summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/common/pvq.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/pvq.c')
-rw-r--r--third_party/aom/av1/common/pvq.c1007
1 files changed, 1007 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/pvq.c b/third_party/aom/av1/common/pvq.c
new file mode 100644
index 0000000000..75fe761d74
--- /dev/null
+++ b/third_party/aom/av1/common/pvq.c
@@ -0,0 +1,1007 @@
+/*
+ * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+/* clang-format off */
+
+#ifdef HAVE_CONFIG_H
+# include "config.h"
+#endif
+
+#include "odintrin.h"
+#include "partition.h"
+#include "pvq.h"
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+/* Imported from encode.c in daala */
+/* These are the PVQ equivalent of quantization matrices, except that
+ the values are per-band. */
+#define OD_MASKING_DISABLED 0
+#define OD_MASKING_ENABLED 1
+
+const unsigned char OD_LUMA_QM_Q4[2][OD_QM_SIZE] = {
+/* Flat quantization for PSNR. The DC component isn't 16 because the DC
+ magnitude compensation is done here for inter (Haar DC doesn't need it).
+ Masking disabled: */
+ {
+ 16, 16,
+ 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16
+ },
+/* The non-flat AC coefficients compensate for the non-linear scaling caused
+ by activity masking. The values are currently hand-tuned so that the rate
+ of each band remains roughly constant when enabling activity masking
+ on intra.
+ Masking enabled: */
+ {
+ 16, 16,
+ 16, 18, 28, 32,
+ 16, 14, 20, 20, 28, 32,
+ 16, 11, 14, 14, 17, 17, 22, 28
+ }
+};
+
+const unsigned char OD_CHROMA_QM_Q4[2][OD_QM_SIZE] = {
+/* Chroma quantization is different because of the reduced lapping.
+ FIXME: Use the same matrix as luma for 4:4:4.
+ Masking disabled: */
+ {
+ 16, 16,
+ 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16
+ },
+/* The AC part is flat for chroma because it has no activity masking.
+ Masking enabled: */
+ {
+ 16, 16,
+ 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16
+ }
+};
+
+/* No interpolation, always use od_flat_qm_q4, but use a different scale for
+ each plane.
+ FIXME: Add interpolation and properly tune chroma. */
+const od_qm_entry OD_DEFAULT_QMS[2][2][OD_NPLANES_MAX] = {
+ /* Masking disabled */
+ { { { 4, 256, OD_LUMA_QM_Q4[OD_MASKING_DISABLED] },
+ { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_DISABLED] },
+ { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_DISABLED] } },
+ { { 0, 0, NULL},
+ { 0, 0, NULL},
+ { 0, 0, NULL} } },
+ /* Masking enabled */
+ { { { 4, 256, OD_LUMA_QM_Q4[OD_MASKING_ENABLED] },
+ { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_ENABLED] },
+ { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_ENABLED] } },
+ { { 0, 0, NULL},
+ { 0, 0, NULL},
+ { 0, 0, NULL} } }
+};
+
+/* Constants for the beta parameter, which controls how activity masking is
+ used.
+ beta = 1 / (1 - alpha), so when beta is 1, alpha is 0 and activity
+ masking is disabled. When beta is 1.5, activity masking is used. Note that
+ activity masking is neither used for 4x4 blocks nor for chroma. */
+#define OD_BETA(b) OD_QCONST32(b, OD_BETA_SHIFT)
+static const od_val16 OD_PVQ_BETA4_LUMA[1] = {OD_BETA(1.)};
+static const od_val16 OD_PVQ_BETA8_LUMA[4] = {OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.)};
+static const od_val16 OD_PVQ_BETA16_LUMA[7] = {OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.)};
+static const od_val16 OD_PVQ_BETA32_LUMA[10] = {OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.)};
+
+static const od_val16 OD_PVQ_BETA4_LUMA_MASKING[1] = {OD_BETA(1.)};
+static const od_val16 OD_PVQ_BETA8_LUMA_MASKING[4] = {OD_BETA(1.5),
+ OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5)};
+static const od_val16 OD_PVQ_BETA16_LUMA_MASKING[7] = {OD_BETA(1.5),
+ OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5),
+ OD_BETA(1.5)};
+static const od_val16 OD_PVQ_BETA32_LUMA_MASKING[10] = {OD_BETA(1.5),
+ OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5),
+ OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5)};
+
+static const od_val16 OD_PVQ_BETA4_CHROMA[1] = {OD_BETA(1.)};
+static const od_val16 OD_PVQ_BETA8_CHROMA[4] = {OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.)};
+static const od_val16 OD_PVQ_BETA16_CHROMA[7] = {OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.)};
+static const od_val16 OD_PVQ_BETA32_CHROMA[10] = {OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.),
+ OD_BETA(1.), OD_BETA(1.)};
+
+const od_val16 *const OD_PVQ_BETA[2][OD_NPLANES_MAX][OD_TXSIZES + 1] = {
+ {{OD_PVQ_BETA4_LUMA, OD_PVQ_BETA8_LUMA,
+ OD_PVQ_BETA16_LUMA, OD_PVQ_BETA32_LUMA},
+ {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
+ OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA},
+ {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
+ OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}},
+ {{OD_PVQ_BETA4_LUMA_MASKING, OD_PVQ_BETA8_LUMA_MASKING,
+ OD_PVQ_BETA16_LUMA_MASKING, OD_PVQ_BETA32_LUMA_MASKING},
+ {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
+ OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA},
+ {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
+ OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}}
+};
+
+
+void od_interp_qm(unsigned char *out, int q, const od_qm_entry *entry1,
+ const od_qm_entry *entry2) {
+ int i;
+ if (entry2 == NULL || entry2->qm_q4 == NULL
+ || q < entry1->interp_q << OD_COEFF_SHIFT) {
+ /* Use entry1. */
+ for (i = 0; i < OD_QM_SIZE; i++) {
+ out[i] = OD_MINI(255, entry1->qm_q4[i]*entry1->scale_q8 >> 8);
+ }
+ }
+ else if (entry1 == NULL || entry1->qm_q4 == NULL
+ || q > entry2->interp_q << OD_COEFF_SHIFT) {
+ /* Use entry2. */
+ for (i = 0; i < OD_QM_SIZE; i++) {
+ out[i] = OD_MINI(255, entry2->qm_q4[i]*entry2->scale_q8 >> 8);
+ }
+ }
+ else {
+ /* Interpolate between entry1 and entry2. The interpolation is linear
+ in terms of log(q) vs log(m*scale). Considering that we're ultimately
+ multiplying the result it makes sense, but we haven't tried other
+ interpolation methods. */
+ double x;
+ const unsigned char *m1;
+ const unsigned char *m2;
+ int q1;
+ int q2;
+ m1 = entry1->qm_q4;
+ m2 = entry2->qm_q4;
+ q1 = entry1->interp_q << OD_COEFF_SHIFT;
+ q2 = entry2->interp_q << OD_COEFF_SHIFT;
+ x = (log(q)-log(q1))/(log(q2)-log(q1));
+ for (i = 0; i < OD_QM_SIZE; i++) {
+ out[i] = OD_MINI(255, (int)floor(.5 + (1./256)*exp(
+ x*log(m2[i]*entry2->scale_q8) + (1 - x)*log(m1[i]*entry1->scale_q8))));
+ }
+ }
+}
+
+void od_adapt_pvq_ctx_reset(od_pvq_adapt_ctx *state, int is_keyframe) {
+ od_pvq_codeword_ctx *ctx;
+ int i;
+ int pli;
+ int bs;
+ ctx = &state->pvq_codeword_ctx;
+ OD_CDFS_INIT_DYNAMIC(state->pvq_param_model[0].cdf);
+ OD_CDFS_INIT_DYNAMIC(state->pvq_param_model[1].cdf);
+ OD_CDFS_INIT_DYNAMIC(state->pvq_param_model[2].cdf);
+ for (i = 0; i < 2*OD_TXSIZES; i++) {
+ ctx->pvq_adapt[4*i + OD_ADAPT_K_Q8] = 384;
+ ctx->pvq_adapt[4*i + OD_ADAPT_SUM_EX_Q8] = 256;
+ ctx->pvq_adapt[4*i + OD_ADAPT_COUNT_Q8] = 104;
+ ctx->pvq_adapt[4*i + OD_ADAPT_COUNT_EX_Q8] = 128;
+ }
+ OD_CDFS_INIT_DYNAMIC(ctx->pvq_k1_cdf);
+ for (pli = 0; pli < OD_NPLANES_MAX; pli++) {
+ for (bs = 0; bs < OD_TXSIZES; bs++)
+ for (i = 0; i < PVQ_MAX_PARTITIONS; i++) {
+ state->pvq_exg[pli][bs][i] = 2 << 16;
+ }
+ }
+ for (i = 0; i < OD_TXSIZES*PVQ_MAX_PARTITIONS; i++) {
+ state->pvq_ext[i] = is_keyframe ? 24576 : 2 << 16;
+ }
+ OD_CDFS_INIT_DYNAMIC(state->pvq_gaintheta_cdf);
+ OD_CDFS_INIT_Q15(state->pvq_skip_dir_cdf);
+ OD_CDFS_INIT_DYNAMIC(ctx->pvq_split_cdf);
+}
+
+/* QMs are arranged from smallest to largest blocksizes, first for
+ blocks with decimation=0, followed by blocks with decimation=1.*/
+int od_qm_offset(int bs, int xydec)
+{
+ return xydec*OD_QM_STRIDE + OD_QM_OFFSET(bs);
+}
+
+#if defined(OD_FLOAT_PVQ)
+#define OD_DEFAULT_MAG 1.0
+#else
+#define OD_DEFAULT_MAG OD_QM_SCALE
+#endif
+
+/* Initialize the quantization matrix. */
+// Note: When hybrid transform and corresponding scan order is used by PVQ,
+// we don't need seperate qm and qm_inv for each transform type,
+// because AOM does not do magnitude compensation (i.e. simplay x16 for all coeffs).
+void od_init_qm(int16_t *x, int16_t *x_inv, const int *qm) {
+ int i;
+ int j;
+ int16_t y[OD_TXSIZE_MAX*OD_TXSIZE_MAX];
+ int16_t y_inv[OD_TXSIZE_MAX*OD_TXSIZE_MAX];
+ int16_t *x1;
+ int16_t *x1_inv;
+ int off;
+ int bs;
+ int xydec;
+ for (bs = 0; bs < OD_TXSIZES; bs++) {
+ for (xydec = 0; xydec < 2; xydec++) {
+ off = od_qm_offset(bs, xydec);
+ x1 = x + off;
+ x1_inv = x_inv + off;
+ for (i = 0; i < 4 << bs; i++) {
+ for (j = 0; j < 4 << bs; j++) {
+ /*This will ultimately be clamped to fit in 16 bits.*/
+ od_val32 mag;
+ int16_t ytmp;
+ mag = OD_DEFAULT_MAG;
+ if (i != 0 || j != 0) {
+#if defined(OD_FLOAT_PVQ)
+ mag /= 0.0625*qm[(i << 1 >> bs)*8 + (j << 1 >> bs)];
+#else
+ int qmv;
+ qmv = qm[(i << 1 >> bs)*8 + (j << 1 >> bs)];
+ mag *= 16;
+ mag = (mag + (qmv >> 1))/qmv;
+#endif
+ OD_ASSERT(mag > 0.0);
+ }
+ /*Convert to fit in 16 bits.*/
+#if defined(OD_FLOAT_PVQ)
+ y[i*(4 << bs) + j] = (int16_t)OD_MINI(OD_QM_SCALE_MAX,
+ (int32_t)floor(.5 + mag*OD_QM_SCALE));
+ y_inv[i*(4 << bs) + j] = (int16_t)floor(.5
+ + OD_QM_SCALE*OD_QM_INV_SCALE/(double)y[i*(4 << bs) + j]);
+#else
+ y[i*(4 << bs) + j] = (int16_t)OD_MINI(OD_QM_SCALE_MAX, mag);
+ ytmp = y[i*(4 << bs) + j];
+ y_inv[i*(4 << bs) + j] = (int16_t)((OD_QM_SCALE*OD_QM_INV_SCALE
+ + (ytmp >> 1))/ytmp);
+#endif
+ }
+ }
+ od_raster_to_coding_order_16(x1, 4 << bs, y, 4 << bs);
+ od_raster_to_coding_order_16(x1_inv, 4 << bs, y_inv, 4 << bs);
+ }
+ }
+}
+
+/* Maps each possible size (n) in the split k-tokenizer to a different value.
+ Possible values of n are:
+ 2, 3, 4, 7, 8, 14, 15, 16, 31, 32, 63, 64, 127, 128
+ Since we don't care about the order (even in the bit-stream) the simplest
+ ordering (implemented here) is:
+ 14, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 */
+int od_pvq_size_ctx(int n) {
+ int logn;
+ int odd;
+ logn = OD_ILOG(n - 1);
+ odd = n & 1;
+ return 2*logn - 1 - odd - 7*(n == 14);
+}
+
+/* Maps a length n to a context for the (k=1, n<=16) coder, with a special
+ case when n is the original length (orig_length=1) of the vector (i.e. we
+ haven't split it yet). For orig_length=0, we use the same mapping as
+ od_pvq_size_ctx() up to n=16. When orig_length=1, we map lengths
+ 7, 8, 14, 15 to contexts 8 to 11. */
+int od_pvq_k1_ctx(int n, int orig_length) {
+ if (orig_length) return 8 + 2*(n > 8) + (n & 1);
+ else return od_pvq_size_ctx(n);
+}
+
+/* Indexing for the packed quantization matrices. */
+int od_qm_get_index(int bs, int band) {
+ /* The -band/3 term is due to the fact that we force corresponding horizontal
+ and vertical bands to have the same quantization. */
+ OD_ASSERT(bs >= 0 && bs < OD_TXSIZES);
+ return bs*(bs + 1) + band - band/3;
+}
+
+#if !defined(OD_FLOAT_PVQ)
+/*See celt/mathops.c in Opus and tools/cos_search.c.*/
+static int16_t od_pvq_cos_pi_2(int16_t x)
+{
+ int16_t x2;
+ x2 = OD_MULT16_16_Q15(x, x);
+ return OD_MINI(32767, (1073758164 - x*x + x2*(-7654 + OD_MULT16_16_Q16(x2,
+ 16573 + OD_MULT16_16_Q16(-2529, x2)))) >> 15);
+}
+#endif
+
+/*Approximates cos(x) for -pi < x < pi.
+ Input is in OD_THETA_SCALE.*/
+od_val16 od_pvq_cos(od_val32 x) {
+#if defined(OD_FLOAT_PVQ)
+ return cos(x);
+#else
+ /*Wrap x around by masking, since cos is periodic.*/
+ x = x & 0x0001ffff;
+ if (x > (1 << 16)) {
+ x = (1 << 17) - x;
+ }
+ if (x & 0x00007fff) {
+ if (x < (1 << 15)) {
+ return od_pvq_cos_pi_2((int16_t)x);
+ }
+ else {
+ return -od_pvq_cos_pi_2((int16_t)(65536 - x));
+ }
+ }
+ else {
+ if (x & 0x0000ffff) {
+ return 0;
+ }
+ else if (x & 0x0001ffff) {
+ return -32767;
+ }
+ else {
+ return 32767;
+ }
+ }
+#endif
+}
+
+/*Approximates sin(x) for 0 <= x < pi.
+ Input is in OD_THETA_SCALE.*/
+od_val16 od_pvq_sin(od_val32 x) {
+#if defined(OD_FLOAT_PVQ)
+ return sin(x);
+#else
+ return od_pvq_cos(32768 - x);
+#endif
+}
+
+#if !defined(OD_FLOAT_PVQ)
+/* Computes an upper-bound on the number of bits required to store the L2 norm
+ of a vector (excluding sign). */
+int od_vector_log_mag(const od_coeff *x, int n) {
+ int i;
+ int32_t sum;
+ sum = 0;
+ for (i = 0; i < n; i++) {
+ int16_t tmp;
+ tmp = x[i] >> 8;
+ sum += tmp*(int32_t)tmp;
+ }
+ /* We add one full bit (instead of rounding OD_ILOG() up) for safety because
+ the >> 8 above causes the sum to be slightly underestimated. */
+ return 8 + 1 + OD_ILOG(n + sum)/2;
+}
+#endif
+
+/** Computes Householder reflection that aligns the reference r to the
+ * dimension in r with the greatest absolute value. The reflection
+ * vector is returned in r.
+ *
+ * @param [in,out] r reference vector to be reflected, reflection
+ * also returned in r
+ * @param [in] n number of dimensions in r
+ * @param [in] gr gain of reference vector
+ * @param [out] sign sign of reflection
+ * @return dimension number to which reflection aligns
+ **/
+int od_compute_householder(od_val16 *r, int n, od_val32 gr, int *sign,
+ int shift) {
+ int m;
+ int i;
+ int s;
+ od_val16 maxr;
+ OD_UNUSED(shift);
+ /* Pick component with largest magnitude. Not strictly
+ * necessary, but it helps numerical stability */
+ m = 0;
+ maxr = 0;
+ for (i = 0; i < n; i++) {
+ if (OD_ABS(r[i]) > maxr) {
+ maxr = OD_ABS(r[i]);
+ m = i;
+ }
+ }
+ s = r[m] > 0 ? 1 : -1;
+ /* This turns r into a Householder reflection vector that would reflect
+ * the original r[] to e_m */
+ r[m] += OD_SHR_ROUND(gr*s, shift);
+ *sign = s;
+ return m;
+}
+
+#if !defined(OD_FLOAT_PVQ)
+#define OD_RCP_INSHIFT 15
+#define OD_RCP_OUTSHIFT 14
+static od_val16 od_rcp(od_val16 x)
+{
+ int i;
+ od_val16 n;
+ od_val16 r;
+ i = OD_ILOG(x) - 1;
+ /*n is Q15 with range [0,1).*/
+ n = OD_VSHR_ROUND(x, i - OD_RCP_INSHIFT) - (1 << OD_RCP_INSHIFT);
+ /*Start with a linear approximation:
+ r = 1.8823529411764706-0.9411764705882353*n.
+ The coefficients and the result are Q14 in the range [15420,30840].*/
+ r = 30840 + OD_MULT16_16_Q15(-15420, n);
+ /*Perform two Newton iterations:
+ r -= r*((r*n)-1.Q15)
+ = r*((r*n)+(r-1.Q15)).*/
+ r = r - OD_MULT16_16_Q15(r, (OD_MULT16_16_Q15(r, n) + r - 32768));
+ /*We subtract an extra 1 in the second iteration to avoid overflow; it also
+ neatly compensates for truncation error in the rest of the process.*/
+ r = r - (1 + OD_MULT16_16_Q15(r, OD_MULT16_16_Q15(r, n) + r - 32768));
+ /*r is now the Q15 solution to 2/(n+1), with a maximum relative error
+ of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
+ error of 1.24665/32768.*/
+ return OD_VSHR_ROUND(r, i - OD_RCP_OUTSHIFT);
+}
+#endif
+
+/** Applies Householder reflection from compute_householder(). The
+ * reflection is its own inverse.
+ *
+ * @param [out] out reflected vector
+ * @param [in] x vector to be reflected
+ * @param [in] r reflection
+ * @param [in] n number of dimensions in x,r
+ */
+void od_apply_householder(od_val16 *out, const od_val16 *x, const od_val16 *r,
+ int n) {
+ int i;
+ od_val32 proj;
+ od_val16 proj_1;
+ od_val32 l2r;
+#if !defined(OD_FLOAT_PVQ)
+ od_val16 proj_norm;
+ od_val16 l2r_norm;
+ od_val16 rcp;
+ int proj_shift;
+ int l2r_shift;
+ int outshift;
+#endif
+ /*FIXME: Can we get l2r and/or l2r_shift from an earlier computation?*/
+ l2r = 0;
+ for (i = 0; i < n; i++) {
+ l2r += OD_MULT16_16(r[i], r[i]);
+ }
+ /* Apply Householder reflection */
+ proj = 0;
+ for (i = 0; i < n; i++) {
+ proj += OD_MULT16_16(r[i], x[i]);
+ }
+#if defined(OD_FLOAT_PVQ)
+ proj_1 = proj*2./(1e-100 + l2r);
+ for (i = 0; i < n; i++) {
+ out[i] = x[i] - r[i]*proj_1;
+ }
+#else
+ /*l2r_norm is [0.5, 1.0[ in Q15.*/
+ l2r_shift = (OD_ILOG(l2r) - 1) - 14;
+ l2r_norm = OD_VSHR_ROUND(l2r, l2r_shift);
+ rcp = od_rcp(l2r_norm);
+ proj_shift = (OD_ILOG(abs(proj)) - 1) - 14;
+ /*proj_norm is [0.5, 1.0[ in Q15.*/
+ proj_norm = OD_VSHR_ROUND(proj, proj_shift);
+ proj_1 = OD_MULT16_16_Q15(proj_norm, rcp);
+ /*The proj*2. in the float code becomes -1 in the final outshift.
+ The sign of l2r_shift is positive since we're taking the reciprocal of
+ l2r_norm and this is a right shift.*/
+ outshift = OD_MINI(30, OD_RCP_OUTSHIFT - proj_shift - 1 + l2r_shift);
+ if (outshift >= 0) {
+ for (i = 0; i < n; i++) {
+ int32_t tmp;
+ tmp = OD_MULT16_16(r[i], proj_1);
+ tmp = OD_SHR_ROUND(tmp, outshift);
+ out[i] = x[i] - tmp;
+ }
+ }
+ else {
+ /*FIXME: Can we make this case impossible?
+ Right now, if r[] is all zeros except for 1, 2, or 3 ones, and
+ if x[] is all zeros except for large values at the same position as the
+ ones in r[], then we can end up with a shift of -1.*/
+ for (i = 0; i < n; i++) {
+ int32_t tmp;
+ tmp = OD_MULT16_16(r[i], proj_1);
+ tmp = OD_SHL(tmp, -outshift);
+ out[i] = x[i] - tmp;
+ }
+ }
+#endif
+}
+
+#if !defined(OD_FLOAT_PVQ)
+static od_val16 od_beta_rcp(od_val16 beta){
+ if (beta == OD_BETA(1.))
+ return OD_BETA(1.);
+ else if (beta == OD_BETA(1.5))
+ return OD_BETA(1./1.5);
+ else {
+ od_val16 rcp_beta;
+ /*Shift by 1 less, transposing beta to range [.5, .75] and thus < 32768.*/
+ rcp_beta = od_rcp(beta << (OD_RCP_INSHIFT - 1 - OD_BETA_SHIFT));
+ return OD_SHR_ROUND(rcp_beta, OD_RCP_OUTSHIFT + 1 - OD_BETA_SHIFT);
+ }
+}
+
+#define OD_EXP2_INSHIFT 15
+#define OD_EXP2_FRACSHIFT 15
+#define OD_EXP2_OUTSHIFT 15
+static const int32_t OD_EXP2_C[5] = {32768, 22709, 7913, 1704, 443};
+/*Output is [1.0, 2.0) in Q(OD_EXP2_FRACSHIFT).
+ It does not include the integer offset, which is added in od_exp2 after the
+ final shift).*/
+static int32_t od_exp2_frac(int32_t x)
+{
+ return OD_MULT16_16_Q15(x, (OD_EXP2_C[1] + OD_MULT16_16_Q15(x,
+ (OD_EXP2_C[2] + OD_MULT16_16_Q15(x, (OD_EXP2_C[3]
+ + OD_MULT16_16_Q15(x, OD_EXP2_C[4])))))));
+}
+
+/** Base-2 exponential approximation (2^x) with Q15 input and output.*/
+static int32_t od_exp2(int32_t x)
+{
+ int integer;
+ int32_t frac;
+ integer = x >> OD_EXP2_INSHIFT;
+ if (integer > 14)
+ return 0x7f000000;
+ else if (integer < -15)
+ return 0;
+ frac = od_exp2_frac(x - OD_SHL(integer, OD_EXP2_INSHIFT));
+ return OD_VSHR_ROUND(OD_EXP2_C[0] + frac, -integer) + 1;
+}
+
+#define OD_LOG2_INSHIFT 15
+#define OD_LOG2_OUTSHIFT 15
+#define OD_LOG2_INSCALE_1 (1./(1 << OD_LOG2_INSHIFT))
+#define OD_LOG2_OUTSCALE (1 << OD_LOG2_OUTSHIFT)
+static int16_t od_log2(int16_t x)
+{
+ return x + OD_MULT16_16_Q15(x, (14482 + OD_MULT16_16_Q15(x, (-23234
+ + OD_MULT16_16_Q15(x, (13643 + OD_MULT16_16_Q15(x, (-6403
+ + OD_MULT16_16_Q15(x, 1515)))))))));
+}
+
+static int32_t od_pow(int32_t x, od_val16 beta)
+{
+ int16_t t;
+ int xshift;
+ int log2_x;
+ od_val32 logr;
+ /*FIXME: this conditional is to avoid doing log2(0).*/
+ if (x == 0)
+ return 0;
+ log2_x = (OD_ILOG(x) - 1);
+ xshift = log2_x - OD_LOG2_INSHIFT;
+ /*t should be in range [0.0, 1.0[ in Q(OD_LOG2_INSHIFT).*/
+ t = OD_VSHR(x, xshift) - (1 << OD_LOG2_INSHIFT);
+ /*log2(g/OD_COMPAND_SCALE) = log2(x) - OD_COMPAND_SHIFT in
+ Q(OD_LOG2_OUTSHIFT).*/
+ logr = od_log2(t) + (log2_x - OD_COMPAND_SHIFT)*OD_LOG2_OUTSCALE;
+ logr = OD_MULT16_32_QBETA(beta, logr);
+ return od_exp2(logr);
+}
+#endif
+
+/** Gain companding: raises gain to the power 1/beta for activity masking.
+ *
+ * @param [in] g real (uncompanded) gain
+ * @param [in] q0 uncompanded quality parameter
+ * @param [in] beta activity masking beta param (exponent)
+ * @return g^(1/beta)
+ */
+static od_val32 od_gain_compand(od_val32 g, int q0, od_val16 beta) {
+#if defined(OD_FLOAT_PVQ)
+ if (beta == 1) return OD_CGAIN_SCALE*g/(double)q0;
+ else {
+ return OD_CGAIN_SCALE*OD_COMPAND_SCALE*pow(g*OD_COMPAND_SCALE_1,
+ 1./beta)/(double)q0;
+ }
+#else
+ if (beta == OD_BETA(1)) return (OD_CGAIN_SCALE*g + (q0 >> 1))/q0;
+ else {
+ int32_t expr;
+ expr = od_pow(g, od_beta_rcp(beta));
+ expr <<= OD_CGAIN_SHIFT + OD_COMPAND_SHIFT - OD_EXP2_OUTSHIFT;
+ return (expr + (q0 >> 1))/q0;
+ }
+#endif
+}
+
+#if !defined(OD_FLOAT_PVQ)
+#define OD_SQRT_INSHIFT 16
+#define OD_SQRT_OUTSHIFT 15
+static int16_t od_rsqrt_norm(int16_t x);
+
+static int16_t od_sqrt_norm(int32_t x)
+{
+ OD_ASSERT(x < 65536);
+ return OD_MINI(OD_SHR_ROUND(x*od_rsqrt_norm(x), OD_SQRT_OUTSHIFT), 32767);
+}
+
+static int16_t od_sqrt(int32_t x, int *sqrt_shift)
+{
+ int k;
+ int s;
+ int32_t t;
+ if (x == 0) {
+ *sqrt_shift = 0;
+ return 0;
+ }
+ OD_ASSERT(x < (1 << 30));
+ k = ((OD_ILOG(x) - 1) >> 1);
+ /*t is x in the range [0.25, 1) in QINSHIFT, or x*2^(-s).
+ Shift by log2(x) - log2(0.25*(1 << INSHIFT)) to ensure 0.25 lower bound.*/
+ s = 2*k - (OD_SQRT_INSHIFT - 2);
+ t = OD_VSHR(x, s);
+ /*We want to express od_sqrt() in terms of od_sqrt_norm(), which is
+ defined as (2^OUTSHIFT)*sqrt(t*(2^-INSHIFT)) with t=x*(2^-s).
+ This simplifies to 2^(OUTSHIFT-(INSHIFT/2)-(s/2))*sqrt(x), so the caller
+ needs to shift right by OUTSHIFT - INSHIFT/2 - s/2.*/
+ *sqrt_shift = OD_SQRT_OUTSHIFT - ((s + OD_SQRT_INSHIFT) >> 1);
+ return od_sqrt_norm(t);
+}
+#endif
+
+/** Gain expanding: raises gain to the power beta for activity masking.
+ *
+ * @param [in] cg companded gain
+ * @param [in] q0 uncompanded quality parameter
+ * @param [in] beta activity masking beta param (exponent)
+ * @return g^beta
+ */
+od_val32 od_gain_expand(od_val32 cg0, int q0, od_val16 beta) {
+ if (beta == OD_BETA(1)) {
+ /*The multiply fits into 28 bits because the expanded gain has a range from
+ 0 to 2^20.*/
+ return OD_SHR_ROUND(cg0*q0, OD_CGAIN_SHIFT);
+ }
+ else if (beta == OD_BETA(1.5)) {
+#if defined(OD_FLOAT_PVQ)
+ double cg;
+ cg = cg0*OD_CGAIN_SCALE_1;
+ cg *= q0*OD_COMPAND_SCALE_1;
+ return OD_COMPAND_SCALE*cg*sqrt(cg);
+#else
+ int32_t irt;
+ int64_t tmp;
+ int sqrt_inshift;
+ int sqrt_outshift;
+ /*cg0 is in Q(OD_CGAIN_SHIFT) and we need to divide it by
+ 2^OD_COMPAND_SHIFT.*/
+ irt = od_sqrt(cg0*q0, &sqrt_outshift);
+ sqrt_inshift = (OD_CGAIN_SHIFT + OD_COMPAND_SHIFT) >> 1;
+ /*tmp is in Q(OD_CGAIN_SHIFT + OD_COMPAND_SHIFT).*/
+ tmp = cg0*q0*(int64_t)irt;
+ /*Expanded gain must be in Q(OD_COMPAND_SHIFT), thus OD_COMPAND_SHIFT is
+ not included here.*/
+ return OD_MAXI(1,
+ OD_VSHR_ROUND(tmp, OD_CGAIN_SHIFT + sqrt_outshift + sqrt_inshift));
+#endif
+ }
+ else {
+#if defined(OD_FLOAT_PVQ)
+ /*Expanded gain must be in Q(OD_COMPAND_SHIFT), hence the multiply by
+ OD_COMPAND_SCALE.*/
+ double cg;
+ cg = cg0*OD_CGAIN_SCALE_1;
+ return OD_COMPAND_SCALE*pow(cg*q0*OD_COMPAND_SCALE_1, beta);
+#else
+ int32_t expr;
+ int32_t cg;
+ cg = OD_SHR_ROUND(cg0*q0, OD_CGAIN_SHIFT);
+ expr = od_pow(cg, beta);
+ /*Expanded gain must be in Q(OD_COMPAND_SHIFT), hence the subtraction by
+ OD_COMPAND_SHIFT.*/
+ return OD_MAXI(1, OD_SHR_ROUND(expr, OD_EXP2_OUTSHIFT - OD_COMPAND_SHIFT));
+#endif
+ }
+}
+
+/** Computes the raw and quantized/companded gain of a given input
+ * vector
+ *
+ * @param [in] x vector of input data
+ * @param [in] n number of elements in vector x
+ * @param [in] q0 quantizer
+ * @param [out] g raw gain
+ * @param [in] beta activity masking beta param
+ * @param [in] bshift shift to be applied to raw gain
+ * @return quantized/companded gain
+ */
+od_val32 od_pvq_compute_gain(const od_val16 *x, int n, int q0, od_val32 *g,
+ od_val16 beta, int bshift) {
+ int i;
+ od_val32 acc;
+#if !defined(OD_FLOAT_PVQ)
+ od_val32 irt;
+ int sqrt_shift;
+#else
+ OD_UNUSED(bshift);
+#endif
+ acc = 0;
+ for (i = 0; i < n; i++) {
+ acc += x[i]*(od_val32)x[i];
+ }
+#if defined(OD_FLOAT_PVQ)
+ *g = sqrt(acc);
+#else
+ irt = od_sqrt(acc, &sqrt_shift);
+ *g = OD_VSHR_ROUND(irt, sqrt_shift - bshift);
+#endif
+ /* Normalize gain by quantization step size and apply companding
+ (if ACTIVITY != 1). */
+ return od_gain_compand(*g, q0, beta);
+}
+
+/** Compute theta quantization range from quantized/companded gain
+ *
+ * @param [in] qcg quantized companded gain value
+ * @param [in] beta activity masking beta param
+ * @return max theta value
+ */
+int od_pvq_compute_max_theta(od_val32 qcg, od_val16 beta){
+ /* Set angular resolution (in ra) to match the encoded gain */
+#if defined(OD_FLOAT_PVQ)
+ int ts = (int)floor(.5 + qcg*OD_CGAIN_SCALE_1*M_PI/(2*beta));
+#else
+ int ts = OD_SHR_ROUND(qcg*OD_MULT16_16_QBETA(OD_QCONST32(M_PI/2,
+ OD_CGAIN_SHIFT), od_beta_rcp(beta)), OD_CGAIN_SHIFT*2);
+#endif
+ /* Special case for low gains -- will need to be tuned anyway */
+ if (qcg < OD_QCONST32(1.4, OD_CGAIN_SHIFT)) ts = 1;
+ return ts;
+}
+
+/** Decode quantized theta value from coded value
+ *
+ * @param [in] t quantized companded gain value
+ * @param [in] max_theta maximum theta value
+ * @return decoded theta value
+ */
+od_val32 od_pvq_compute_theta(int t, int max_theta) {
+ if (max_theta != 0) {
+#if defined(OD_FLOAT_PVQ)
+ return OD_MINI(t, max_theta - 1)*.5*M_PI/max_theta;
+#else
+ return (OD_MAX_THETA_SCALE*OD_MINI(t, max_theta - 1)
+ + (max_theta >> 1))/max_theta;
+#endif
+ }
+ else return 0;
+}
+
+#define OD_SQRT_TBL_SHIFT (10)
+
+#define OD_ITHETA_SHIFT 15
+/** Compute the number of pulses used for PVQ encoding a vector from
+ * available metrics (encode and decode side)
+ *
+ * @param [in] qcg quantized companded gain value
+ * @param [in] itheta quantized PVQ error angle theta
+ * @param [in] noref indicates present or lack of reference
+ * (prediction)
+ * @param [in] n number of elements to be coded
+ * @param [in] beta activity masking beta param
+ * @return number of pulses to use for coding
+ */
+int od_pvq_compute_k(od_val32 qcg, int itheta, int noref, int n,
+ od_val16 beta) {
+#if !defined(OD_FLOAT_PVQ)
+ /*Lookup table for sqrt(n+3/2) and sqrt(n+2/2) in Q10.
+ Real max values are 32792 and 32784, but clamped to stay within 16 bits.
+ Update with tools/gen_sqrt_tbl if needed.*/
+ static const od_val16 od_sqrt_table[2][13] = {
+ {0, 0, 0, 0, 2290, 2985, 4222, 0, 8256, 0, 16416, 0, 32767},
+ {0, 0, 0, 0, 2401, 3072, 4284, 0, 8287, 0, 16432, 0, 32767}};
+#endif
+ if (noref) {
+ if (qcg == 0) return 0;
+ if (n == 15 && qcg == OD_CGAIN_SCALE && beta > OD_BETA(1.25)) {
+ return 1;
+ }
+ else {
+#if defined(OD_FLOAT_PVQ)
+ return OD_MAXI(1, (int)floor(.5 + (qcg*OD_CGAIN_SCALE_1 - .2)*
+ sqrt((n + 3)/2)/beta));
+#else
+ od_val16 rt;
+ OD_ASSERT(OD_ILOG(n + 1) < 13);
+ rt = od_sqrt_table[1][OD_ILOG(n + 1)];
+ /*FIXME: get rid of 64-bit mul.*/
+ return OD_MAXI(1, OD_SHR_ROUND((int64_t)((qcg
+ - (int64_t)OD_QCONST32(.2, OD_CGAIN_SHIFT))*
+ OD_MULT16_16_QBETA(od_beta_rcp(beta), rt)), OD_CGAIN_SHIFT
+ + OD_SQRT_TBL_SHIFT));
+#endif
+ }
+ }
+ else {
+ if (itheta == 0) return 0;
+ /* Sets K according to gain and theta, based on the high-rate
+ PVQ distortion curves (see PVQ document). Low-rate will have to be
+ perceptually tuned anyway. We subtract 0.2 from the radius as an
+ approximation for the fact that the coefficients aren't identically
+ distributed within a band so at low gain the number of dimensions that
+ are likely to have a pulse is less than n. */
+#if defined(OD_FLOAT_PVQ)
+ return OD_MAXI(1, (int)floor(.5 + (itheta - .2)*sqrt((n + 2)/2)));
+#else
+ od_val16 rt;
+ OD_ASSERT(OD_ILOG(n + 1) < 13);
+ rt = od_sqrt_table[0][OD_ILOG(n + 1)];
+ /*FIXME: get rid of 64-bit mul.*/
+ return OD_MAXI(1, OD_VSHR_ROUND(((OD_SHL(itheta, OD_ITHETA_SHIFT)
+ - OD_QCONST32(.2, OD_ITHETA_SHIFT)))*(int64_t)rt,
+ OD_SQRT_TBL_SHIFT + OD_ITHETA_SHIFT));
+#endif
+ }
+}
+
+#if !defined(OD_FLOAT_PVQ)
+#define OD_RSQRT_INSHIFT 16
+#define OD_RSQRT_OUTSHIFT 14
+/** Reciprocal sqrt approximation where the input is in the range [0.25,1) in
+ Q16 and the output is in the range (1.0, 2.0] in Q14).
+ Error is always within +/1 of round(1/sqrt(t))*/
+static int16_t od_rsqrt_norm(int16_t t)
+{
+ int16_t n;
+ int32_t r;
+ int32_t r2;
+ int32_t ry;
+ int32_t y;
+ int32_t ret;
+ /* Range of n is [-16384,32767] ([-0.5,1) in Q15).*/
+ n = t - 32768;
+ OD_ASSERT(n >= -16384);
+ /*Get a rough initial guess for the root.
+ The optimal minimax quadratic approximation (using relative error) is
+ r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
+ Coefficients here, and the final result r, are Q14.*/
+ r = (23565 + OD_MULT16_16_Q15(n, (-13481 + OD_MULT16_16_Q15(n, 6711))));
+ /*We want y = t*r*r-1 in Q15, but t is 32-bit Q16 and r is Q14.
+ We can compute the result from n and r using Q15 multiplies with some
+ adjustment, carefully done to avoid overflow.*/
+ r2 = r*r;
+ y = (((r2 >> 15)*n + r2) >> 12) - 131077;
+ ry = r*y;
+ /*Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
+ This yields the Q14 reciprocal square root of the Q16 t, with a maximum
+ relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a peak
+ absolute error of 2.26591/16384.*/
+ ret = r + ((((ry >> 16)*(3*y) >> 3) - ry) >> 18);
+ OD_ASSERT(ret >= 16384 && ret < 32768);
+ return (int16_t)ret;
+}
+
+static int16_t od_rsqrt(int32_t x, int *rsqrt_shift)
+{
+ int k;
+ int s;
+ int16_t t;
+ k = (OD_ILOG(x) - 1) >> 1;
+ /*t is x in the range [0.25, 1) in QINSHIFT, or x*2^(-s).
+ Shift by log2(x) - log2(0.25*(1 << INSHIFT)) to ensure 0.25 lower bound.*/
+ s = 2*k - (OD_RSQRT_INSHIFT - 2);
+ t = OD_VSHR(x, s);
+ /*We want to express od_rsqrt() in terms of od_rsqrt_norm(), which is
+ defined as (2^OUTSHIFT)/sqrt(t*(2^-INSHIFT)) with t=x*(2^-s).
+ This simplifies to 2^(OUTSHIFT+(INSHIFT/2)+(s/2))/sqrt(x), so the caller
+ needs to shift right by OUTSHIFT + INSHIFT/2 + s/2.*/
+ *rsqrt_shift = OD_RSQRT_OUTSHIFT + ((s + OD_RSQRT_INSHIFT) >> 1);
+ return od_rsqrt_norm(t);
+}
+#endif
+
+/** Synthesizes one parition of coefficient values from a PVQ-encoded
+ * vector. This 'partial' version is called by the encode loop where
+ * the Householder reflection has already been computed and there's no
+ * need to recompute it.
+ *
+ * @param [out] xcoeff output coefficient partition (x in math doc)
+ * @param [in] ypulse PVQ-encoded values (y in the math doc); in
+ * the noref case, this vector has n entries,
+ * in the reference case it contains n-1 entries
+ * (the m-th entry is not included)
+ * @param [in] r reference vector (prediction)
+ * @param [in] n number of elements in this partition
+ * @param [in] noref indicates presence or lack of prediction
+ * @param [in] g decoded quantized vector gain
+ * @param [in] theta decoded theta (prediction error)
+ * @param [in] m alignment dimension of Householder reflection
+ * @param [in] s sign of Householder reflection
+ * @param [in] qm_inv inverse of the QM with magnitude compensation
+ */
+void od_pvq_synthesis_partial(od_coeff *xcoeff, const od_coeff *ypulse,
+ const od_val16 *r16, int n, int noref, od_val32 g, od_val32 theta, int m, int s,
+ const int16_t *qm_inv) {
+ int i;
+ int yy;
+ od_val32 scale;
+ int nn;
+#if !defined(OD_FLOAT_PVQ)
+ int gshift;
+ int qshift;
+#endif
+ OD_ASSERT(g != 0);
+ nn = n-(!noref); /* when noref==0, vector in is sized n-1 */
+ yy = 0;
+ for (i = 0; i < nn; i++)
+ yy += ypulse[i]*(int32_t)ypulse[i];
+#if !defined(OD_FLOAT_PVQ)
+ /* Shift required for the magnitude of the pre-qm synthesis to be guaranteed
+ to fit in 16 bits. In practice, the range will be 8192-16384 after scaling
+ most of the time. */
+ gshift = OD_MAXI(0, OD_ILOG(g) - 14);
+#endif
+ /*scale is g/sqrt(yy) in Q(16-gshift) so that x[]*scale has a norm that fits
+ in 16 bits.*/
+ if (yy == 0) scale = 0;
+#if defined(OD_FLOAT_PVQ)
+ else {
+ scale = g/sqrt(yy);
+ }
+#else
+ else {
+ int rsqrt_shift;
+ int16_t rsqrt;
+ /*FIXME: should be < int64_t*/
+ int64_t tmp;
+ rsqrt = od_rsqrt(yy, &rsqrt_shift);
+ tmp = rsqrt*(int64_t)g;
+ scale = OD_VSHR_ROUND(tmp, rsqrt_shift + gshift - 16);
+ }
+ /* Shift to apply after multiplying by the inverse QM, taking into account
+ gshift. */
+ qshift = OD_QM_INV_SHIFT - gshift;
+#endif
+ if (noref) {
+ for (i = 0; i < n; i++) {
+ od_val32 x;
+ /* This multiply doesn't round, so it introduces some bias.
+ It would be nice (but not critical) to fix this. */
+ x = OD_MULT16_32_Q16(ypulse[i], scale);
+#if defined(OD_FLOAT_PVQ)
+ xcoeff[i] = (od_coeff)floor(.5
+ + x*(qm_inv[i]*OD_QM_INV_SCALE_1));
+#else
+ xcoeff[i] = OD_SHR_ROUND(x*qm_inv[i], qshift);
+#endif
+ }
+ }
+ else{
+ od_val16 x[MAXN];
+ scale = OD_ROUND32(scale*OD_TRIG_SCALE_1*od_pvq_sin(theta));
+ /* The following multiply doesn't round, but it's probably OK since
+ the Householder reflection is likely to undo most of the resulting
+ bias. */
+ for (i = 0; i < m; i++)
+ x[i] = OD_MULT16_32_Q16(ypulse[i], scale);
+ x[m] = OD_ROUND16(-s*(OD_SHR_ROUND(g, gshift))*OD_TRIG_SCALE_1*
+ od_pvq_cos(theta));
+ for (i = m; i < nn; i++)
+ x[i+1] = OD_MULT16_32_Q16(ypulse[i], scale);
+ od_apply_householder(x, x, r16, n);
+ for (i = 0; i < n; i++) {
+#if defined(OD_FLOAT_PVQ)
+ xcoeff[i] = (od_coeff)floor(.5 + (x[i]*(qm_inv[i]*OD_QM_INV_SCALE_1)));
+#else
+ xcoeff[i] = OD_SHR_ROUND(x[i]*qm_inv[i], qshift);
+#endif
+ }
+ }
+}