + + try: + + # pchip_interlopate requires keys sorted by x axis. x-axis will + # be our metric not the bitrate so sort by metric. + metric_set1.sort(key=lambda tup: tup[1]) + metric_set2.sort(key=lambda tup: tup[1]) + + # Pull the log of the rate and clamped psnr from metric_sets. + log_rate1 = [math.log(x[0]) for x in metric_set1] + metric1 = [100.0 if x[1] == float('inf') else x[1] for x in metric_set1] + log_rate2 = [math.log(x[0]) for x in metric_set2] + metric2 = [100.0 if x[1] == float('inf') else x[1] for x in metric_set2] + + # Integration interval. This metric only works on the area that's + # overlapping. Extrapolation of these things is sketchy so we avoid. + min_int = max([min(metric1), min(metric2)]) + max_int = min([max(metric1), max(metric2)]) + + # No overlap means no sensible metric possible. + if max_int <= min_int: + return 0.0 + + # Use Piecewise Cubic Hermite Interpolating Polynomial interpolation to + # create 100 new samples points separated by interval. + lin = np.linspace(min_int, max_int, num=100, retstep=True) + interval = lin[1] + samples = lin[0] + v1 = scipy.interpolate.pchip_interpolate(metric1, log_rate1, samples) + v2 = scipy.interpolate.pchip_interpolate(metric2, log_rate2, samples) + + # Calculate the integral using the trapezoid method on the samples. + int_v1 = np.trapz(v1, dx=interval) + int_v2 = np.trapz(v2, dx=interval) + + # Calculate the average improvement. + avg_exp_diff = (int_v2 - int_v1) / (max_int - min_int) + + except (TypeError, ZeroDivisionError, ValueError, np.RankWarning) as e: + return 0 + + # Convert to a percentage. + avg_diff = (math.exp(avg_exp_diff) - 1) * 100 + + return avg_diff + + + +def FillForm(string_for_substitution, dictionary_of_vars): + """ + This function substitutes all matches of the command string //%% ... %%// + with the variable represented by ... . + """ + return_string = string_for_substitution + for i in re.findall("//%%(.*)%%//", string_for_substitution): + return_string = re.sub("//%%" + i + "%%//", dictionary_of_vars[i], + return_string) + return return_string + + +def HasMetrics(line): + """ + The metrics files produced by aomenc are started with a B for headers. + """ + # If the first char of the first word on the line is a digit + if len(line) == 0: + return False + if len(line.split()) == 0: + return False + if line.split()[0][0:1].isdigit(): + return True + return False + +def GetMetrics(file_name): + metric_file = open(file_name, "r") + return metric_file.readline().split(); + +def ParseMetricFile(file_name, metric_column): + metric_set1 = set([]) + metric_file = open(file_name, "r") + for line in metric_file: + metrics = string.split(line) + if HasMetrics(line): + if metric_column < len(metrics): + try: + tuple = float(metrics[0]), float(metrics[metric_column]) + except: + tuple = float(metrics[0]), 0 + else: + tuple = float(metrics[0]), 0 + metric_set1.add(tuple) + metric_set1_sorted = sorted(metric_set1) + return metric_set1_sorted + + +def FileBetter(file_name_1, file_name_2, metric_column, method): + """ + Compares two data files and determines which is better and by how + much. Also produces a histogram of how much better, by PSNR. + metric_column is the metric. + """ + # Store and parse our two files into lists of unique tuples. + + # Read the two files, parsing out lines starting with bitrate. + metric_set1_sorted = ParseMetricFile(file_name_1, metric_column) + metric_set2_sorted = ParseMetricFile(file_name_2, metric_column) + + + def GraphBetter(metric_set1_sorted, metric_set2_sorted, base_is_set_2): + """ + Search through the sorted metric file for metrics on either side of + the metric from file 1. Since both lists are sorted we really + should not have to search through the entire range, but these + are small files.""" + total_bitrate_difference_ratio = 0.0 + count = 0 + for bitrate, metric in metric_set1_sorted: + if bitrate == 0: + continue + for i in range(len(metric_set2_sorted) - 1): + s2_bitrate_0, s2_metric_0 = metric_set2_sorted[i] + s2_bitrate_1, s2_metric_1 = metric_set2_sorted[i + 1] + # We have a point on either side of our metric range. + if metric > s2_metric_0 and metric <= s2_metric_1: + + # Calculate a slope. + if s2_metric_1 - s2_metric_0 != 0: + metric_slope = ((s2_bitrate_1 - s2_bitrate_0) / + (s2_metric_1 - s2_metric_0)) + else: + metric_slope = 0 + + estimated_s2_bitrate = (s2_bitrate_0 + (metric - s2_metric_0) * + metric_slope) + + if estimated_s2_bitrate == 0: + continue + # Calculate percentage difference as given by base. + if base_is_set_2 == 0: + bitrate_difference_ratio = ((bitrate - estimated_s2_bitrate) / + bitrate) + else: + bitrate_difference_ratio = ((bitrate - estimated_s2_bitrate) / + estimated_s2_bitrate) + + total_bitrate_difference_ratio += bitrate_difference_ratio + count += 1 + break + + # Calculate the average improvement between graphs. + if count != 0: + avg = total_bitrate_difference_ratio / count + + else: + avg = 0.0 + + return avg + + # Be fair to both graphs by testing all the points in each. + if method == 'avg': + avg_improvement = 50 * ( + GraphBetter(metric_set1_sorted, metric_set2_sorted, 1) - + GraphBetter(metric_set2_sorted, metric_set1_sorted, 0)) + elif method == 'dsnr': + avg_improvement = bdsnr2(metric_set1_sorted, metric_set2_sorted) + else: + avg_improvement = bdrate2(metric_set2_sorted, metric_set1_sorted) + + return avg_improvement + + +def HandleFiles(variables): + """ + This script creates html for displaying metric data produced from data + in a video stats file, as created by the AOM project when enable_psnr + is turned on: + + Usage: visual_metrics.py template.html pattern base_dir sub_dir [ sub_dir2 ..] + + The script parses each metrics file [see below] that matches the + statfile_pattern in the baseline directory and looks for the file that + matches that same file in each of the sub_dirs, and compares the resultant + metrics bitrate, avg psnr, glb psnr, and ssim. " + + It provides a table in which each row is a file in the line directory, + and a column for each subdir, with the cells representing how that clip + compares to baseline for that subdir. A graph is given for each which + compares filesize to that metric. If you click on a point in the graph it + zooms in on that point. + + a SAMPLE metrics file: + + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 25.911 38.242 38.104 38.258 38.121 75.790 14103 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 49.982 41.264 41.129 41.255 41.122 83.993 19817 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 74.967 42.911 42.767 42.899 42.756 87.928 17332 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 100.012 43.983 43.838 43.881 43.738 89.695 25389 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 149.980 45.338 45.203 45.184 45.043 91.591 25438 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 199.852 46.225 46.123 46.113 45.999 92.679 28302 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 249.922 46.864 46.773 46.777 46.673 93.334 27244 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 299.998 47.366 47.281 47.317 47.220 93.844 27137 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 349.769 47.746 47.677 47.722 47.648 94.178 32226 + Bitrate AVGPsnr GLBPsnr AVPsnrP GLPsnrP VPXSSIM Time(us) + 399.773 48.032 47.971 48.013 47.946 94.362 36203 + + sample use: + visual_metrics.py template.html "*stt" aom aom_b aom_c > metrics.html + """ + + # The template file is the html file into which we will write the + # data from the stats file, formatted correctly for the gviz_api. + template_file = open(variables[1], "r") + page_template = template_file.read() + template_file.close() + + # This is the path match pattern for finding stats files amongst + # all the other files it could be. eg: *.stt + file_pattern = variables[2] + + # This is the directory with files that we will use to do the comparison + # against. + baseline_dir = variables[3] + snrs = '' + filestable = {} + + filestable['dsnr'] = '' + filestable['drate'] = '' + filestable['avg'] = '' + + # Dirs is directories after the baseline to compare to the base. + dirs = variables[4:len(variables)] + + # Find the metric files in the baseline directory. + dir_list = sorted(fnmatch.filter(os.listdir(baseline_dir), file_pattern)) + + metrics = GetMetrics(baseline_dir + "/" + dir_list[0]) + + metrics_js = 'metrics = ["' + '", "'.join(metrics) + '"];' + + for column in range(1, len(metrics)): + + for metric in ['avg','dsnr','drate']: + description = {"file": ("string", "File")} + + # Go through each directory and add a column header to our description. + countoverall = {} + sumoverall = {} + + for directory in dirs: + description[directory] = ("number", directory) + countoverall[directory] = 0 + sumoverall[directory] = 0 + + # Data holds the data for the visualization, name given comes from + # gviz_api sample code. + data = [] + for filename in dir_list: + row = {'file': splitext(basename(filename))[0] } + baseline_file_name = baseline_dir + "/" + filename + + # Read the metric file from each of the directories in our list. + for directory in dirs: + metric_file_name = directory + "/" + filename + + # If there is a metric file in the current directory, open it + # and calculate its overall difference between it and the baseline + # directory's metric file. + if os.path.isfile(metric_file_name): + overall = FileBetter(baseline_file_name, metric_file_name, + column, metric) + row[directory] = overall + + sumoverall[directory] += overall + countoverall[directory] += 1 + + data.append(row) + + # Add the overall numbers. + row = {"file": "OVERALL" } + for directory in dirs: + row[directory] = sumoverall[directory] / countoverall[directory] + data.append(row) + + # write the tables out + data_table = gviz_api.DataTable(description) + data_table.LoadData(data) + + filestable[metric] = ( filestable[metric] + "filestable_" + metric + + "[" + str(column) + "]=" + + data_table.ToJSon(columns_order=["file"]+dirs) + "\n" ) + + filestable_avg = filestable['avg'] + filestable_dpsnr = filestable['dsnr'] + filestable_drate = filestable['drate'] + + # Now we collect all the data for all the graphs. First the column + # headers which will be Datarate and then each directory. + columns = ("datarate",baseline_dir) + description = {"datarate":("number", "Datarate")} + for directory in dirs: + description[directory] = ("number", directory) + + description[baseline_dir] = ("number", baseline_dir) + + snrs = snrs + "snrs[" + str(column) + "] = [" + + # Now collect the data for the graphs, file by file. + for filename in dir_list: + + data = [] + + # Collect the file in each directory and store all of its metrics + # in the associated gviz metrics table. + all_dirs = dirs + [baseline_dir] + for directory in all_dirs: + + metric_file_name = directory + "/" + filename + if not os.path.isfile(metric_file_name): + continue + + # Read and parse the metrics file storing it to the data we'll + # use for the gviz_api.Datatable. + metrics = ParseMetricFile(metric_file_name, column) + for bitrate, metric in metrics: + data.append({"datarate": bitrate, directory: metric}) + + data_table = gviz_api.DataTable(description) + data_table.LoadData(data) + snrs = snrs + "'" + data_table.ToJSon( + columns_order=tuple(["datarate",baseline_dir]+dirs)) + "'," + + snrs = snrs + "]\n" + + formatters = "" + for i in range(len(dirs)): + formatters = "%s formatter.format(better, %d);" % (formatters, i+1) + + print FillForm(page_template, vars()) + return + +if len(sys.argv) < 3: + print HandleFiles.__doc__ +else: + HandleFiles(sys.argv) |