summaryrefslogtreecommitdiff
path: root/third_party/aom/test/av1_txfm_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/test/av1_txfm_test.cc')
-rw-r--r--third_party/aom/test/av1_txfm_test.cc273
1 files changed, 224 insertions, 49 deletions
diff --git a/third_party/aom/test/av1_txfm_test.cc b/third_party/aom/test/av1_txfm_test.cc
index 4545de1008..d5b0ce3255 100644
--- a/third_party/aom/test/av1_txfm_test.cc
+++ b/third_party/aom/test/av1_txfm_test.cc
@@ -34,7 +34,6 @@ void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) {
*type0 = TYPE_ADST;
*type1 = TYPE_ADST;
break;
-#if CONFIG_EXT_TX
case FLIPADST_DCT:
*type0 = TYPE_ADST;
*type1 = TYPE_DCT;
@@ -55,7 +54,34 @@ void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) {
*type0 = TYPE_ADST;
*type1 = TYPE_ADST;
break;
-#endif // CONFIG_EXT_TX
+ case IDTX:
+ *type0 = TYPE_IDTX;
+ *type1 = TYPE_IDTX;
+ break;
+ case H_DCT:
+ *type0 = TYPE_IDTX;
+ *type1 = TYPE_DCT;
+ break;
+ case V_DCT:
+ *type0 = TYPE_DCT;
+ *type1 = TYPE_IDTX;
+ break;
+ case H_ADST:
+ *type0 = TYPE_IDTX;
+ *type1 = TYPE_ADST;
+ break;
+ case V_ADST:
+ *type0 = TYPE_ADST;
+ *type1 = TYPE_IDTX;
+ break;
+ case H_FLIPADST:
+ *type0 = TYPE_IDTX;
+ *type1 = TYPE_ADST;
+ break;
+ case V_FLIPADST:
+ *type0 = TYPE_ADST;
+ *type1 = TYPE_IDTX;
+ break;
default:
*type0 = TYPE_DCT;
*type1 = TYPE_DCT;
@@ -64,6 +90,7 @@ void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) {
}
}
+double Sqrt2 = pow(2, 0.5);
double invSqrt2 = 1 / pow(2, 0.5);
double dct_matrix(double n, double k, int size) {
@@ -92,7 +119,63 @@ void reference_idct_1d(const double *in, double *out, int size) {
}
}
+// TODO(any): Copied from the old 'fadst4' (same as the new 'av1_fadst4_new'
+// function). Should be replaced by a proper reference function that takes
+// 'double' input & output.
+static void fadst4_new(const tran_low_t *input, tran_low_t *output) {
+ tran_high_t x0, x1, x2, x3;
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
+
+ x0 = input[0];
+ x1 = input[1];
+ x2 = input[2];
+ x3 = input[3];
+
+ if (!(x0 | x1 | x2 | x3)) {
+ output[0] = output[1] = output[2] = output[3] = 0;
+ return;
+ }
+
+ s0 = sinpi_1_9 * x0;
+ s1 = sinpi_4_9 * x0;
+ s2 = sinpi_2_9 * x1;
+ s3 = sinpi_1_9 * x1;
+ s4 = sinpi_3_9 * x2;
+ s5 = sinpi_4_9 * x3;
+ s6 = sinpi_2_9 * x3;
+ s7 = x0 + x1 - x3;
+
+ x0 = s0 + s2 + s5;
+ x1 = sinpi_3_9 * s7;
+ x2 = s1 - s3 + s6;
+ x3 = s4;
+
+ s0 = x0 + x3;
+ s1 = x1;
+ s2 = x2 - x3;
+ s3 = x2 - x0 + x3;
+
+ // 1-D transform scaling factor is sqrt(2).
+ output[0] = (tran_low_t)fdct_round_shift(s0);
+ output[1] = (tran_low_t)fdct_round_shift(s1);
+ output[2] = (tran_low_t)fdct_round_shift(s2);
+ output[3] = (tran_low_t)fdct_round_shift(s3);
+}
+
void reference_adst_1d(const double *in, double *out, int size) {
+ if (size == 4) { // Special case.
+ tran_low_t int_input[4];
+ for (int i = 0; i < 4; ++i) {
+ int_input[i] = static_cast<tran_low_t>(round(in[i]));
+ }
+ tran_low_t int_output[4];
+ fadst4_new(int_input, int_output);
+ for (int i = 0; i < 4; ++i) {
+ out[i] = int_output[i];
+ }
+ return;
+ }
+
for (int k = 0; k < size; ++k) {
out[k] = 0;
for (int n = 0; n < size; ++n) {
@@ -101,96 +184,188 @@ void reference_adst_1d(const double *in, double *out, int size) {
}
}
+void reference_idtx_1d(const double *in, double *out, int size) {
+ double scale = 0;
+ if (size == 4)
+ scale = Sqrt2;
+ else if (size == 8)
+ scale = 2;
+ else if (size == 16)
+ scale = 2 * Sqrt2;
+ else if (size == 32)
+ scale = 4;
+ else if (size == 64)
+ scale = 4 * Sqrt2;
+ for (int k = 0; k < size; ++k) {
+ out[k] = in[k] * scale;
+ }
+}
+
void reference_hybrid_1d(double *in, double *out, int size, int type) {
if (type == TYPE_DCT)
reference_dct_1d(in, out, size);
- else
+ else if (type == TYPE_ADST)
reference_adst_1d(in, out, size);
+ else
+ reference_idtx_1d(in, out, size);
}
-void reference_hybrid_2d(double *in, double *out, int size, int type0,
- int type1) {
- double *tempOut = new double[size * size];
+double get_amplification_factor(TX_TYPE tx_type, TX_SIZE tx_size) {
+ TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
+ av1_get_fwd_txfm_cfg(tx_type, tx_size, &fwd_txfm_flip_cfg);
+ const int tx_width = tx_size_wide[fwd_txfm_flip_cfg.tx_size];
+ const int tx_height = tx_size_high[fwd_txfm_flip_cfg.tx_size];
+ const int8_t *shift = fwd_txfm_flip_cfg.shift;
+ const int amplify_bit = shift[0] + shift[1] + shift[2];
+ double amplify_factor =
+ amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit));
+
+ // For rectangular transforms, we need to multiply by an extra factor.
+ const int rect_type = get_rect_tx_log_ratio(tx_width, tx_height);
+ if (abs(rect_type) == 1) {
+ amplify_factor *= pow(2, 0.5);
+ }
+ return amplify_factor;
+}
- for (int r = 0; r < size; r++) {
- // out ->tempOut
- for (int c = 0; c < size; c++) {
- tempOut[r * size + c] = in[c * size + r];
+void reference_hybrid_2d(double *in, double *out, TX_TYPE tx_type,
+ TX_SIZE tx_size) {
+ // Get transform type and size of each dimension.
+ TYPE_TXFM type0;
+ TYPE_TXFM type1;
+ get_txfm1d_type(tx_type, &type0, &type1);
+ const int tx_width = tx_size_wide[tx_size];
+ const int tx_height = tx_size_high[tx_size];
+
+ double *const temp_in = new double[AOMMAX(tx_width, tx_height)];
+ double *const temp_out = new double[AOMMAX(tx_width, tx_height)];
+ double *const out_interm = new double[tx_width * tx_height];
+ const int stride = tx_width;
+
+ // Transform columns.
+ for (int c = 0; c < tx_width; ++c) {
+ for (int r = 0; r < tx_height; ++r) {
+ temp_in[r] = in[r * stride + c];
+ }
+ reference_hybrid_1d(temp_in, temp_out, tx_height, type0);
+ for (int r = 0; r < tx_height; ++r) {
+ out_interm[r * stride + c] = temp_out[r];
}
}
- // dct each row: in -> out
- for (int r = 0; r < size; r++) {
- reference_hybrid_1d(tempOut + r * size, out + r * size, size, type0);
+ // Transform rows.
+ for (int r = 0; r < tx_height; ++r) {
+ reference_hybrid_1d(out_interm + r * stride, out + r * stride, tx_width,
+ type1);
}
- for (int r = 0; r < size; r++) {
- // out ->tempOut
- for (int c = 0; c < size; c++) {
- tempOut[r * size + c] = out[c * size + r];
+ delete[] temp_in;
+ delete[] temp_out;
+ delete[] out_interm;
+
+ // These transforms use an approximate 2D DCT transform, by only keeping the
+ // top-left quarter of the coefficients, and repacking them in the first
+ // quarter indices.
+ // TODO(urvang): Refactor this code.
+ if (tx_width == 64 && tx_height == 64) { // tx_size == TX_64X64
+ // Zero out top-right 32x32 area.
+ for (int row = 0; row < 32; ++row) {
+ memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
+ }
+ // Zero out the bottom 64x32 area.
+ memset(out + 32 * 64, 0, 32 * 64 * sizeof(*out));
+ // Re-pack non-zero coeffs in the first 32x32 indices.
+ for (int row = 1; row < 32; ++row) {
+ memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
+ }
+ } else if (tx_width == 32 && tx_height == 64) { // tx_size == TX_32X64
+ // Zero out the bottom 32x32 area.
+ memset(out + 32 * 32, 0, 32 * 32 * sizeof(*out));
+ // Note: no repacking needed here.
+ } else if (tx_width == 64 && tx_height == 32) { // tx_size == TX_64X32
+ // Zero out right 32x32 area.
+ for (int row = 0; row < 32; ++row) {
+ memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
+ }
+ // Re-pack non-zero coeffs in the first 32x32 indices.
+ for (int row = 1; row < 32; ++row) {
+ memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
+ }
+ } else if (tx_width == 16 && tx_height == 64) { // tx_size == TX_16X64
+ // Zero out the bottom 16x32 area.
+ memset(out + 16 * 32, 0, 16 * 32 * sizeof(*out));
+ // Note: no repacking needed here.
+ } else if (tx_width == 64 && tx_height == 16) { // tx_size == TX_64X16
+ // Zero out right 32x16 area.
+ for (int row = 0; row < 16; ++row) {
+ memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
+ }
+ // Re-pack non-zero coeffs in the first 32x16 indices.
+ for (int row = 1; row < 16; ++row) {
+ memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
}
}
- for (int r = 0; r < size; r++) {
- reference_hybrid_1d(tempOut + r * size, out + r * size, size, type1);
+ // Apply appropriate scale.
+ const double amplify_factor = get_amplification_factor(tx_type, tx_size);
+ for (int c = 0; c < tx_width; ++c) {
+ for (int r = 0; r < tx_height; ++r) {
+ out[r * stride + c] *= amplify_factor;
+ }
}
- delete[] tempOut;
}
template <typename Type>
-void fliplr(Type *dest, int stride, int length) {
- int i, j;
- for (i = 0; i < length; ++i) {
- for (j = 0; j < length / 2; ++j) {
- const Type tmp = dest[i * stride + j];
- dest[i * stride + j] = dest[i * stride + length - 1 - j];
- dest[i * stride + length - 1 - j] = tmp;
+void fliplr(Type *dest, int width, int height, int stride) {
+ for (int r = 0; r < height; ++r) {
+ for (int c = 0; c < width / 2; ++c) {
+ const Type tmp = dest[r * stride + c];
+ dest[r * stride + c] = dest[r * stride + width - 1 - c];
+ dest[r * stride + width - 1 - c] = tmp;
}
}
}
template <typename Type>
-void flipud(Type *dest, int stride, int length) {
- int i, j;
- for (j = 0; j < length; ++j) {
- for (i = 0; i < length / 2; ++i) {
- const Type tmp = dest[i * stride + j];
- dest[i * stride + j] = dest[(length - 1 - i) * stride + j];
- dest[(length - 1 - i) * stride + j] = tmp;
+void flipud(Type *dest, int width, int height, int stride) {
+ for (int c = 0; c < width; ++c) {
+ for (int r = 0; r < height / 2; ++r) {
+ const Type tmp = dest[r * stride + c];
+ dest[r * stride + c] = dest[(height - 1 - r) * stride + c];
+ dest[(height - 1 - r) * stride + c] = tmp;
}
}
}
template <typename Type>
-void fliplrud(Type *dest, int stride, int length) {
- int i, j;
- for (i = 0; i < length / 2; ++i) {
- for (j = 0; j < length; ++j) {
- const Type tmp = dest[i * stride + j];
- dest[i * stride + j] = dest[(length - 1 - i) * stride + length - 1 - j];
- dest[(length - 1 - i) * stride + length - 1 - j] = tmp;
+void fliplrud(Type *dest, int width, int height, int stride) {
+ for (int r = 0; r < height / 2; ++r) {
+ for (int c = 0; c < width; ++c) {
+ const Type tmp = dest[r * stride + c];
+ dest[r * stride + c] = dest[(height - 1 - r) * stride + width - 1 - c];
+ dest[(height - 1 - r) * stride + width - 1 - c] = tmp;
}
}
}
-template void fliplr<double>(double *dest, int stride, int length);
-template void flipud<double>(double *dest, int stride, int length);
-template void fliplrud<double>(double *dest, int stride, int length);
+template void fliplr<double>(double *dest, int width, int height, int stride);
+template void flipud<double>(double *dest, int width, int height, int stride);
+template void fliplrud<double>(double *dest, int width, int height, int stride);
int bd_arr[BD_NUM] = { 8, 10, 12 };
-int8_t low_range_arr[BD_NUM] = { 16, 32, 32 };
+
+int8_t low_range_arr[BD_NUM] = { 18, 32, 32 };
int8_t high_range_arr[BD_NUM] = { 32, 32, 32 };
void txfm_stage_range_check(const int8_t *stage_range, int stage_num,
- const int8_t *cos_bit, int low_range,
- int high_range) {
+ int8_t cos_bit, int low_range, int high_range) {
for (int i = 0; i < stage_num; ++i) {
EXPECT_LE(stage_range[i], low_range);
+ ASSERT_LE(stage_range[i] + cos_bit, high_range) << "stage = " << i;
}
for (int i = 0; i < stage_num - 1; ++i) {
// make sure there is no overflow while doing half_btf()
- EXPECT_LE(stage_range[i] + cos_bit[i], high_range);
- EXPECT_LE(stage_range[i + 1] + cos_bit[i], high_range);
+ ASSERT_LE(stage_range[i + 1] + cos_bit, high_range) << "stage = " << i;
}
}
} // namespace libaom_test