summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/common/onyxc_int.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/onyxc_int.h')
-rw-r--r--third_party/aom/av1/common/onyxc_int.h1027
1 files changed, 1027 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/onyxc_int.h b/third_party/aom/av1/common/onyxc_int.h
new file mode 100644
index 0000000000..7980bde394
--- /dev/null
+++ b/third_party/aom/av1/common/onyxc_int.h
@@ -0,0 +1,1027 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AV1_COMMON_ONYXC_INT_H_
+#define AV1_COMMON_ONYXC_INT_H_
+
+#include "./aom_config.h"
+#include "./av1_rtcd.h"
+#include "aom/internal/aom_codec_internal.h"
+#include "aom_util/aom_thread.h"
+#if CONFIG_ANS
+#include "aom_dsp/ans.h"
+#endif
+#include "av1/common/alloccommon.h"
+#include "av1/common/av1_loopfilter.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/entropymv.h"
+#include "av1/common/frame_buffers.h"
+#include "av1/common/mv.h"
+#include "av1/common/quant_common.h"
+#if CONFIG_LOOP_RESTORATION
+#include "av1/common/restoration.h"
+#endif // CONFIG_LOOP_RESTORATION
+#include "av1/common/tile_common.h"
+#include "av1/common/odintrin.h"
+#if CONFIG_PVQ
+#include "av1/common/pvq.h"
+#endif
+#if CONFIG_CFL
+#include "av1/common/cfl.h"
+#endif
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define CDEF_MAX_STRENGTHS 16
+
+#define REF_FRAMES_LOG2 3
+#define REF_FRAMES (1 << REF_FRAMES_LOG2)
+
+// 4 scratch frames for the new frames to support a maximum of 4 cores decoding
+// in parallel, 3 for scaled references on the encoder.
+// TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
+// of framebuffers.
+// TODO(jkoleszar): These 3 extra references could probably come from the
+// normal reference pool.
+#define FRAME_BUFFERS (REF_FRAMES + 7)
+
+#if CONFIG_REFERENCE_BUFFER
+/* Constant values while waiting for the sequence header */
+#define FRAME_ID_NUMBERS_PRESENT_FLAG 1
+#define FRAME_ID_LENGTH_MINUS7 8 // Allows frame id up to 2^15-1
+#define DELTA_FRAME_ID_LENGTH_MINUS2 12 // Allows frame id deltas up to 2^14-1
+#endif
+
+#if CONFIG_EXT_REFS
+#define FRAME_CONTEXTS_LOG2 3
+#else
+#define FRAME_CONTEXTS_LOG2 2
+#endif
+
+#define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
+
+#define NUM_PING_PONG_BUFFERS 2
+
+typedef enum {
+ SINGLE_REFERENCE = 0,
+ COMPOUND_REFERENCE = 1,
+ REFERENCE_MODE_SELECT = 2,
+ REFERENCE_MODES = 3,
+} REFERENCE_MODE;
+
+typedef enum {
+ RESET_FRAME_CONTEXT_NONE = 0,
+ RESET_FRAME_CONTEXT_CURRENT = 1,
+ RESET_FRAME_CONTEXT_ALL = 2,
+} RESET_FRAME_CONTEXT_MODE;
+
+typedef enum {
+ /**
+ * Update frame context to values resulting from forward probability
+ * updates signaled in the frame header
+ */
+ REFRESH_FRAME_CONTEXT_FORWARD,
+ /**
+ * Update frame context to values resulting from backward probability
+ * updates based on entropy/counts in the decoded frame
+ */
+ REFRESH_FRAME_CONTEXT_BACKWARD,
+} REFRESH_FRAME_CONTEXT_MODE;
+
+typedef struct {
+ int_mv mv[2];
+#if CONFIG_REF_MV
+ int_mv pred_mv[2];
+#endif
+ MV_REFERENCE_FRAME ref_frame[2];
+} MV_REF;
+
+typedef struct {
+ int ref_count;
+ MV_REF *mvs;
+ int mi_rows;
+ int mi_cols;
+#if CONFIG_GLOBAL_MOTION
+ WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME];
+#endif // CONFIG_GLOBAL_MOTION
+ aom_codec_frame_buffer_t raw_frame_buffer;
+ YV12_BUFFER_CONFIG buf;
+#if CONFIG_TEMPMV_SIGNALING
+ uint8_t intra_only;
+#endif
+ // The Following variables will only be used in frame parallel decode.
+
+ // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
+ // that no FrameWorker owns, or is decoding, this buffer.
+ AVxWorker *frame_worker_owner;
+
+ // row and col indicate which position frame has been decoded to in real
+ // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
+ // when the frame is fully decoded.
+ int row;
+ int col;
+} RefCntBuffer;
+
+typedef struct BufferPool {
+// Protect BufferPool from being accessed by several FrameWorkers at
+// the same time during frame parallel decode.
+// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t pool_mutex;
+#endif
+
+ // Private data associated with the frame buffer callbacks.
+ void *cb_priv;
+
+ aom_get_frame_buffer_cb_fn_t get_fb_cb;
+ aom_release_frame_buffer_cb_fn_t release_fb_cb;
+
+ RefCntBuffer frame_bufs[FRAME_BUFFERS];
+
+ // Frame buffers allocated internally by the codec.
+ InternalFrameBufferList int_frame_buffers;
+} BufferPool;
+
+typedef struct AV1Common {
+ struct aom_internal_error_info error;
+ aom_color_space_t color_space;
+ int color_range;
+ int width;
+ int height;
+ int render_width;
+ int render_height;
+ int last_width;
+ int last_height;
+
+#if CONFIG_FRAME_SUPERRES
+ // The numerator of the superres scale, the denominator is fixed
+ uint8_t superres_scale_numerator;
+ int superres_width, superres_height;
+#endif // CONFIG_FRAME_SUPERRES
+
+ // TODO(jkoleszar): this implies chroma ss right now, but could vary per
+ // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
+ // support additional planes.
+ int subsampling_x;
+ int subsampling_y;
+
+#if CONFIG_HIGHBITDEPTH
+ // Marks if we need to use 16bit frame buffers (1: yes, 0: no).
+ int use_highbitdepth;
+#endif
+ YV12_BUFFER_CONFIG *frame_to_show;
+ RefCntBuffer *prev_frame;
+
+ // TODO(hkuang): Combine this with cur_buf in macroblockd.
+ RefCntBuffer *cur_frame;
+
+ int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
+
+ // Prepare ref_frame_map for the next frame.
+ // Only used in frame parallel decode.
+ int next_ref_frame_map[REF_FRAMES];
+
+ // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
+ // roll new_fb_idx into it.
+
+ // Each Inter frame can reference INTER_REFS_PER_FRAME buffers
+ RefBuffer frame_refs[INTER_REFS_PER_FRAME];
+
+ int new_fb_idx;
+
+ FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
+ FRAME_TYPE frame_type;
+
+ int show_frame;
+ int last_show_frame;
+ int show_existing_frame;
+#if CONFIG_EXT_REFS
+ // Flag for a frame used as a reference - not written to the bitstream
+ int is_reference_frame;
+#endif // CONFIG_EXT_REFS
+
+ // Flag signaling that the frame is encoded using only INTRA modes.
+ uint8_t intra_only;
+ uint8_t last_intra_only;
+
+ int allow_high_precision_mv;
+
+#if CONFIG_PALETTE
+ int allow_screen_content_tools;
+#endif // CONFIG_PALETTE
+
+ // Flag signaling which frame contexts should be reset to default values.
+ RESET_FRAME_CONTEXT_MODE reset_frame_context;
+
+ // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
+ // MODE_INFO (8-pixel) units.
+ int MBs;
+ int mb_rows, mi_rows;
+ int mb_cols, mi_cols;
+ int mi_stride;
+
+ /* profile settings */
+ TX_MODE tx_mode;
+
+ int base_qindex;
+ int y_dc_delta_q;
+ int uv_dc_delta_q;
+ int uv_ac_delta_q;
+ int16_t y_dequant[MAX_SEGMENTS][2];
+ int16_t uv_dequant[MAX_SEGMENTS][2];
+
+#if CONFIG_AOM_QM
+ // Global quant matrix tables
+ qm_val_t *giqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
+ qm_val_t *gqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
+
+ // Local quant matrix tables for each frame
+ qm_val_t *y_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
+ qm_val_t *uv_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
+ // Encoder
+ qm_val_t *y_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
+ qm_val_t *uv_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
+
+ int using_qmatrix;
+ int min_qmlevel;
+ int max_qmlevel;
+#endif
+#if CONFIG_NEW_QUANT
+ dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
+ dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
+#endif
+
+ /* We allocate a MODE_INFO struct for each macroblock, together with
+ an extra row on top and column on the left to simplify prediction. */
+ int mi_alloc_size;
+ MODE_INFO *mip; /* Base of allocated array */
+ MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
+
+ // TODO(agrange): Move prev_mi into encoder structure.
+ // prev_mip and prev_mi will only be allocated in encoder.
+ MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
+ MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
+
+ // Separate mi functions between encoder and decoder.
+ int (*alloc_mi)(struct AV1Common *cm, int mi_size);
+ void (*free_mi)(struct AV1Common *cm);
+ void (*setup_mi)(struct AV1Common *cm);
+
+ // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
+ // area will be NULL.
+ MODE_INFO **mi_grid_base;
+ MODE_INFO **mi_grid_visible;
+ MODE_INFO **prev_mi_grid_base;
+ MODE_INFO **prev_mi_grid_visible;
+
+ // Whether to use previous frame's motion vectors for prediction.
+ int use_prev_frame_mvs;
+
+ // Persistent mb segment id map used in prediction.
+ int seg_map_idx;
+ int prev_seg_map_idx;
+
+ uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
+ uint8_t *last_frame_seg_map;
+ uint8_t *current_frame_seg_map;
+ int seg_map_alloc_size;
+
+ InterpFilter interp_filter;
+
+ loop_filter_info_n lf_info;
+#if CONFIG_LOOP_RESTORATION
+ RestorationInfo rst_info[MAX_MB_PLANE];
+ RestorationInternal rst_internal;
+#endif // CONFIG_LOOP_RESTORATION
+
+ // Flag signaling how frame contexts should be updated at the end of
+ // a frame decode
+ REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
+
+ int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */
+
+ struct loopfilter lf;
+ struct segmentation seg;
+
+ int frame_parallel_decode; // frame-based threading.
+
+#if CONFIG_EXT_TX
+ int reduced_tx_set_used;
+#endif // CONFIG_EXT_TX
+
+// Context probabilities for reference frame prediction
+#if CONFIG_EXT_REFS
+ MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
+ MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
+#else
+ MV_REFERENCE_FRAME comp_fixed_ref;
+ MV_REFERENCE_FRAME comp_var_ref[COMP_REFS];
+#endif // CONFIG_EXT_REFS
+ REFERENCE_MODE reference_mode;
+
+ FRAME_CONTEXT *fc; /* this frame entropy */
+ FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
+ unsigned int frame_context_idx; /* Context to use/update */
+ FRAME_COUNTS counts;
+
+#if CONFIG_SUBFRAME_PROB_UPDATE
+ // The initial probabilities for a frame, before any subframe backward update,
+ // and after forward update.
+ av1_coeff_probs_model starting_coef_probs[TX_SIZES][PLANE_TYPES];
+ // Number of subframe backward updates already done
+ uint8_t coef_probs_update_idx;
+ // Signal if the backward update is subframe or end-of-frame
+ uint8_t partial_prob_update;
+ // Frame level flag to turn on/off subframe backward update
+ uint8_t do_subframe_update;
+#endif // CONFIG_SUBFRAME_PROB_UPDATE
+
+ unsigned int current_video_frame;
+ BITSTREAM_PROFILE profile;
+
+ // AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
+ aom_bit_depth_t bit_depth;
+ aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
+
+ int error_resilient_mode;
+
+#if !CONFIG_EXT_TILE
+ int log2_tile_cols, log2_tile_rows;
+#endif // !CONFIG_EXT_TILE
+ int tile_cols, tile_rows;
+ int tile_width, tile_height; // In MI units
+#if CONFIG_EXT_TILE
+ unsigned int tile_encoding_mode;
+#endif // CONFIG_EXT_TILE
+
+#if CONFIG_DEPENDENT_HORZTILES
+ int dependent_horz_tiles;
+#if CONFIG_TILE_GROUPS
+ int tile_group_start_row[MAX_TILE_ROWS][MAX_TILE_COLS];
+ int tile_group_start_col[MAX_TILE_ROWS][MAX_TILE_COLS];
+#endif
+#endif
+#if CONFIG_LOOPFILTERING_ACROSS_TILES
+ int loop_filter_across_tiles_enabled;
+#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
+
+ int byte_alignment;
+ int skip_loop_filter;
+
+ // Private data associated with the frame buffer callbacks.
+ void *cb_priv;
+ aom_get_frame_buffer_cb_fn_t get_fb_cb;
+ aom_release_frame_buffer_cb_fn_t release_fb_cb;
+
+ // Handles memory for the codec.
+ InternalFrameBufferList int_frame_buffers;
+
+ // External BufferPool passed from outside.
+ BufferPool *buffer_pool;
+
+ PARTITION_CONTEXT *above_seg_context;
+ ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
+#if CONFIG_VAR_TX
+ TXFM_CONTEXT *above_txfm_context;
+ TXFM_CONTEXT left_txfm_context[MAX_MIB_SIZE];
+#endif
+ int above_context_alloc_cols;
+
+ // scratch memory for intraonly/keyframe forward updates from default tables
+ // - this is intentionally not placed in FRAME_CONTEXT since it's reset upon
+ // each keyframe and not used afterwards
+ aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1];
+#if CONFIG_GLOBAL_MOTION
+ WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME];
+#endif
+
+ BLOCK_SIZE sb_size; // Size of the superblock used for this frame
+ int mib_size; // Size of the superblock in units of MI blocks
+ int mib_size_log2; // Log 2 of above.
+#if CONFIG_CDEF
+ int cdef_dering_damping;
+ int cdef_clpf_damping;
+ int nb_cdef_strengths;
+ int cdef_strengths[CDEF_MAX_STRENGTHS];
+ int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
+ int cdef_bits;
+#endif
+
+#if CONFIG_DELTA_Q
+ int delta_q_present_flag;
+ // Resolution of delta quant
+ int delta_q_res;
+#if CONFIG_EXT_DELTA_Q
+ int delta_lf_present_flag;
+ // Resolution of delta lf level
+ int delta_lf_res;
+#endif
+#endif
+#if CONFIG_TILE_GROUPS
+ int num_tg;
+#endif
+#if CONFIG_REFERENCE_BUFFER
+ int current_frame_id;
+ int ref_frame_id[REF_FRAMES];
+ int valid_for_referencing[REF_FRAMES];
+ int refresh_mask;
+ int invalid_delta_frame_id_minus1;
+#endif
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ int ans_window_size_log2;
+#endif
+} AV1_COMMON;
+
+#if CONFIG_REFERENCE_BUFFER
+/* Initial version of sequence header structure */
+typedef struct SequenceHeader {
+ int frame_id_numbers_present_flag;
+ int frame_id_length_minus7;
+ int delta_frame_id_length_minus2;
+} SequenceHeader;
+#endif
+
+// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
+// frame reference count.
+static void lock_buffer_pool(BufferPool *const pool) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(&pool->pool_mutex);
+#else
+ (void)pool;
+#endif
+}
+
+static void unlock_buffer_pool(BufferPool *const pool) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(&pool->pool_mutex);
+#else
+ (void)pool;
+#endif
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
+ if (index < 0 || index >= REF_FRAMES) return NULL;
+ if (cm->ref_frame_map[index] < 0) return NULL;
+ assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
+ return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(
+ const AV1_COMMON *const cm) {
+ return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
+}
+
+static INLINE int get_free_fb(AV1_COMMON *cm) {
+ RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
+ int i;
+
+ lock_buffer_pool(cm->buffer_pool);
+ for (i = 0; i < FRAME_BUFFERS; ++i)
+ if (frame_bufs[i].ref_count == 0) break;
+
+ if (i != FRAME_BUFFERS) {
+ frame_bufs[i].ref_count = 1;
+ } else {
+ // Reset i to be INVALID_IDX to indicate no free buffer found.
+ i = INVALID_IDX;
+ }
+
+ unlock_buffer_pool(cm->buffer_pool);
+ return i;
+}
+
+static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
+ const int ref_index = *idx;
+
+ if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
+ bufs[ref_index].ref_count--;
+
+ *idx = new_idx;
+
+ bufs[new_idx].ref_count++;
+}
+
+static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) {
+ return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2);
+}
+
+static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) {
+ return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2);
+}
+
+static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
+ return cm->frame_type == KEY_FRAME || cm->intra_only;
+}
+
+static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
+#if CONFIG_PVQ
+ tran_low_t *pvq_ref_coeff,
+#endif
+#if CONFIG_CFL
+ CFL_CTX *cfl,
+#endif
+ tran_low_t *dqcoeff) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ xd->plane[i].dqcoeff = dqcoeff;
+#if CONFIG_PVQ
+ xd->plane[i].pvq_ref_coeff = pvq_ref_coeff;
+#endif
+#if CONFIG_CFL
+ xd->cfl = cfl;
+ cfl_init(cfl, cm, xd->plane[AOM_PLANE_U].subsampling_x,
+ xd->plane[AOM_PLANE_U].subsampling_y);
+#endif
+ xd->above_context[i] = cm->above_context[i];
+ if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
+ memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
+#if CONFIG_AOM_QM
+ memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
+#endif
+
+#if CONFIG_NEW_QUANT
+ memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq,
+ sizeof(cm->y_dequant_nuq));
+#endif
+ } else {
+ memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
+#if CONFIG_AOM_QM
+ memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix,
+ sizeof(cm->uv_iqmatrix));
+#endif
+#if CONFIG_NEW_QUANT
+ memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq,
+ sizeof(cm->uv_dequant_nuq));
+#endif
+ }
+ xd->fc = cm->fc;
+ }
+ xd->above_seg_context = cm->above_seg_context;
+#if CONFIG_VAR_TX
+ xd->above_txfm_context = cm->above_txfm_context;
+#endif
+ xd->mi_stride = cm->mi_stride;
+ xd->error_info = &cm->error;
+}
+
+static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ struct macroblockd_plane *const pd = &xd->plane[i];
+#if CONFIG_CHROMA_SUB8X8
+ if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
+ // Offset the buffer pointer
+ if (pd->subsampling_y && (mi_row & 0x01)) mi_row -= 1;
+ if (pd->subsampling_x && (mi_col & 0x01)) mi_col -= 1;
+ }
+#endif
+ int above_idx = mi_col * 2;
+ int left_idx = (mi_row * 2) & MAX_MIB_MASK_2;
+ pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
+ pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
+ }
+}
+
+static INLINE int calc_mi_size(int len) {
+ // len is in mi units.
+ return len + MAX_MIB_SIZE;
+}
+
+static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
+ xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
+
+ xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
+ xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
+
+#if !CONFIG_CHROMA_2X2
+ xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
+ xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
+#endif
+ }
+}
+
+static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
+ int mi_row, int bh, int mi_col, int bw,
+#if CONFIG_DEPENDENT_HORZTILES
+ int dependent_horz_tile_flag,
+#endif // CONFIG_DEPENDENT_HORZTILES
+ int mi_rows, int mi_cols) {
+ xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
+ xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
+ xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
+ xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
+
+#if CONFIG_DEPENDENT_HORZTILES
+ if (dependent_horz_tile_flag) {
+#if CONFIG_TILE_GROUPS
+ xd->up_available = (mi_row > tile->mi_row_start) || !tile->tg_horz_boundary;
+#else
+ xd->up_available = (mi_row > 0);
+#endif // CONFIG_TILE_GROUPS
+ } else {
+#endif // CONFIG_DEPENDENT_HORZTILES
+ // Are edges available for intra prediction?
+ xd->up_available = (mi_row > tile->mi_row_start);
+#if CONFIG_DEPENDENT_HORZTILES
+ }
+#endif // CONFIG_DEPENDENT_HORZTILES
+
+ xd->left_available = (mi_col > tile->mi_col_start);
+#if CONFIG_CHROMA_SUB8X8
+ xd->chroma_up_available = xd->up_available;
+ xd->chroma_left_available = xd->left_available;
+ if (xd->plane[1].subsampling_x && bw < mi_size_wide[BLOCK_8X8])
+ xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
+ if (xd->plane[1].subsampling_y && bh < mi_size_high[BLOCK_8X8])
+ xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
+#endif
+ if (xd->up_available) {
+ xd->above_mi = xd->mi[-xd->mi_stride];
+ // above_mi may be NULL in encoder's first pass.
+ xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
+ } else {
+ xd->above_mi = NULL;
+ xd->above_mbmi = NULL;
+ }
+
+ if (xd->left_available) {
+ xd->left_mi = xd->mi[-1];
+ // left_mi may be NULL in encoder's first pass.
+ xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
+ } else {
+ xd->left_mi = NULL;
+ xd->left_mbmi = NULL;
+ }
+
+ xd->n8_h = bh;
+ xd->n8_w = bw;
+#if CONFIG_REF_MV
+ xd->is_sec_rect = 0;
+ if (xd->n8_w < xd->n8_h)
+ if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1;
+
+ if (xd->n8_w > xd->n8_h)
+ if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1;
+#endif // CONFIG_REF_MV
+}
+
+static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm,
+ const MODE_INFO *mi,
+ const MODE_INFO *above_mi,
+ const MODE_INFO *left_mi,
+ int block) {
+ const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
+ const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
+ return cm->kf_y_prob[above][left];
+}
+
+#if CONFIG_EC_MULTISYMBOL
+static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
+ const MODE_INFO *mi,
+ const MODE_INFO *above_mi,
+ const MODE_INFO *left_mi,
+ int block) {
+ const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
+ const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
+ return tile_ctx->kf_y_cdf[above][left];
+}
+#endif
+
+static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE subsize,
+ BLOCK_SIZE bsize) {
+ PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
+ PARTITION_CONTEXT *const left_ctx =
+ xd->left_seg_context + (mi_row & MAX_MIB_MASK);
+
+#if CONFIG_EXT_PARTITION_TYPES
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ memset(above_ctx, partition_context_lookup[subsize].above, bw);
+ memset(left_ctx, partition_context_lookup[subsize].left, bh);
+#else
+ // num_4x4_blocks_wide_lookup[bsize] / 2
+ const int bs = mi_size_wide[bsize];
+
+ // update the partition context at the end notes. set partition bits
+ // of block sizes larger than the current one to be one, and partition
+ // bits of smaller block sizes to be zero.
+ memset(above_ctx, partition_context_lookup[subsize].above, bs);
+ memset(left_ctx, partition_context_lookup[subsize].left, bs);
+#endif // CONFIG_EXT_PARTITION_TYPES
+}
+
+#if CONFIG_CB4X4
+static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
+ int subsampling_x, int subsampling_y) {
+#if CONFIG_CHROMA_2X2
+ return 1;
+#endif
+
+#if CONFIG_CHROMA_SUB8X8
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+
+ int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
+ ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
+
+ return ref_pos;
+#else
+ int ref_pos = !(((mi_row & 0x01) && subsampling_y) ||
+ ((mi_col & 0x01) && subsampling_x));
+
+ if (bsize >= BLOCK_8X8) ref_pos = 1;
+
+ return ref_pos;
+#endif
+}
+
+static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
+ int subsampling_y) {
+ BLOCK_SIZE bs = bsize;
+
+ if (bs < BLOCK_8X8) {
+ if (subsampling_x == 1 && subsampling_y == 1)
+ bs = BLOCK_8X8;
+ else if (subsampling_x == 1)
+ bs = BLOCK_8X4;
+ else if (subsampling_y == 1)
+ bs = BLOCK_4X8;
+ }
+
+ return bs;
+}
+#endif
+
+#if CONFIG_EXT_PARTITION_TYPES
+static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE subsize,
+ BLOCK_SIZE bsize,
+ PARTITION_TYPE partition) {
+ if (bsize >= BLOCK_8X8) {
+ const int hbs = mi_size_wide[bsize] / 2;
+ BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
+ switch (partition) {
+ case PARTITION_SPLIT:
+ if (bsize != BLOCK_8X8) break;
+ case PARTITION_NONE:
+ case PARTITION_HORZ:
+ case PARTITION_VERT:
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+ break;
+ case PARTITION_HORZ_A:
+ update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
+ update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
+ break;
+ case PARTITION_HORZ_B:
+ update_partition_context(xd, mi_row, mi_col, subsize, subsize);
+ update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
+ break;
+ case PARTITION_VERT_A:
+ update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
+ update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
+ break;
+ case PARTITION_VERT_B:
+ update_partition_context(xd, mi_row, mi_col, subsize, subsize);
+ update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
+ break;
+ default: assert(0 && "Invalid partition type");
+ }
+ }
+}
+#endif // CONFIG_EXT_PARTITION_TYPES
+
+static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
+ int mi_col,
+#if CONFIG_UNPOISON_PARTITION_CTX
+ int has_rows, int has_cols,
+#endif
+ BLOCK_SIZE bsize) {
+#if CONFIG_UNPOISON_PARTITION_CTX
+ const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
+ const PARTITION_CONTEXT *left_ctx =
+ xd->left_seg_context + (mi_row & MAX_MIB_MASK);
+ // Minimum partition point is 8x8. Offset the bsl accordingly.
+ const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8];
+ int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
+
+ assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
+ assert(bsl >= 0);
+
+ if (has_rows && has_cols)
+ return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
+ else if (has_rows && !has_cols)
+ return PARTITION_CONTEXTS_PRIMARY + bsl;
+ else if (!has_rows && has_cols)
+ return PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES + bsl;
+ else
+ return PARTITION_CONTEXTS; // Bogus context, forced SPLIT
+#else
+ const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
+ const PARTITION_CONTEXT *left_ctx =
+ xd->left_seg_context + (mi_row & MAX_MIB_MASK);
+ // Minimum partition point is 8x8. Offset the bsl accordingly.
+ const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8];
+ int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
+
+ assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
+ assert(bsl >= 0);
+
+ return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
+#endif
+}
+
+static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ int max_blocks_wide = block_size_wide[bsize];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+
+ if (xd->mb_to_right_edge < 0)
+ max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
+
+ // Scale the width in the transform block unit.
+ return max_blocks_wide >> tx_size_wide_log2[0];
+}
+
+static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ int max_blocks_high = block_size_high[bsize];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+
+ if (xd->mb_to_bottom_edge < 0)
+ max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
+
+ // Scale the width in the transform block unit.
+ return max_blocks_high >> tx_size_wide_log2[0];
+}
+
+static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
+ int mi_col_start, int mi_col_end) {
+ const int width = mi_col_end - mi_col_start;
+ const int aligned_width = ALIGN_POWER_OF_TWO(width, cm->mib_size_log2);
+
+ const int offset_y = 2 * mi_col_start;
+ const int width_y = 2 * aligned_width;
+ const int offset_uv = offset_y >> cm->subsampling_x;
+ const int width_uv = width_y >> cm->subsampling_x;
+
+ av1_zero_array(cm->above_context[0] + offset_y, width_y);
+ av1_zero_array(cm->above_context[1] + offset_uv, width_uv);
+ av1_zero_array(cm->above_context[2] + offset_uv, width_uv);
+
+ av1_zero_array(cm->above_seg_context + mi_col_start, aligned_width);
+
+#if CONFIG_VAR_TX
+ av1_zero_array(cm->above_txfm_context + mi_col_start, aligned_width);
+#endif // CONFIG_VAR_TX
+}
+
+static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
+ av1_zero(xd->left_context);
+ av1_zero(xd->left_seg_context);
+#if CONFIG_VAR_TX
+ av1_zero(xd->left_txfm_context_buffer);
+#endif
+}
+
+#if CONFIG_VAR_TX
+static INLINE TX_SIZE get_min_tx_size(TX_SIZE tx_size) {
+ if (tx_size >= TX_SIZES_ALL) assert(0);
+ return txsize_sqr_map[tx_size];
+}
+
+static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
+ int i;
+ for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
+}
+
+static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, int skip,
+ const MACROBLOCKD *xd) {
+ uint8_t bw = tx_size_wide[tx_size];
+ uint8_t bh = tx_size_high[tx_size];
+
+ if (skip) {
+ bw = n8_w * MI_SIZE;
+ bh = n8_h * MI_SIZE;
+ }
+
+ set_txfm_ctx(xd->above_txfm_context, bw, n8_w);
+ set_txfm_ctx(xd->left_txfm_context, bh, n8_h);
+}
+
+static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
+ TXFM_CONTEXT *left_ctx,
+ TX_SIZE tx_size, TX_SIZE txb_size) {
+ BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
+ int bh = mi_size_high[bsize];
+ int bw = mi_size_wide[bsize];
+ uint8_t txw = tx_size_wide[tx_size];
+ uint8_t txh = tx_size_high[tx_size];
+ int i;
+ for (i = 0; i < bh; ++i) left_ctx[i] = txh;
+ for (i = 0; i < bw; ++i) above_ctx[i] = txw;
+}
+
+static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx,
+ TXFM_CONTEXT *left_ctx,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ const uint8_t txw = tx_size_wide[tx_size];
+ const uint8_t txh = tx_size_high[tx_size];
+ const int above = *above_ctx < txw;
+ const int left = *left_ctx < txh;
+ TX_SIZE max_tx_size = max_txsize_lookup[bsize];
+ int category = TXFM_PARTITION_CONTEXTS - 1;
+
+ // dummy return, not used by others.
+ if (tx_size <= TX_4X4) return 0;
+
+ switch (AOMMAX(block_size_wide[bsize], block_size_high[bsize])) {
+#if CONFIG_EXT_PARTITION
+ case 128:
+#endif
+ case 64:
+ case 32: max_tx_size = TX_32X32; break;
+ case 16: max_tx_size = TX_16X16; break;
+ case 8: max_tx_size = TX_8X8; break;
+ default: assert(0);
+ }
+
+ if (max_tx_size >= TX_8X8) {
+ category = (tx_size != max_tx_size && max_tx_size > TX_8X8) +
+ (TX_SIZES - 1 - max_tx_size) * 2;
+ }
+ if (category == TXFM_PARTITION_CONTEXTS - 1) return category;
+ return category * 3 + above + left;
+}
+#endif
+
+static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
+ return PARTITION_INVALID;
+ } else {
+ const int offset = mi_row * cm->mi_stride + mi_col;
+ MODE_INFO **mi = cm->mi_grid_visible + offset;
+ const MB_MODE_INFO *const mbmi = &mi[0]->mbmi;
+ const int bsl = b_width_log2_lookup[bsize];
+ const PARTITION_TYPE partition = partition_lookup[bsl][mbmi->sb_type];
+#if !CONFIG_EXT_PARTITION_TYPES
+ return partition;
+#else
+ const int hbs = mi_size_wide[bsize] / 2;
+
+ assert(cm->mi_grid_visible[offset] == &cm->mi[offset]);
+
+ if (partition != PARTITION_NONE && bsize > BLOCK_8X8 &&
+ mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
+ const BLOCK_SIZE h = get_subsize(bsize, PARTITION_HORZ_A);
+ const BLOCK_SIZE v = get_subsize(bsize, PARTITION_VERT_A);
+ const MB_MODE_INFO *const mbmi_right = &mi[hbs]->mbmi;
+ const MB_MODE_INFO *const mbmi_below = &mi[hbs * cm->mi_stride]->mbmi;
+ if (mbmi->sb_type == h) {
+ return mbmi_below->sb_type == h ? PARTITION_HORZ : PARTITION_HORZ_B;
+ } else if (mbmi->sb_type == v) {
+ return mbmi_right->sb_type == v ? PARTITION_VERT : PARTITION_VERT_B;
+ } else if (mbmi_below->sb_type == h) {
+ return PARTITION_HORZ_A;
+ } else if (mbmi_right->sb_type == v) {
+ return PARTITION_VERT_A;
+ } else {
+ return PARTITION_SPLIT;
+ }
+ }
+
+ return partition;
+#endif // !CONFIG_EXT_PARTITION_TYPES
+ }
+}
+
+static INLINE void set_sb_size(AV1_COMMON *const cm, BLOCK_SIZE sb_size) {
+ cm->sb_size = sb_size;
+ cm->mib_size = mi_size_wide[cm->sb_size];
+#if CONFIG_CB4X4
+ cm->mib_size_log2 = b_width_log2_lookup[cm->sb_size];
+#else
+ cm->mib_size_log2 = mi_width_log2_lookup[cm->sb_size];
+#endif
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // AV1_COMMON_ONYXC_INT_H_